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Recently, the O��� and O��3 ln �� radiative corrections to the orthopositronium lifetime have been pre-
sented in closed analytical form, in terms of basic irrational numbers that can be evaluated numerically to
arbitrary precision �B. A. Kniehl, A. V. Kotikov, and O. L. Veretin, Phys. Rev. Lett. 101, 193401 �2008��.
Here, we present the details of this calculation and reveal the nature of these new constants. We also list
explicit transformation formulas for generalized polylogarithms of weight four, which may be useful for other
applications.
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I. INTRODUCTION

Positronium �Ps�, the electron-positron bound state, was
discovered experimentally in 1951 �1�. Since that time, a lot
of attention has been paid to the determination of its proper-
ties, including lifetime, decay modes, and spectroscopy. The
experimental and theoretical accuracies achieved by now be-
ing quite high, there is little doubt that quantum electrody-
namics �QED� is the only interaction in this system. In fact,
thanks to the smallness of the electron mass m relative to
typical hadronic mass scales, its theoretical description is not
plagued by strong-interaction uncertainties and its properties,
such as decay widths and energy levels, can be calculated
perturbatively in nonrelativistic QED �NRQED� �2�, as ex-
pansions in Sommerfeld’s fine-structure constant �, with
very high precision.

Ps comes in two ground states, 1S0 parapositronium
�p-Ps� and 3S1 orthopositronium �o-Ps�, which decay to two
and three photons, respectively. Here we are concerned with
the lifetime of o-Ps, which has been the subject of a vast
number of experimental and theoretical investigations. Its
first measurement �3� was performed later in 1951 and
agreed well with its lowest-order �LO� prediction of 1949
�4�. Its first precision measurement �5�, of 1968, had to wait
9 years for the first correct one-loop calculation �6�, which
came 2 decades after the analogous calculation for p-Ps �7�
being considerably simpler, owing to the two-body final
state. In 1987, the Ann Arbor group �8� published a measure-
ment that exceeded the best theoretical prediction available
then by more than eight experimental standard deviations.
This so-called o-Ps lifetime puzzle triggered an avalanche of
both experimental and theoretical activities, which eventu-
ally resulted in what now appears to be the resolution of this
puzzle. In fact, the 2003 measurements at Ann Arbor �9� and
Tokyo �10�,

��Ann Arbor� = 7.0404�10 stat.��8 syst.� �s−1,

��Tokyo� = 7.0396�12 stat.��11 syst.� �s−1, �1�

agree mutually and with the present theoretical prediction

��theory� = 7.039 979�11� �s−1. �2�

The latter is evaluated from

��theory� = �0�1 + A
�

�
+

�2

3
ln � + B��

�
�2

−
3�3

2�
ln2 � + C

�3

�
ln �� , �3�

where �4�

�0 =
2

9
��2 − 9�

m�6

�
�4�

is the LO result. The leading logarithmically enhanced
O��2 ln �� and O��3 ln2 �� terms were found in Refs.
�11,12� and Ref. �13�, respectively. The coefficients A
=−10.286 606�10� �6,11,14–16�, B=45.06�26� �15�, and C
=−5.517 024 55�23� �17� were evaluated numerically in a
series of papers. Comprehensive reviews of the experimental
and theoretical statuses of Ps may be found in Refs. �18,19�.

We note in passing that high-precision tests make Ps also
a useful probe of new physics beyond the standard model. At
present, there is strong interest in models with extra dimen-
sions �20�, which may provide a solution of the gauge hier-
archy problem �21� �see Ref. �22� for a review�. Some time
ago, a peculiar feature of matter in brane world was observed
in Ref. �23�, where it was shown that massive particles ini-
tially located on our brane may leave the brane and disappear
into extra dimensions. The experimental signature of this ef-
fect is the disappearance of a particle from our world, i.e., its
invisible decay. The case of the electromagnetic field propa-
gating in the Randall-Sundrum type of metric in the presence
of extra compact dimensions �24,25� was considered in Ref.
�25�, where it was shown that the transition rate of a virtual
photon into extra dimensions is nonzero. This effect could
result in the disappearance of a neutral system. In the case of
o-Ps, such estimations for the invisible decay branching frac-
tion B�o-Ps→ invisible� �19,26� range just 1 order of magni-
tude below the presently best experimental upper bound of
4.3�10−7 at 90% confidence level established by Bad-
ertscher et al. �27�. Thus, this decay is of great interest for
the possible observation of effects due to extra dimensions.

In order to reduce the theoretical uncertainty in the o-Ps
total decay width ��theory�, it is indispensable to increase
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the precision in the coefficients A, B, and C in Eq. �3�. This
is most efficiently done by avoiding numerical integrations
altogether, i.e., by establishing the analytic forms of these
coefficients. The case of B is beyond the scope of presently
available technology, since it involves two-loop five-point
functions to be integrated over the three-particle phase space.
In the following, we thus concentrate on A and C. The quest
for an analytic expression for A has a long history. About 25
years ago, some of the simpler contributions to A, due to
self-energy and outer- and inner-vertex corrections, were ob-
tained analytically �28�, but further progress then soon came
to a grinding halt. In our recent Letter �29�, this task was
completed for A as a whole. The purpose of the present paper
is to explain the most important technical details of this cal-
culation and to collect mathematical identities that may be
useful for similar calculations.

