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Two-photon decay of hydrogenlike ions is studied within the framework of second-order perturbation theory,
based on the relativistic Dirac’s equation. Special attention is paid to the effects arising from the summation
over the negative-energy �intermediate virtual� states that occur in such a framework. In order to investigate the
role of these states, detailed calculations have been carried out for the 2s1/2→1s1/2 and 2p1/2→1s1/2 transitions
in neutral hydrogen H as well as for hydrogenlike xenon Xe53+ and uranium U91+ ions. We found that for a
correct evaluation of the total and energy-differential decay rates, summation over the negative-energy part of
Dirac’s spectrum should be properly taken into account both for high-Z and low-Z atomic systems.
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I. INTRODUCTION

Experimental and theoretical studies on the two-photon
transitions in atomic systems have a long tradition. Follow-
ing seminal works by Göppert-Mayer �1� and by Breit and
Teller �2� a large number of investigations have been per-
formed in the past which focused on the decay of metastable
states of light neutral atoms and low-Z ions. These investi-
gations have dealt not only with the total and energy-
differential decay rates �3–5� but also with the angular dis-
tributions �6–9� and even polarization correlations between
the two emitted photons �10–12�. Detailed analysis of these
two-photon properties have revealed unique information
about electron densities in astrophysical plasmas and thermal
x-ray sources, highly precise values of physical constants
�13�, structural properties of few-electron systems including
subtle quantum electrodynamical �QED� effects �14� as well
as about the basic concepts of quantum physics such as, e.g.,
nonlocality and nonseparability �15�.

Beside the decay of metastable states of low-Z systems,
much of today’s interest is focused also on the two-photon
transitions in high-Z ions and atoms which provide a sensi-
tive tool for improving our understanding of the electron-
photon interactions in the presence of extremely strong elec-
tromagnetic fields �16�. In such strong fields produced by
heavy nuclei, relativistic and retardation effects become of
paramount importance and may strongly affect the properties
of two-photon emission. To explore these effects, therefore,
theoretical investigations based on Dirac’s equation have
been carried out for the total and energy-differential decay
rates �17–21� as well as for the angular and polarization cor-
relations �22–24�. In general, relativistic predictions for the
two-photon total and differential properties have been found
in good agreement with experimental data obtained for the
decay of inner-shell vacancies of heavy neutral atoms
�25,26� and excited states of high-Z few-electron ions �27�.

Although intensive experimental and theoretical efforts
have been undertaken recently to understand relativistic ef-

fects on the two-photon transitions in heavy ions and atoms,
a number of questions still remain open. One of the ques-
tions, which currently attracts much of interest, concerns the
role of negative energy solutions of Dirac’s equation in rela-
tivistic two-photon calculations. Usually, these calculations
are performed within the framework of the second-order per-
turbation theory and, hence, require summation over the �vir-
tual� intermediate ion states. Such a summation, running
over the complete spectrum, should obviously include not
only positive- �discrete and continuum� but also negative-
eigenenergy Dirac states. One might expect, however, that
since the energy release in two-photon bound-bound transi-
tions is less than the energy required for the electron-positron
pair production, the contribution from the negative part of
Dirac’s spectrum should be negligible even for the decay of
heaviest elements. From practical viewpoint, this assumption
justifies the restriction of the intermediate-state summation to
the positive-energy solutions only. Exclusion of the negative
continuum would lead, in turn, to a significant simplification
of the second-order relativistic calculations especially for
many-electron systems. Detailed theoretical investigations of
the two-photon transitions in such systems are performed
nowadays not only in heavy ion physics but also in chemical
physics where the �two-photon� absorption rates for atoms
and molecules are evaluated within the framework of relativ-
istic four-component Hartree-Fock approximation �28–30�.

Despite the �relatively� small energy of two-photon tran-
sitions, the influence of Dirac’s negative continuum in
second-order calculations should be further questioned be-
cause of possibility for production and subsequent annihila-
tion of the virtual antiparticles. It has been argued, for ex-
ample, that transitions involving positron states have to be
taken into account for the proper description of Thomson
scattering �31�, interaction of ions with intense electromag-
netic pulses �32,33� in the “undercritical” regime as well as
magnetic transitions in two-electron ions �34–36�. Moreover,
the first step toward the analysis of negative-energy contri-
butions to the two-photon properties has been done by Lab-
zowsky and co-workers �37� who focused on E1M1 and
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E1E2 2p1/2→1s1/2 total decay probabilities. The relativistic
calculations have indicated the importance of negative-
energy contributions in hydrogenlike ions not only for
high-Z but also for low-Z domain.