An analytic expression for C is then simply obtained from
that for A through the relationship �17�

C =
A

3
−

229

30
+ 8 ln 2, �5�

which may be understood qualitatively by observing that the
O��3 ln �� correction in Eq. �3� receives a contribution from
the interference of the relativistic O��� term from the hard
scale with nonrelativistic O��2 ln �� terms from softer
scales.

The structure of this paper is as follows. Section II con-
tains the well-known integral representation of the o-Ps total
decay width as given in Ref. �16�. In Sec. III, we show how
to transform the contributing integrals to forms appropriate
for analytic evaluation, which is carried out for the most
complicated integrals, which are plagued by singularities, in
Sec. IV. More examples are studied in Sec. V. The final re-
sults for the coefficients A and C are presented in Sec. VI.
Section VII contains a summary. In Appendix A, we present
the analytic results for all parts of the integral representation
given in Sec. II. Appendix B contains useful representations
of the � function and the expansion of the � function about
half-integer-valued arguments. In Appendix C, transforma-
tion formulas for generalized polylogarithms of weight four
with different arguments are collected.

II. DEFINITIONS AND NOTATIONS

The O��� contribution in Eq. �3�, �1=�0A� /�, is due to
the Feynman diagrams where a virtual photon is attached in
all possible ways to the tree-level diagrams, with three real
photons linked to an open electron line, and the electron box
diagrams with an e+e− annihilation vertex connected to one
of the photons being virtual �see Fig. 1�. Taking the interfer-
ence with the tree-level diagrams, imposing e+e− threshold
kinematics, and performing the loop and angular integra-
tions, one obtains the two-dimensional integral representa-
tion �16�

�1 =
m�7

36�2	
0

1 dx1

x1

dx2

x2

dx3

x3
��2 − x1 − x2 − x3��F�x1,x3�

+ perm.� , �6�

where xi, with 0	xi	1, is the energy of photon i in the o-Ps

rest frame normalized to its maximum value, the delta func-
tion ensures energy conservation, and “perm.” stands for the
other five permutations of x1 ,x2 ,x3. The function F�x1 ,x3� is
given by

F�x1,x3� = g0�x1,x3� + 

i=1

5

gi�x1,x3�hi�x1�

+ 

i=6

7

gi�x1,x3�hi�x1,x3� , �7�

where gi�x1 ,x3� are ratios of polynomials, which are listed in
Eqs. �A5a�–�A5h� of Ref. �16�, and

h1�x1� = ln�2x1�, h2�x1� =�x1

x̄1


1,

h3�x1� =
1

2x1
���2� − Li2�1 − 2x1�� ,

h4�x1� =
1

4x1
�3��2� − 2
1

2�, h5�x1� =
1

2x̄1


1
2, �8�

h6�x1,x3� =
1

�x1x̄1x3x̄3

�Li2�rA
+, 
̄1� − Li2�rA

−, 
̄1�� , �9�

h7�x1,x3� =
1

2�x1x̄1x3x̄3

�2Li2�rB
+,
1� − 2Li2�rB

−,
1�

− Li2�rC
+,0� + Li2�rC

−,0�� , �10�

where x̄i=1−xi and


1 = arctan� x̄1

x1
, 
̄1 = arctan�x1

x̄1

,

FIG. 1. Feynman diagrams contributing to the total decay width
of o-Ps at O���. Self-energy diagrams are not shown. Dashed and
solid lines represent photons and electrons, respectively.
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pA =�x1x̄3

x̄1x3

, pB =� x̄1x̄3

x1x3
,

rA
� = �x̄1�1 � pA�, rB

� = �x1�1 � pB�, rC
� =

rB
�

�x1

.

�11�

Here, ��2�=�2 /6 and

Li2�r,
� = −
1

2
	

0

1 dt

t
ln�1 − 2rt cos 
 + r2t2� �12�

is the real part of the dilogarithm �see line below Eq. �32�� of
complex argument z=rei
 �30�. Since we are dealing here
with a single-scale problem, Eq. �6� yields just a number.

Although Bose symmetry is manifest in Eq. �6�, its evalu-
ation is complicated by the fact that, for a given order of
integration, individual permutations yield divergent integrals,
which have to cancel in their combination. In order to avoid
such a proliferation of terms, we introduce an infinitesimal
regularization parameter � in such a way that the symmetry
under xi↔xj for any pair i� j is retained. In this way, Eq. �6�
collapses to

�1 =
m�7

6�2	
2�

1−�

dx1	
1−x1+�

1−� dx2

x1x2x3
F�x1,x3� , �13�

where x3=2−x1−x2. Note that we may now exploit the free-
dom to choose any pair of variables xi and xj �i� j� as the
arguments of F and as the integration variables.

III. INTEGRAL REPRESENTATIONS OF
DILOGARITHMIC FUNCTIONS

Obviously, the functions h6�x1 ,x3� and h7�x1 ,x3� in Eqs.
�9� and �10�, respectively, give the most complicated contri-
butions to �1. In order to perform integrations involving
these terms, it is useful to apply the integral representation of

Eq. �12� to Li2�rA
� , 
̄1�, Li2�rB

� ,
1�, and Li2�rC
� ,0�. Let us first

consider Li2�rB
+ ,
1�. We see from Eq. �11� that cos 
1=�x1

and thus

Li2�rB
+,
1� = −

1

2
	

0

1+pB dt1

t1
ln�1 − x1t1�2 − t1�� , �14�

where t1= �1+ pB�t. Then, the term D1=Li2�rB
+ ,
1�

−Li2�rB
− ,
1� on the right-hand side of Eq. �10�, after the

change t2= t1−1, can be rewritten as

D1 = −
1

2
	

−pB

pB dt2

1 + t2
ln�1 − x1�1 − t2

2�� . �15�

Finally, substituting t2= pB
�t, we obtain

D1 = −
1

2
�x1x̄1x3x̄3	

0

1 dt
�t�x1x3 − x̄1x̄3t�

�ln x̄1 − ln x3

+ ln�x3 + x̄3t�� . �16�

The residual term on the right-hand side of Eq. �10�, D2

=Li2�rC
+ ,0�−Li2�rC

− ,0�, can be transformed in the same way
yielding

D2 = −
1

2
�x1x̄1x3x̄3	

0

1 dt
�t�x1x3 − x̄1x̄3t�

�ln�x̄1x̄3�

− ln�x1x3� + ln t� . �17�

We thus obtain the following integral representation for
h7�x1 ,x3� �48�:

h7�x1,x3�

= −
1

4
	

0

1 dt
�t�x1x3 − x̄1x̄3t�

�ln
x̄1x1

x3x̄3

+ 2 ln�x3 + x̄3t� − ln t� .

�18�

Exploiting the x1↔x3 symmetry of the coefficient g7�x1 ,x3�
multiplying h7�x1 ,x3�, Eq. �18� can be effectively replaced
by

h̃7�x1,x3� = −
1

4
	

0

1 dt
�t�x1x3 − x̄1x̄3t�

�2 ln�x3 + x̄3t� − ln t� .

�19�

Next, this expression, multiplied by g7�x1 ,x3�, is to be inte-
grated over x1, x3, and t. Observing that the logarithmic
terms in Eq. �19� are independent of x1, we first integrate
over x1 �for a similar approach, see Ref. �31��. In order to
avoid the appearance of complicated functions in the inter-
mediate results, the integration over t in Eq. �19� is per-
formed last.

Using the same technique, we obtain the following repre-
sentation for the function h6�x1 ,x3�:

h̃6�x1,x3�

= −
1

2
	

0

1 dt
�t�x̄1x3 − x1x̄3t�

�ln x1 − ln x3 + ln�x3 + x̄3t�� ,

�20�

in which the part proportional to ln x1 and the complemen-
tary one are first integrated over x3 and x1, respectively. The
t integration is again performed last. In Secs. IV and V, we
discuss in more details how these integrations can be per-
formed.

IV. EVALUATION OF CONTRIBUTIONS WITH h6 AND h7

We now discuss the evaluation of the most complicated
integrals, namely, those involving the functions h6�x1 ,x3� and
h7�x1 ,x3�. We denote the corresponding integrated expres-
sions as I6 and I7, respectively. They are both singular for
�→0, so that the regularization of Eq. �13� is indispensable.

Let us first consider the contribution of the coefficient
g7�x1 ,x3� without the function h7�x1 ,x3�. It can be decom-
posed into two parts as
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g̃7�x1,x3� =
g7�x1,x3�

x1x3�2 − x1 − x3�
= g̃7

sing�x1,x3� + g̃7
reg�x1,x3� ,

�21�

where

g̃7
sing�x1,x3� =

3x3�1 − x3�
2 − x1 − x3

�22�

gives rise to the singularity upon integration over x1 and x3,
while

g̃7
reg�x1,x3� =

18

x3
− 3 + 9x3 + � 2

x3
− 10�x1

+ � 4

2 − x3
−

8

x3
+ 10 + 2x3� 1

x1

+ �−
52

2 − x3
−

12

x3
+ 66 − 44x3 + 11x3

2� 1

2 − x1 − x3

�23�

remains finite, so that the limit �→0 can be taken. A similar
decomposition can be made also for g6�x1 ,x3�. Specifically,
performing the integrations over x1 and x3 and taking the
limit �→0, we have

6	
2�

1−�

dx1	
1−x1+�

1−�

dx3g̃7
sing�x1,x3� = 3 ln � +

5

2
+ O��� ,

6	
2�

1−�

dx1	
1−x1+�

1−�

dx3g̃7
reg�x1,x3� =

1240

3
− 264��2� + O��� .