In this work, we apply the second-order perturbation
theory based on relativistic Dirac’s equation in order to re-
analyze atomic two-photon decay. We pay special attention
to the influence of negative continuum solutions on the
evaluation of the transition amplitudes and, hence, on the
total and energy-differential decay rates. For the sake of clar-
ity, we restrict our analysis to the decay of hydrogenlike ions
for which both the positive- and negative-energy parts of
Dirac’s spectrum can be still studied in a systematic way by
making use of a finite basis set method �19�. Implementation
of this method for computing relativistic second-order tran-
sition amplitudes is briefly discussed in Secs. II A and II B.
Later, in Sec. II C, we consider an alternative, semiclassical,
approach which allows analytical evaluation of the negative-
energy contributions to the two-photon matrix elements and
transition rates. These two—semiclassical and fully
relativistic—approaches are used in Sec. III to calculate the
energy differential and total decay rates for several multipole
terms in the 2s1/2→1s1/2 and 2p1/2→1s1/2 two-photon decay
of neutral hydrogen as well as hydrogenlike xenon Xe53+ and
uranium U91+ ions. Based on the results of our calculations,
we show that both the total transition probabilities and the
photon energy distributions can be strongly affected by the
negative-state contributions; this effect is most clearly ob-
served for the nondipole transitions not only in high Z but
also in �nonrelativistic� low Z domain. A brief summary of
these findings and outlooks are given finally in Sec. IV.

II. THEORY

A. Differential and total decay rates

Not much has to be written about the basic formalism for
studying the two-photon transitions in hydrogenlike ions. In
the past, this formalism has been widely applied in order to
investigate not only the total decay probabilities �17–19,37�
but also the energy as well as angular distributions �23� and
even the correlation in the polarization state of the photons
�15,24�. Below, therefore, we restrict ourselves to a rather
brief account of the basic expressions, just enough for dis-
cussing the role of negative-energy solutions of Dirac’s equa-
tion in computing of the two-photon �total and differential�
rates.

The properties of the two-photon atomic transitions are
evaluated, usually, within the framework of the second-order
perturbation theory. When based on Dirac’s equation, this
theory gives the following expression for the differential in
energy decay rate,

dw

d�1
=

�1�2

�2��3c2��
�

� �f 	A2
�	�
��	A1

�	i

E� − Ei + �1

+
�f 	A1

�	�
��	A2
�	i


E� − Ei + �2
��2

d�1d�2, �1�

where the transition operators A j
� with j=1,2 describe the

�relativistic� electron-photon interaction. For the emission of
photons with wave vectors k j and polarization vectors ê j
these operators read as

A j
� = � · �ê j + Gk̂ j�e−ikj·r − Ge−ikj·r, �2�

where � is a vector of Dirac matrices and G is an arbitrary
gauge parameter. In the calculations below, following Grant
�38�, we employ two different gauges that are known to lead
to well-known nonrelativistic operators. First, we use the so-
called Coulomb gauge, when G=0, which corresponds to the
velocity form of electron-photon interaction operator in the
nonrelativistic limit. As the second choice we adopt G
=��L+1� /L in order to obtain Babushkin gauge which re-
duces, for the particular case of L=1, to the dipole length
form of the transition operator.

In Eq. �1�, 	i

	ni�i�i
 and 	f

	nf� f� f
 denote solutions
of the Dirac’s equation for the initial and final ionic states
respectively, while Ei
Eni�i

and Ef 
Enf�f
are the corre-

sponding one-particle energies. Because of energy conserva-
tion, Ei and Ef are related to the energies �1,2=ck1,2 of the
emitted photons by

Ei − Ef = �1 + �2. �3�

From this relation, it is convenient to define the energy shar-
ing parameter y=�1 / ��1+�2�, i.e., the fraction of the energy
which is carried away by the “first” photon.

As usual in atomic physics, the second-order transition
amplitudes in Eq. �1� and, hence, the two-photon transitions
rates can be further simplified by applying the techniques of
Racah’s algebra if all the operators are presented in terms of
spherical tensors and if the �standard� radial-angular repre-
sentation of Dirac’s wave functions is employed. For the
interaction of the electron with electromagnetic field, the
spherical tensor components are obtained from the multipole
expansion of the operator A j