�24�

Observing that the presence of the functions h6�x1 ,x3� and
h7�x1 ,x3� does not change the singularity structure of the
integrals over the variables x3, x1, and t in this order, the
decomposition of Eq. �21� leads to

Ii = Ii
sing + Ii

reg, Ii
sing,reg

= 6	
2�

1−�

dx3	
1−x3+�

1−�

dx1g̃i
sing,reg�x1,x3�hi�x1,x3� , �25�

with i=6,7.
Our evaluation yields

I6
sing = 9 ln � + 45 +

9

2
�2 −

63

2
�3 + O��� , �26�

I6
reg = −

422

3
+ �2�1877

3
− 1590l2 − 288l2

2� +
2719

2
�3 − 24l2

4

+
7677

16
�4 − 576Li4�1

2
� +

35
�2

G3 + O��� , �27�

I7
sing = − 9 ln � − 36 −

27

2
�2 +

63

2
�3 + O��� , �28�

I7
reg = 297 + �2�− 222 + 486l2� −

567

2
�3 +

315

16
�4 +

24
�2

G3

+ O��� , �29�

where �49�

G3 = 12�2l2 − l2
3 − 39�2lR − 3l2

2lR + lR
3 −

21

4
�3 + 48Li3� 1

�2
�

+ 3 Re�Li3�1 − �2

2
� − Li3�1 + �2

2
�� . �30�

As can be seen from Eqs. �26� and �28�, ln � cancels in the
sum I6+ I7. Here and in the following, we use the short-hand
notations

l2 = ln 2, l3 = ln 3, lR = ln�1 + �2� . �31�

Furthermore,

Sn,p�x� =
�− 1�n+p−1

�n − 1� ! p!
	

0

1 dt

t
lnp�1 − tx�lnn−1 t �32�

is the generalized Nielsen polylogarithm, Lin�x�=Sn−1,1�x�
the polylogarithm of order n, and �n=��n�=Lin�1�, with ��x�
being Riemann’s zeta function �30,32�.

The result of Eq. �30�, which is the most complicated part
arising from the terms with i=6 and 7 in Eq. �7�, assumes a
rather simple form when written as an infinite series

�2

3
G3 = 14�3 − 24�2l2 −

1

2

n=1


�2�n�
��2n�

4n����n + 2

2
�

− ���n + 1

2
�� , �33�

where ��m��n� is the �m+1�th logarithmic derivative of the �
function, ��x�=�0

dte−ttx−1. We can now apply the well-
known relations for � and � functions

�2�n�
2��2n�

=
1

�2n

n
�

1

n
, �34�

���n + 2

2
� − ���n + 1

2
� = �− 1�n4�−

1

2
�2 − S−2�n�� ,

�35�

where

S�m�n� = 

j=1

n
��1� j

jm �36�

is the harmonic sum. Using Eqs. �34� and �35�, the constant
G3 is rewritten in terms of so-called inverse central binomial
sums, i.e., sums of the form
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n=1


zn

�2n

n
���n� , �37�

where ��n� is some combination of harmonic sums and fac-
tors such as 1 /n, and z is some number. Sums of such type
were studied in great details in Refs. �33–36�.

It is known that, for the series in Eq. �37�, there exists a
nonlinear transformation

y =
�z − 4 − �z
�z − 4 + �z

, �38�

which leads to great simplifications in many cases. The series
in the new variable y does not have a binomial coefficient
and can be summed, yielding expressions involving general-
ized polylogarithms Sn,p�y�.

Now we can explain the appearance of the prefactor 1 /�2
in front of G3 in Eqs. �27� and �29�. Such a prefactor has not
appeared in single-scale calculations so far. The point is that
all inverse binomial series involving products of the factor
1 /n and some function f�n� that is a combination of the �
function and its derivatives have the form �see, for example,
Ref. �36��



n=1


�2�n�
��2n�

znf�n� = 2

n=1


1

�2n

n
�

zn

n
f�n� =

1 − y

1 + y
F�y� , �39�

where F�y� is some combination of generalized polyloga-
rithms and y is defined by Eq. �38�. Note that Eq. �35� con-
tains the binomial sum S−2�n�, which is related to the basic
one, S−2�n−1�, via

S−2�n� = S−2�n − 1� +
�− 1�n

n2 . �40�

Thus, the last term on the right-hand side of Eq. �40� leads to
z=4 in Eq. �33�, which translates to y=−1 via Eq. �38�. This
term then cancels the term 14�3−24�2l2 on the right-hand
side of Eq. �33�. For the term −�2 /2−S−2�n−1� on the right-
hand side of Eq. �35�, we have z=−4 so that the variable y
from Eq. �38� assumes the value

r =
�2 − 1
�2 + 1

. �41�

This explains the appearance of the factor 1 /�2 in Eqs. �27�
and �29� since �1−y� / �1+y�=1 /�2.

Finally, we can rewrite Eq. �30� as

G3 = 21�2lr −
1

12
lr
3 − 5lrLi2�r� + 5Li3�r� − 50S1,2�r�

+ 4S1,2�r2� + 34�3, �42�

where lr=ln r.