� �see Refs. �18,19,42� for further
details�. By using such an expansion, we are able to rewrite
Eq. �1� as a sum of partial multipole rates

dw

d�1
= �

�1L1�2L2

dW�1L1�2L2

d�1
, �4�

which describe the emission of two photons of electric �� j
=E� and/or magnetic �� j =M� type carrying away the angu-
lar momenta L1 and L2. For the decay of unpolarized ionic
state 	ni�i
, in which the emission angles as well as polariza-
tion of both photons remain unobserved, these partial multi-
pole rates are given by �18�

dW�1L1�2L2

d�1
=

�1�2

�2��3c2 �
	�1

	�2

�
j�
�	S	�1

	�2

j� �1,2�	2

+ 	S	�2
	�1

j� �2,1�	2

+ 2�
j��

d�j�, j���S	�2
	�1

j� �2,1�S	�1
	�2

j�� �1,2�� ,

�5�

where j� is the total angular momentum of electron and sum-
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mation over 	�j
in Eq. �5� is restricted to 	�j

= 
1 for the
electric �� j =E� and 	�j

=0 for the magnetic �� j =M� photon
transitions. In Eq. �5�, moreover, the angular coefficient
d�j� , j��� is defined by the phase factor and 6j Wigner symbol,

d�j�, j��� = ��2j� + 1��2j�� + 1��− 1�2j��+L1+L2� j f j�� L1

ji j� L2
� ,

�6�

and the radial integral part is expressed in terms of the re-
duced matrix elements of the multipole �electric and mag-
netic� field operators,

S	�1
	�2

j� �1,2� = �
n�

�nf� f		âL1

	�1
�		n���
�n���		âL2

	�2
�		ni�i


E� − Ei + �2
.

�7�

Here, summation over n� includes not only �infinite number
of� bound ionic states but also integration over the positive
as well as negative electron continua.

Until now, we have discussed the general expressions for
the two-photon transition rates which are differential in en-
ergy �1 of one of the photons. By performing an integration
over this energy one may easily obtain the total rate that is
directly related to the lifetime of a particular excited state
against the two-photon decay. It follows from Eq. �4� that
such a total rate can be represented as a sum of its multipole
components,

wtot = �
�1L1�2L2

W�1L1�2L2

 �

�1L1�2L2

�
0

�t dW�1L1�2L2

d�1
d�1,

�8�

where �t=Ei−Ef is the transition energy.
As seen from Eqs. �4�–�8�, any analysis of the differential

as well as total two-photon decay rates can be traced back to
the �reduced� matrix elements that describe the interaction of
an electron with the �multipole� radiation field. Since the
relativistic form of these matrix elements is applied very fre-
quently in studying various atomic processes, we shall not
discuss here their evaluation and just refer the reader for all
details to Refs. �18,19,38�. Instead, in the next section we
will focus on the summation over the intermediate states
	n���
 which appears in the second-order transition ampli-
tudes �see Eq. �7��.

B. Summation over the intermediate states

As mentioned already above, the summation over the in-
termediate states in Eq. �7� runs over the complete one-
particle spectrum 	n���
, including a summation over the dis-
crete part of the spectrum as well as an integration over the
positive and negative-energy continuum. A number of meth-
ods have been developed over the last decades in order to
evaluate the second-order transition amplitudes consistently.
Apart from the Green’s function approach �23,39� which—in
case of a purely Coulomb potential—allows for the analyti-
cal computation of Eq. �7�, the discrete-basis-set summation
is widely used nowadays in two-photon studies �19�. A great

advantage of the latter method is that it allows to separate the
contributions from the positive- and negative-energy solu-
tions in the intermediate-state summation. Since the effects
that arise from the negative-energy spectrum are in the focus
of the present study, we apply for the calculations below the
finite �discrete� basis solutions constructed from the B-spline
sets.

Since the B-spline basis set approach has been discussed
in detail elsewhere �19,40,41�, here we just briefly recall its
main features. In this way, we shall consider the ion �or
atom� under consideration to be enclosed in a finite cavity
with a radius R large enough to get a good approximation of
the wave functions with some suitable set of boundary con-
ditions, which allows for discretization of the continua. Wave
functions that describe the quantum states 	�

	n���
 of
such a “particle in box” system can be expanded in terms of
basis set functions ��

i �r� with i=1, ... ,2N which, in turn, are
found as solutions of the Dirac-Fock equation,

�
V�r�

c

d

dr
−

��

r

− � d

dr
+

��

r
� − 2c +

V�r�
c
���

i �r� =
��

i

c
��

i �r� , �9�

where ��
i =E�

i −mc2 and V�r� is a Coulomb potential of a
uniformly charged finite-size nucleus. Due to computational
reasons, each of ��

i �r� function is expressed as a linear com-
bination of B splines as it was originally proposed in Ref.
�40� by Johnson and coworkers.

For each quantum state 	�
 the set of basis functions ��
i �r�

spans both positive and negative energy solutions. Solutions
labeled by i=1, ... ,N describe the negative continuum with
��

i 
−2mc2 while solutions labeled by i=N+1, . . . ,2N corre-
spond to the first few states of the bound-state spectrum as
well as to positive continuum with ��

i �0. Thus, by selecting
the proper subset of basis functions ��

i �r� we may explore
the role of negative continuum in computing of the proper-
ties of two-photon emission from hydrogenlike ions.

C. Semirelativistic approximation

Based on the relativistic theory, the expressions obtained
in the previous section allow to study the influence of the
Dirac’s negative continuum on the properties of two-photon
emission from hydrogenlike ions with nuclear charge in the
whole range 1�Z�92. For the low-Z ions, moreover, it is
also useful to estimate the negative-energy contributions
within the semirelativistic approach as proposed in the work
by Labzowsky and coworkers �37�. To perform such a semi-
relativistic analysis let us start from Eq. �1� in which we
retain the sum only over the negative-energy continuum
states. Since the total energy of these states is E�=−�T�

+mc2�, the corresponding energy denominator of the second-
order transition amplitude can be written as E�−Ei+� j
�−2mc2 which leads to the following expression for the
differential decay rate:
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dw�−�

d�1
=

�1�2

�2��3c2

1

4�mc2�2� �
���−�

��f 	A2
�	�
��	A1

�	i


+ �f 	A1
�	�
��	A2

�	i
��2
d�1d�2. �10�

For further simplification of this expression, we shall make
use of the multipole expansion of the electron-photon inter-
action operators �2�. For the sake of simplicity, we restrict
this semirelativistic analysis to the case of Coulomb gauge
�G=0� in which operator A j

� can be written as

A j
� = � · ê j�1 − ik · r + 1/2�− ik · r�2 + ¯� , �11�

if one expands the photon exponential exp�ik ·r� into the
Taylor series.

In contrast to the “standard” spherical tensor expansion
�18,42�, the series �11� usually does not allow one to make a
clear distinction between the different multipole components
of the electromagnetic field. For instance, while the first term
in Eq. �11� describes—within the nonrelativistic limit—
electric dipole �E1� transition, the term �−ik ·r� gives rise
both, to magnetic dipole �M1� and electric quadrupole �E2�
channels. Such an approximation, however, is well justified
for our �semirelativistic� analysis which just aims to estimate
the role of negative continuum states in the different �groups
of� multipole two-photon transitions in light hydrogenlike
ions. In particular, by adopting A j

�=−� · ê j�ik ·r� for both op-
erators in Eq. �10� we may find the contribution from the
negative spectrum to the 2M1, 2E2, and E2M1 2s1/2→1s1/2
transition probabilities,

dwM1,E2
�−�

d�1
=

�1�2

�2��3c2

1

4�mc2�2� �
���−�

��f 	� · ê2�k2 · r�	�


���	� · ê1�k1 · r�	i
 + �f 	� · ê1�k1 · r�	�


���	� · ê2�k2 · r�	i
��2
d�1d�2. �12�

Here, summation over the intermediate states 	�
 is restricted
by the negative-energy solutions of the Dirac equation for
the electron in the field of nucleus. In the nonrelativistic
limits these states form a complete set of solutions of the
Schrödinger equation for the particle in a repulsive Coulomb
field �43�. By employing a closure relation for such a set we
rewrite Eq. �12� in the form,

dwM1,E2
�−�

d�1
=

�1�2

�2��3c2

1

�mc2�2

� 	�ê1ê2��f 	�k1 · r��k2 · r�	i
	2d�1d�2, �13�

where 	i
 and 	f
 now denote the solutions of the Schrödinger
equation for the initial and final ionic states, respectively. For
the particular case of 2s1/2→1s1/2 two-photon transition, i.e.,
when 	i
= 	2s
 and 	f
= 	1s
, this expression finally reads

dwM1,E2
�−�

d�1
=

222

313

�10

5�Z4�1
3�2

3, �14�

if one performs an integration over the photon emission
angles as well as a summation over the polarization states
�see Ref. �37� for further details�.

Equation �14� provides the differential rate for the 2M1,
2E2, and E2M1 two-photon transitions as obtained within
the nonrelativistic framework and by restricting the summa-
tion over the intermediate spectrum 	�
 to the negative en-
ergy states only. Being valid for low-Z ions, this expression
may also help us to analyze the negative-energy contribution
to the total decay rate,

wM1,E2
�−� = �

0

�t dwM1,E2
�−�

d�1
d�1 = ��Z�10 1

14�5236

= 1.247�10−6��Z�10, �15�

where the integration over the photon energy �1 is per-
formed.