V. EVALUATING INTEGRALS FROM SERIES

Let us now consider several typical integrals that arise on
the first integration �50�. Our first example of the remaining
twofold integrals reads

I� = 	
0

1 dt

t
	

0

1 dx

x
ln�1 � 4t�1 − t��1 − x��ln�1 − x� . �43�

Direct integration over t or x would lead to rather compli-
cated functions in the remaining variable. Instead, we Taylor
expand the first logarithm using ln�1−q�=−
n=1

 qn /n to ob-
tain

I� = − 

n=1


��4�n

n
	

0

1 dt

t
�t�1 − t��n	

0

1 dx

x
�1 − x�nln�1 − x� .

�44�

Now, the two integrals are separated and can be solved in
terms of Euler’s � function. Using

	
0

1 dx

x
�1 − x�nln�1 − x� = − ���n + 1� , �45�

we finally have

I� = 

n=1


�2�n�
��2n�

��4�n

2n
���n + 1�

= 

n=1


1

�2n

n
�

��4�n

n2 ��2 − S2�n�� . �46�

Clearly, in the cases of I+ and I−, the argument z in Eq. �37�
is equal to 4 and −4, respectively.

The case of I+ is simpler and leads to a smaller number of
constants. Indeed, we can use the results of Refs. �35,36� to
obtain



n=1


1

�2n

n
�

4n

n2 = 3�2, 

n=1


1

�2n

n
�

4n

n2S2�n − 1� =
15

4
�4,



n=1


1

�2n

n
�

4n

n4 = 4�2l2
2 +

l2
4

3
+ 8Li4�1

2
� −

19

4
�4, �47�

and so on. According to Ref. �36�, after transformation
to the variable y of Eq. �38�, we arrive at polylogarithms
of argument −1, which are expressed in terms of alternating
and nonalternating Euler-Zagier sums, such as ���a�
=
n=1

 ��1�n /na, ���a , �b�=
m=1
 
n=m+1

 ��1�n��1�m /
�namb�, etc.
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Let us now turn to the case of I− in Eq. �46�. The argu-
ment z=−4 gives y=r and leads to a new type of constants.
Again using formulas from Ref. �36�, we have



n=1


1

�2n

n
�

�− 4�n

n2 = −
1

2
lr
2, 


n=1


1

�2n

n
�

�− 4�n

n2 S2�n − 1� =
1

24
lr
4,



n=1


1

�2n

n
�

�− 4�n

n4 = −
2

3
lr
3 −

1

8
lr
4 + 4S2,2�r� − 4Li4�r�

+ 4l2�Li3�r� − �3� + 4lr�Li3�r� − S1,2�r�

− l2Li2�r�� − lr
2�2Li2�r� + l2

2� . �48�

With the help of the relations listed in Appendix C, I� can be
alternatively expressed as

I+ = − 4�2l2
2 −

l2
4

3
+

17

2
�4 − 8Li4�1

2
� , �49�

I− = �4 −
1

3
l2
4 + 2l2

2�2 + 5l2
2lR

2 −
19

2
lR
2�2 −

5

3
lR
4

− 4lR Re�Li3�1 − �2

2
� − Li3�1 + �2

2
��

− 4 Re�Li4�1 − �2

2
� + Li4�1 + �2

2
�� . �50�

It has been observed empirically that, at weight four, the
terms that are not expressed through the usual Riemann zeta
function ��a� often come in the combination b4= l2

2�l2
2 /3

−2�2�+8Li4�1 /2� introduced by Broadhurst in Ref. �38�. Ex-
amples include the three-loop QCD correction to the elec-
troweak � parameter �39�, the electron anomalous magnetic
moment at three loops �40�, critical exponents in high orders
of perturbation theory �41�, the heavy-quark contribution to
the vacuum polarization function at four loops in QCD �42�,
and the matching conditions for the strong-coupling constant
at five loops �43�. Our result for I+ in Eq. �49� exhibits a
violation of this empirical observation. In fact, the nonzeta
terms form some different combination there.

Another class of typical integrals yields sums involving
� functions of half-integer arguments �see Appendix B�,
e.g.,

J� = 	
0

1 dt

t
	

0

1

dx
ln�1 � 4t�1 − t��1 − x��ln�1 − x�

x − 2

= 

n=1


��4�n

8n

�2�n�
��2n�����n + 2

2
� − ���n + 1

2
��

= 

n=1


1

�2n

n
�

��4�n

n2 �−
1

2
�2 − S−2�n − 1� −

�− 1�n

n2 � .