Apart from the 2M1, 2E2, and E2M1 2s1/2→1s1/2 two-
photon transitions, Eqs. �10� and �11� may also be employed
to study other decay channels. For example, the negative
energy contributions to the differential as well as total rates
for the E1M1 and E1E2 2p1/2→1s1/2 decay read as

dwE1,M1,E2
�−�

d�1
=

217

312

�8

�Z2�1�2��1
2 + �2

2� , �16�

and

wE1,M1,E2
�−� = ��Z�8 2

5�37 = 5.822�10−5��Z�8, �17�

respectively �37�. Together with Eqs. �14� and �15�, we shall
later use these nonrelativistic predictions in order to check
the validity of our numerical calculations in low-Z domain.

III. RESULTS AND DISCUSSION

Having discussed the theoretical background for the two-
photon studies, we are prepared now to analyze the influence
of the Dirac’s negative continuum on the total as well as
energy-differential decay rates. We shall start such an analy-
sis for the 2s1/2→1s1/2 transition, which is well established
both in theory �18,19,23� and in experiment. For all hydro-
genlike ions this transition is dominated by the 2E1 decay
channel while all the higher multipoles contribute by less
than 0.5% to the decay probability. The energy-differential
decay rate given by Eq. �5� for the emission of two electric
dipole photons is displayed in Fig. 1 for the decay of neutral
hydrogen �H� as well as hydrogenlike xenon Xe53+ and ura-
nium U91+ ions. For these ions, relativistic second-order cal-
culations have been done within the Coulomb gauge and by
performing intermediate-state summation over the complete
Dirac spectrum �solid line� as well as over the positive-
�dashed line� and negative-energy �dotted line� solutions
only. As seen in this figure, the negative-energy contribution
to the energy-differential decay rate is negligible for low-Z
ions but becomes rather pronounced as the nuclear charge Z
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is increased. For the 2E1 decay of hydrogen-like uranium,
for example, exclusion of the negative solutions from the
intermediate-state summation in Eq. �7� leads to about 20%
reduction of the decay rate when compared with the “exact”
result.

While for the leading, 2E1 2s1/2→1s1/2 transition the
negative continuum effects arise only for rather heavy ions,
they might strongly affect properties of the higher multipole
decay channels in low-Z domain. In Fig. 2, for example, we
display the energy distributions of photons emitted in 2M1
and 2E2 transitions. As seen in the upper panel of the figure
corresponding to the decay of neutral hydrogen, negative en-
ergy part of the Dirac’s spectrum gives the dominant contri-
bution to the �sum of the� differential rates for these decay
channels. With the increasing nuclear charge Z, the role of
positive energy solutions also becomes more pronounced.
However, these solutions allow one to describe reasonably
well the differential rates �Eq. �5�� only if one of the photons
is much more energetic than the second one, i.e., when either
y
0.1 or y�0.9. For a nearly equal energy sharing �y
�0.5�, in contrast, accurate relativistic calculations of the
2M1 and 2E2 rates obviously require summation over both,
the negative and the positive energy states.

Apart from the results of relativistic calculations, we also
display in Fig. 2 the �sum of the� negative-energy contribu-
tions to the 2M1, 2E2, M1E2, and E2M1 2s1/2→1s1/2 tran-
sition probabilities as obtained within the semirelativistic ap-
proach discussed in Sec. II C. As expected, for low-Z ions
both the relativistic �dotted line� and semirelativistic �dot-

dashed line� results basically coincide and are well described
by Eq. �14�. As the nuclear charge Z is increased, however,
semirelativistic treatment leads to a slight underestimation of
the negative-energy contribution to the two-photon �differen-
tial� transition probabilities. For the 2s1/2→1s1/2 decay of
hydrogenlike uranium ion, for example, results obtained
from Eq. �14� is about 30% smaller than the corresponding
relativistic predictions.

Up to now, we have been considering the 2s1/2→1s1/2
two-photon decay of the hydrogenlike ions. Apart from
this—experimentally well studied—transition, recent theo-
retical interest has also been focused on the 2p1/2→1s1/2
two-photon decay �37�. Although such a channel is rather
weak when compared to the leading one-photon E1 transi-
tion, its detailed investigation is highly required for future
experiments on the parity violation in simple atomic systems
�44�. A number of calculations �37,45� have been performed,
therefore, for the transition probabilities of the dominant
E1M1 and E1E2 multipole components. In order to discuss
the role of Dirac’s negative continuum in these calculations,
we display in Fig. 3 the energy-differential rate for the sum
of the E1M1 and E1E2 2p1/2→1s1/2 two-photon transitions.
Again, the calculations have been carried out within the Cou-
lomb gauge for the electron-photon coupling and for three
nuclear charges Z=1, 54, and 92. As seen in this figure,
negative-energy summation in the second-order transition
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FIG. 1. �Color online� Energy-differential transition rates for the
2E1 2s1/2→1s1/2 two-photon decay of hydrogen and hydrogenlike
ions. Relativistic calculations have been carried out by performing
intermediate-state summation over complete Dirac’s spectrum
�solid line� as well as by restricting this summation to the positive-
�dashed line� and negative-energy �dotted line� states only.

0 0.2 0.4 0.6 0.8 11×10
-14

1×10
-12

1×10
-10

D
if

f.
de

ca
y

ra
te

s
(s

-1
)

0 0.2 0.4 0.6 0.8 11×10
4

1×10
6

D
if

f.
de

ca
y

ra
te

s
(s

-1
)

0 0.2 0.4 0.6 0.8 1
Energy sharing (units of y )

1×10
6

1×10
8

1×10
10

D
if

f.
de

ca
y

ra
te

s
(s

-1
)

Z=1

Z=54

Z=92

FIG. 2. �Color online� Energy-differential decay rates for the
�sum of the� 2M1 and 2E2 2s1/2→1s1/2 multipole two-photon tran-
sitions in hydrogen and hydrogen-like ions. Relativistic calculations
have been carried out by performing intermediate-state summation
over complete Dirac’s spectrum �solid line� as well as by restricting
this summation to the positive- �dashed line� and negative-energy
�dotted line� states only. Results of relativistic calculations are also
compared with the semirelativistic prediction �dot-dashed line� as
given by Eq. �14�.

NEGATIVE-CONTINUUM EFFECTS ON THE TWO-PHOTON… PHYSICAL REVIEW A 80, 052511 �2009�

052511-5



amplitude �7� is of great importance for accurate evaluation
of 2p1/2→1s1/2 transition probabilities both for low-Z and
high-Z ions. That is, restriction of the intermediate-state

summation to positive part of Dirac’s spectrum results in an
overestimation of the E1M1 and E1E2 energy-differential
decay rates by factors of about 2 and 2.5 for the neutral
hydrogen and hydrogenlike uranium, respectively.

Similar to the 2s1/2→1s1/2 multipole transitions, we make
use of semirelativistic formulas from Sec. II C to cross-check
our relativistic computations for the negative-energy contri-
bution to the E1M1 and E1E2 2p1/2→1s1/2 decay rates in
low-Z domain. Again, while for neutral hydrogen both, semi-
relativistic �16� and relativistic approaches produce virtually
identical results, they start to differ as the nuclear charge Z is
increased.

So far we have discussed the energy-differential decay
rates both for 2s1/2→1s1/2 and 2p1/2→1s1/2 two-photon tran-
sitions. Integration of these rates over the energy of one of
the photons �see Eq. �8�� yields the total decay rates. In Table
I we display the total decay rates for the various multipole
channels of 2s1/2→1s1/2 two-photon decay. In contrast to the
photon energy distributions from above, here relativistic cal-
culations have been performed in Coulomb �velocity� as well
as Babushkin �length� gauges. In both gauges, negative-
energy contribution to the �total� probability of the leading
2E1 transition is about eight orders of magnitude smaller
than positive-energy term if decay of low-Z ions is consid-
ered but is significantly increased for higher nuclear charges.
For the hydrogenlike uranium, for example, the total 2E1
decay rate is enhanced from 2.9041�1012 s−1 in the veloc-
ity gauge and 2.3939�1012 s−1 in the length gauge to the—
gauge independent—“exact” value of 3.8256�1012 s−1 if,
apart from the positive-energy states, the Dirac’s states with
negative energy are taken into account in the transition am-
plitude given in Eq. �7�. These results clearly indicate the
importance of the negative-state summation for the accurate
evaluation of 2E1 2s1/2→1s1/2 total rates in both, velocity
and length gauges. It worth mentioning, however, that while
for velocity gauge our findings are in perfect agreement with
results reported in Ref. �37� some discrepancy was found for
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FIG. 3. �Color online� Energy-differential decay rates for the
�sum of the� E1M1, M1E1, E1E2, and E2E1 2p1/2→1s1/2 multipole
two-photon transitions in hydrogen and hydrogenlike ions. Relativ-
istic calculations have been carried out by performing intermediate-
state summation over complete Dirac’s spectrum �solid line� as well
as by restricting this summation to the positive- �dashed line� and
negative-energy �dotted line� states only. Results of relativistic cal-
culations are compared also with the semirelativistic prediction
�dot-dashed line� as given by Eq. �16�.

TABLE I. Total rates �in s−1� for the several multipole combinations of 2s1/2→1s1/2 two-photon decay.
Relativistic calculations have been performed within the velocity and length gauges and by carrying out
intermediate-state summation over the complete Dirac’s spectrum �Wt� as well as over the positive- �W+� and
negative-energy �W−� solutions only.