�51�

Following a similar strategy as above and using formulas
from Sec. IV, we may express J� in terms of known irratio-
nal constants as

J+ = −
5

2
�2l2

2 +
17

48
l2
4 +

21

4
�4 − 9�2l2lR +

19

2
�2lR

2 +
5

12
lR
4

− 9 Re�Li4�1 − �2

2
� + Li4�1 + �2

2
��

+ 4�Li4�2 − �2

4
� + Li4�2 + �2

4
��

= −
5

2
�2l2

2 +
17

48
l2
4 +

21

4
�4 − G4,

J− =
1

2
�2l2

2 −
49

48
l2
4 − �4 + 6Li4�1

2
� + lR

2�3l2
2 −

11

2
�2� −

7

4
lR
4

+ lR 1

3
l2
3 + 5�2l2 +

7

4
�3 − 16Li3� 1

�2
�

− 5 Re�Li3�1 − �2

2
� − Li3�1 + �2

2
���

+ 5 Re�Li4�1 − �2

2
� + Li4�1 + �2

2
��

− 4�Li4�2 − �2

4
� + Li4�2 + �2

4
�� , �52�

where G4, expressed with the help of the variable r defined
in Eq. �41�, is given in Eq. �A3�.

These results again contain various contributions of poly-
logarithms with argument y=−1, arising from terms of the
form �−1�n /n2 on the right-hand side of Eq. �51� for J+ and
terms of the form −�2 /2−S2�n−1� on the right-hand side of
Eq. �51� for J−, and with argument y=r, arising from the
residual terms.

Unfortunately, not all integrals can be computed so
straightforwardly. In more complicated cases, the integra-
tions are not separated after expansion to infinite series. We
then rely on the PSLQ algorithm �44�, which allows one to
reconstruct the representation of a numerical result known to
very high precision in terms of a linear combination of a set
of irrational constants with rational coefficients, if that set is
known beforehand. The experience gained with the explicit
solution of the simpler integrals helps us to exhaust the rel-
evant sets. In order for the PSLQ algorithm to work in our
applications, the numerical values of the integrals must be
known up to typically 150 decimal figures. However, for
some integrals, more accurate determinations are required.
The success of the application of the PSLQ algorithm also
relies on the fact that only certain combinations of polyloga-
rithms, such as G3 in Eqs. �30� and �42�, G4 in Eq. �A3�,
and G̃4 in Eq. �A2� are incorporated as independent struc-
tures.
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VI. RESULTS

Finally, to get rid of complex polylogarithms, such as Li4��1+�2� /2�, in the above formulas, we transform all polyloga-
rithms to arguments of value below unity. To this end, we need transformation formulas through weight four. Some of these
formulas are listed in Appendix C. After a laborious calculation, we obtain the final result for the one-loop correction

2

9
��2 − 9�A =

56

27
+

19

6
l2 + �2�−

901

216
−

2701

108
l2 +

253

24
l2
2� +

11449

432
�3 +

59

576
l2
4 −

12983

192
�4 +

251

6
Li4�1

2
� + G̃4 +

7

4
G4 +

7

6�2
G3,

�53�

where the constants G3, G4, and G̃4 are specified in Eqs. �42�, �A3�, and �A2�, respectively. Transforming the polylogarithmic
functions by means of the formulas given in Appendix C, we arrive at the form of Ref. �29�,

2

9
��2 − 9�A =

56

27
+

19

6
l2 −

901

216
�2 −

2701

108
�2l2 +

11449

432
�3 +

253

24
�2l2

2 +
913

64
�2l3

2 +
251

144
l2
4 +

83

256
l3
4 −

91

6
�3l2 −

11303

192
�4 −

21

4
�2l2lr

−
49

16
�2lr

2 +
7

16
l2lr

3 +
35

384
lr
4 −

35

8
�3lr +

581

16
�2Li2�1

3
� −

21

2
l2Li3�− r� −

7

2
lrLi3�− r� +

63

4
l2Li3�r� +

63

8
lrLi3�r�

−
249

32
Li4�−

1

3
� +

249

16
Li4�1

3
� +

251

6
Li4�1

2
� + 7Li4�− r� − 7S2,2�− r� −

63

4
Li4�r� +

63

4
S2,2�r�

+
7
�2
�7

2
�2lr −

1

72
lr
3 −

5

6
lrLi2�r� +

5

6
Li3�r� −

25

3
S1,2�r� +

2

3
S1,2�r2� +

17

3
�3� , �54�

where r is given in Eq. �41�.
From Eqs. �54� and �5�, A and C can be numerically evaluated with arbitrary precision,

A = − 10.286 614 808 628 262 240 150 169 210 991 253 179 644 007 490 228 232 410 . . . ,

C = 5.517 027 491 729 858 271 378 866 098 665 005 181 944 001 421 860 702 103 921 . . . . �55�

These numbers agree with the best existing numerical evalu-
ations �16,17� within the quoted errors.