Z=1 Z=54 Z=92

Length Velocity Length Velocity Length Velocity

2E1 W+ 8.2291�+00� 8.2291�+00� 1.6311�+11� 1.6023�+11� 2.9041�+12� 2.3939�+12�
W− 2.4949�−08� 6.2372�−09� 3.8442�+09� 9.6290�+08� 6.8066�+11� 1.7044�+11�
Wt 8.2291�+00� 8.2291�+00� 1.8592�+11� 1.8592�+11� 3.8256�+12� 3.8256�+12�

E1M2 W+ 2.5372�−10� 2.5372�−10� 4.7949�+07� 4.7940�+07� 8.2955�+09� 8.2714�+09�
W− 9.1743�−21� 4.5871�−21� 1.9521�+04� 9.7905�+03� 4.8084�+07� 2.4070�+07�
Wt 2.5372�−10� 2.5372�−10� 4.9278�+07� 4.9278�+07� 9.1387�+09� 9.1387�+09�

2E2 W+ 3.7296�−11� 4.8617�−13� 9.1765�+06� 1.9624�+05� 2.4730�+09� 9.7383�+07�
W− 4.5092�−11� 8.2822�−12� 1.1000�+07� 2.0202�+06� 2.9087�+09� 5.3305�+08�
Wt 4.9072�−12� 4.9072�−12� 9.8177�+05� 9.8177�+05� 1.7859�+08� 1.7859�+08�

2M1 W+ 5.9021�−20� 1.2691�+05� 3.3321�+08�
W− 1.3804�−11� 3.2695�+06� 7.9720�+08�
Wt 1.3804�−11� 3.4027�+06� 1.1093�+09�
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calculations performed in length gauge for which Labzowsky
and co-workers have argued that the contribution from the
Dirac’s negative continuum is negligible even for heaviest
ions. Based on our theoretical analysis, we argue that such a
discrepancy is caused by the incorrect summation performed
in Ref. �37� over the electric �	�=1� and longitudinal �	�

=−1� components of the electron-photon interaction operator
�2� and, hence, over the corresponding second-order ampli-
tudes S	�1

	�2

j� . Namely, Labzowsky and co-workers have

added terms with 	�= 
1 coherently, constructing thus the
�second-order� reduced matrix elements for electric type of
transition: S�e�

j� =S+1+1
j� +S+1−1

j� +S−1+1
j� +S−1−1

j� which—upon
squaring—were employed later for the computation of the
decay rates �cf. Eqs. �12� and �13� and �33�–�36� of Ref.
�37��. This interpretation is confirmed by our numerical cal-
culations, which reproduce perfectly results from Ref. �37�
when we sum matrix elements coherently. However, it has
been proven by Drake and co-workers �17,18� that terms
S	�1

	�2

j� with 	�1,2
= 
1 have to be added incoherently if nei-

ther the polarization states nor the emission angles of pho-
tons are observed. As seen from Eq. �5�, such an incoherent
summation was performed in this work in order to investi-
gate the differential �in energy� as well as the total two-
photon decay rates.

In Table I, besides the leading 2E1 decay channel, we
present the results of relativistic calculations for the higher
multipole contributions to the 2s1/2→1s1/2 two-photon tran-
sition. The influence of Dirac’s negative continuum is obvi-
ously different for various multipole combinations. While,
for example, the negative-energy contribution to the
intermediate-state summation in low-Z domain is negligible
for the E1M2 decay it becomes of paramount importance for
the 2E2 and 2M1 decay channels; an effect that has been
already discussed for the case of the energy-differential de-
cay rates �see upper panel of Fig. 2�. Moreover, 2s1/2
→1s1/2 transition with emission of two magnetic dipole
�2M1� photons in light ions seems to happen almost exclu-
sively via the negative energy �virtual� intermediate states.
The total decay rate for this transition together with the
negative-energy contribution to the probability of the 2E2
channel �evaluated in Coulomb gauge� gives in atomic units,

w2M1 + w2E2
�−� = 1.248 � 10−6��Z�10, �18�

which is in perfect agreement with the semirelativistic for-
mula �15�.

One may observe in Table I that the total rates Wt for the
leading 2E1 transition as well as for higher multipole decay
channels in medium- and high-Z ions are not just sums of the
corresponding rates W+ and W−. As seen from Eqs. �5�–�8�,
this comes from the fact that the two-photon transition prob-
abilities contain also terms that arise due to “interference”
between the positive- and negative-energy Dirac solutions.
For the 2E1 and E1M2 transitions in the high-Z realm, the
interference terms lead to an enhancement of the total decay
rates by 10–30 % when compared with incoherent sum of
W+ and W− contributions. In contrast, strong reduction of the
total rates can be observed for the emission of two electric
quadrupole photons �2E2�; this effect is most pronounced in
the length gauge where the �negative� interference term is as
large as −5.21�109 s−1 for the decay of hydrogenlike ura-
nium ion.