VII. CONCLUSION

We presented the details of our evaluation of the O��� and
O��3 ln �� corrections to the total decay width of o-Ps, i.e.,
of the coefficients A and C in Eq. �3�, respectively, which
had been presented in our previous Letter �29� in closed ana-
lytic form. We discussed the nature and the origin of new
irrational constants that appear in the final results. They were
shown to be some particular cases of inverse central bino-
mial sums and corresponding generalized polylogarithms.
These constants enlarge the class of the known constants in
single-scale problems. The O��2� correction B in Eq. �3� still
remains analytically unknown.
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APPENDIX A: DETAILED RESULTS

In this appendix, we present separate results for the inte-
grals Ii of Eq. �25� with i=0, . . . ,7. Note, that not all of them
are finite in the limit �→0. We have

I0 = 204 − 142�2,

I1 = 51 + 90l2 − 228�2 +
362

3
�2l2 +

1273

12
�3,

I2 = − 40 −
346

5
�2 − 72�2l2 + 42�3 −

17
�2

G3,

I3 = 144�2 ln � − 59 + 24l2 + �2�−
219

2
+ 371l2 − 294l2

2�
+ 52�3 − 17l2

4 −
17121

16
�4 − 408Li4�1

2
� + 36G̃4,
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I4 = −
380

3
+ �2�328

15
− 252l2 +

783

2
l2
2� + 35�3 +

279

16
l2
4

−
1863

4
�4 + 1026Li4�1

2
� + 27G4,

I5 = − 144�2 ln � − 120 + 6�2�− 3 + 6l2 + 95l2
2� − 357�3

+
109

4
l2
4 − 1398�4 + 1464Li4�1

2
� + 36G4,

I6 = 9 ln � −
287

3
+ �2�3781

6
− 1590l2 − 288l2

2� + 1328�3

− 24l2
4 +

2559

2
�4 − 576Li4�1

2
� +

35
�2

G3,

I7 = − 9 ln � + 261 + �2�−
471

2
+ 486l2� − 252�3 +

315

16
�4

+
24
�2

G3, �A1�

where G3 is given in Eqs. �30� and �42�, and

G̃4 =
913

64
�2l3

2 +
581

16
�2Li2�1

3
� +

249

32
�2Li4�1

3
�

− Li4�−
1

3
�� +

83

256
l3
4 −

119

12
�3l2, �A2�

G4 =
15

16
l2
4 +

1

4
l2lr

3 +
5

96
lr
4 + 5�4 + �2�− 3l2lr −

7

4
lr
2�

+ �3�− 3l2 −
5

2
lr� + �9l2 +

9

2
lr�Li3�r�

+ �− 6l2 − 2lr�Li3�− r� − 9�Li4�r� − S2,2�r��

+ 4�Li4�− r� − S2,2�− r�� . �A3�

From Eqs. �A1�, it is clear that ln � cancels in the sum 
 j=0
7 Ij.

APPENDIX B: EXPANSIONS OF � AND � FUNCTIONS
ABOUT HALF-INTEGER ARGUMENTS

In this appendix, we present some useful relations be-
tween derivatives of the � function with half-integer argu-
ments and the � and � functions with integer arguments and
consider the expansion of the � function in the vicinity of
half-integer arguments.

Starting from the well-known relations between the � and
� functions,

��2z� =
1

2
���z +

1

2
� + ��z�� + l2,

��2z� =
1

2
���z +

1

2
� − ��z�� , �B1�

and differentiating them m �m�0� times, we have

2m+1��m��2z� = ��m��z +
1

2
� + ��m��z� ,

2m+1��m��2z� = ��m��z +
1

2
� − ��m��z� , �B2�

where ��m��z� denotes the mth derivative of ��z�, etc. We can
combine Eqs. �B1� and �B2� as

��m��z� = 2m���m��2z� − ��m��2z�� − �0ml2,

��m��z +
1

2
� = 2m���m��2z� + ��m��2z�� − �0ml2, �B3�

where �mn is the Kronecker symbol.
Using the series representations of the � and � functions

�45�

��z� = ��1� + �z − 1�

k=0


1

�k + 1��k + z�
,

��z� = 

k=0


�− 1�k

k + z
, �B4�

we obtain the following relations:

��n + 1� = ��1� + S1�n� ,

��m��n + 1� = �− 1�mm ! �Sm+1�n� − �m+1� ,

��n + 1� = �− 1�n�l2 + S−1�n�� ,

��m��n + 1� = �− 1�m+nm ! �S−�m+1��n� − S−�m+1���� ,

�B5�

where Sm�n� is defined in Eq. �36�.
Thus, Eqs. �B3� and �B5� lead to the following results for

the “sums” Sm with half-integer arguments �51�:

S1�n

2
� = S1�n� + �− 1�nS−1�n� − �1 − �− 1�n�l2,

Sm�n

2
� = 2m−1�Sm�n� + �− 1�nS−m�n��

+ �1 − �− 1�n��1 − 2m−1��m �m � 2� . �B6�

These equations are useful for expansions of the � function
in the vicinities of half-integer arguments. Indeed, using a
well-known formula for the expansions of the � function
about integer values, which was used, e.g., in Ref. �46�,
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��n + 1 + ��
n ! ��1 + ��

= exp�− 

k=1


1

k
Sk�n��− ��k� , �B7�

where �E is Euler’s constant, we find the corresponding ex-
pansions about half-integer values to be

��n/2 + 1 + ��
��n/2 + 1���1 + ��

= exp�− 

k=1


1

k
Sk�n

2
��− ��k� , �B8�

where Sm�n /2� is given by Eq. �B6�. Such expansions are
useful in many applications, including those in Ref. �47� and
references cited therein.

APPENDIX C: TRANSFORMATIONS OF
POLYLOGARITHMS OF WEIGHT FOUR

In this appendix, we present relations between the gener-
alized polylogarithms Sa,b of weight four �a+b=4� with dif-
ferent arguments. Transformations at lower weights can be
found in the literature �32�. Although the derivation of these
formulas is straightforward, we present them here for the
convenience of interested readers. At weight four, there are
three independent Nielsen polylogarithms, which we choose
to be Li4, S1,3, and S2,2.

�1� Relations for the functions with arguments 1−y and y,

Li4�1 − y� = �4 − S1,3�y� + ln�1 − y���3 − S1,2�y��

+
1

2
ln2�1 − y���2 − Li2�y�� −

1

6
ln3�1 − y�ln y ,

S2,2�1 − y� =
1

4
�4 − S2,2�y�

+ ln yS1,2�y� + ln�1 − y���3 − Li3�y�

+ ln yLi2�y�� +
1

4
ln2�1 − y�ln2 y ,

S1,3�1 − y� = �4 − Li4�y� + ln yLi3�y�

−
1

2
ln2yLi2�y� −

1

6
ln3 y ln�1 − y� . �C1�

�2� Relations for the functions with arguments −1 /y and
−y,

Li4�−
1

y
� = − Li4�− y� −

7

4
�4 −

1

2
�2 ln2 y −

1

24
ln4 y ,

S2,2�−
1

y
� = S2,2�− y� − 2Li4�− y�

−
7

4
�4 − ln y��3 − Li3�− y�� +

1

24
ln4 y ,

S1,3�−
1

y
� = − S1,3�− y� + S2,2�− y� − Li4�− y� − �4

− ln y�S1,2�− y� − Li3�− y��

−
1

2
ln2 yLi2�− y� −

1

24
ln4 y . �C2�

�3� Relations for the functions with arguments �y−1� /y
and y,

Li4� y − 1

y
� = Li4�y� + S1,3�y� − S2,2�y�

−
7

4
�4 + ln�1 − y��S1,2�y� − Li3�y��

+
1

2
ln2�1 − y�Li2�y� −

1

2
�2 ln21 − y

y

+
1

24
ln4�1 − y� −

1

24
ln41 − y

y
,

S2,2� y − 1

y
� = 2Li4�y� − S2,2�y� −

7

4
�4 + ln yS1,2�y�

+ ln
1 − y

y
�3 − ln�y�1 − y��Li3�y�

+ ln y ln�1 − y�Li2�y� +
1

4
ln2 y ln2�1 − y�

−
1

6
ln3 y ln�1 − y� +

1

24
ln4 y ,

S1,3� y − 1

y
� = Li4�y� − �4 − ln yLi3�y� +

1

2
ln2yLi2�y�

+
1

6
ln3 y ln�1 − y� −

1

24
ln4 y . �C3�

�4� Relations for the functions with arguments y / �y−1�
and y,

Li4� y

y − 1
� = S2,2�y� − Li4�y� − S1,3�y� + ln�1 − y��Li3�y�

− S1,2�y�� −
1

2
ln2�1 − y�Li2�y� −

1

24
ln4�1 − y� ,

S2,2� y

y − 1
� = S2,2�− y� − 2S1,3�y� − ln�1 − y�S1,2�y�

+
1

24
ln4�1 − y� ,

S1,3� y

y − 1
� = − S1,3�y� −

1

24
ln4�1 − y� . �C4�

�5� Relations for the functions with arguments 1 / �1+y�
and −y,
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Li4� 1

1 + y
� = S1,3�− y� + �4 + ln�1 + y��S1,2�− y� − �3�

+
1

2
ln2�1 + y��Li2�− y� + �2�

+
1

6
ln3�1 + y�ln y −

1

24
ln4�1 + y� ,

S2,2� 1

1 + y
� = 2S1,3�− y� − S2,2�− y� +

1

4
�4

+ ln�y�1 + y��S1,2�− y�

− ln�1 + y��Li3�− y� + �3�

+ ln�1 + y�ln yLi2�− y� +
1

4
ln2�1 + y�ln2 y

−
1

6
ln3�1 + y�ln y +

1

24
ln4�1 + y� ,

S1,3� 1

1 + y
� = S1,3�− y� − S2,2�− y� + Li4�− y� + �4

+ ln y�S1,2�− y� − Li3�− y�� +
1

2
ln2 yLi2�− y�

+
1

24
ln4 y −

1

24
ln41 + y

y
. �C5�

Equations �C1� and �C2� were directly obtained from Ref.
�32�, where they are presented for the generalized polyloga-
rithms Sa,b with arbitrary values of a and b, but in some
complicated form less convenient for applications. Equations
�C3�–�C5� were found by iterated application of Eqs. �C1�
and �C2� and equations from Ref. �32�. They are simple and
useful for applications together with equations for Sa,b from
Ref. �32�, with the constraints a+b=2 or a+b=3.
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