As mentioned above for the computation of the photon
energy distributions in low-Z domain, negative-energy con-
tribution to the intermediate-state summation is rather pro-
nounced not only for the higher multipole terms of 2s1/2
→1s1/2 decay but also for the leading E1M1 and E1E2 �two-
photon� channels of 2p1/2→1s1/2 transition. Our relativistic
calculations displayed in Table II indicate that one should
also take into account the negative-continuum summation for
an accurate evaluation of the total decay rates for these two
decay channels. For the decay of light elements, sizable con-
tribution from the negative-continuum intermediate states
arises both in length and velocity gauges. Again, these results
partially question the predictions by Labzowsky and cowork-
ers �37� who claimed a minor role of negative energy terms
for E1M1 and E1E2 calculations in length gauge. For the
velocity gauge, in contrast, our relativistic calculations,

wE1M1
�−� + wE1E2

�−� = 5.822�10−5��Z�8, �19�

are in good agreement both, with the semirelativistic predic-
tion �Eq. �17�� and data presented in Ref. �37�.

Similar to the 2s1/2→1s1/2 decay, the probabilities for the
E1M1 and E1E2 transitions are also strongly affected by the
mixing between the positive- and negative-energy states and,
hence, cannot be represented as sums of W+ and W− terms.
As seen in Table II, these �incoherent� sums sufficiently ex-
ceed the total rates Wt for all range of nuclear charge Z

TABLE II. Total rates �in s−1� for the several multipole combinations of 2p1/2→1s1/2 two-photon
decay.

Z=1 Z=54 Z=92

Length Velocity Length Velocity Length Velocity

E1M1 W+ 4.1934�−05� 3.2256�−05� 3.0381�+09� 2.2422�+09� 2.1280�+11� 1.4126�+11�
W− 1.9355�−05� 9.6773�−06� 1.5701�+09� 7.7417�+08� 1.3745�+11� 6.5902�+10�
Wt 9.6767�−06� 9.6767�−06� 6.3731�+08� 6.3731�+08� 3.8633�+10� 3.8633�+10�

E1E2 W+ 3.6716�−05� 1.2339�−06� 2.6077�+09� 8.6699�+07� 1.7827�+11� 6.3367�+09�
W− 4.5159�−05� 9.6769�−06� 3.1980�+09� 6.7698�+08� 2.1653�+11� 4.4598�+10�
Wt 6.6117�−06� 6.6117�−06� 4.2942�+08� 4.2942�+08� 2.3584�+10� 2.3584�+10�
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indicating thus that such a mixing plays a destructive role for
the two-photon decay of 2p1/2 hydrogenic state.

IV. SUMMARY AND OUTLOOK

In conclusion, the two-photon decay of hydrogenlike ions
has been reinvestigated within the framework of second-
order perturbation theory, based on Dirac’s relativistic equa-
tion. Special attention has been paid to the summation over
the intermediate ionic states which occurs in such a frame-
work and runs over complete one-particle spectrum, includ-
ing a summation over discrete �bound� states as well as the
integration over the positive and negative continua. In par-
ticular, we discussed the role of the negative energy con-
tinuum in an accurate evaluation of the second-order transi-
tion amplitudes and, hence, the energy differential as well as
total decay rates. Detailed calculations of these rates have
been presented for the 2s1/2→1s1/2 and 2p1/2→1s1/2 two-
photon transitions in neutral hydrogen as well as hydrogen-
like xenon and uranium ions. As seen from the results ob-
tained, both the total decay probabilities and the energy
distributions of the simultaneously emitted photons can be
strongly affected by the negative-state summation not only
for heavy ions but also for low-Z ones. We demonstrate,
however, that the role of Dirac’s negative continuum be-
comes most pronounced for the higher �nondipole� terms in
the expansion of the electron-photon interaction; similar ef-
fect has been recently reported for the theoretical description

of hydrogenlike systems exposed to intense electromagnetic
pulses �33�.

In the present work, we have restricted our discussion of
the negative energy contribution to the second-order calcula-
tions of the total and energy-differential decay rates. Even
stronger effects due to the Dirac’s negative continuum can be
expected, however, for the angular and polarization correla-
tions between emitted photons. Theoretical investigation of
these correlations, which requires also detailed analysis of
interference terms between the various �two-photon� multi-
pole combinations is currently underway.
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