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Equivalence of continuous-variable stabilizer states under local Clifford operations
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In this paper, continuous variable stabilizer state is described by its generator matrix. Then the fact that any
stabilizer state could be reduced to the corresponding weighed graph state under local unitary operation in the
Clifford group is proved. A matrix equation, which is used to determine whether two stabilizer states are
equivalent or not under local unitary operation in the Clifford group, is proposed. Then we apply the method
to the five-mode unweighed graph states and demonstrate that our theory could be able to correctly and quickly
find the equivalent classes of five-mode unweighed graph states.
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I. INTRODUCTION

Stabilizer states [1] and (local) unitary operations in the
Clifford group play an important role in numerous applica-
tions in quantum information and quantum computation [2],
such as quantum error correction codes and fault-tolerant
quantum computation. A stabilizer state is a kind of multiqu-
bit pure state, which is a simultaneous eigenstate with eigen-
value 1 of a complete set of commutable Pauli operators. The
Clifford group is a set of operators that map a Pauli group to
a Pauli group. In the theory of quantum coding, the stabilizer
formalism is used to construct stabilizer code to protect the
quantum system from decoherence effects [3]. Graph state,
which is a special case of stabilizer state, is used to imple-
ment universal quantum computation based on quantum
measurement, namely, the so-called one-way quantum com-
putation [4,5]. Van den Nest er al. [6] and Hein er al. [7]
investigated the local Clifford (LC) equivalence of stabilizer
states for discrete variable (DV) and drew conclusions that
the stabilizer state is equivalent to graph state under LC op-
eration, and that the local complement operation for graph,
which correspond to LC operations for the corresponding
graph state, could be used to conveniently judge whether
two-graph states are local unitary equivalent or not.

DV graph state is generalized to continuous variable (CV)
graph state by Zhang et al. [8]. CV graph state can be stabi-
lized by a certain set of CV Pauli operators determined by
the corresponding graph. CV graph state can be built by
squeezed state and linear optics [9]. CV graph state, together
with Clifford group and photon counting detection, can be
used to implement universal CV quantum computation [10].
Universal quantum teleportation network is implemented
based on a CV graph state by Ren et al. [11]. It is important
to investigate the properties of CV graph state, especially the
equivalence of graph states under LC operations. Recently,
Zhang investigated the local complementation rule for CV
unweighed graph states with up to four-mode [12], and pre-
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sented graphical description of LC operations for CV
weighted graph states [13]. However, an universal method to
determine whether two CV stabilizer states with finite modes
are equivalent or not under LC operation is an open problem.
The standard algorithm to find the corresponding LC opera-
tions which transform a graph state to another equivalent
graph state is also unknown. In this paper, we first present a
matrix representation of CV stabilizer state, similar to that of
DV stabilizer state. Then a matrix equation which is able to
determine whether two stabilizer states are equivalent or not
under LC operations is proposed. By solving the matrix
equation, we could find the corresponding LC operations that
transform a graph state to another equivalent graph state.

This paper is organized as follows. In Sec. II, we first
review the basic concepts of Weyl-Heisenberg group and lo-
cal Clifford group, then give the vector description of CV
stabilizer state generator and the matrix representation of lo-
cal Clifford operator. In Sec. III, we propose the matrix rep-
resentation of CV stabilizer state. In Sec. IV, we show that
CV stabilizer state is LC equivalent to CV weighted graph
state. We present the method to determine whether two sta-
bilizer states are equivalent under LC operations in Sec. V. In
Sec. VI, we apply this rule to five-mode unweighted graph
states.

II. REPRESENTATIONS OF CV PAULI OPERATORS
AND LC OPERATORS

The CV operations are first reviewed. Here, our use of
CVs follows the standard prescription given in [14]. For CV
systems, Weyl-Heisenberg group of phase-space displace-
ment is a Lie group with generators )2=%(d+&1') (quadrature
amplitude) and ﬁ:%(d—d*) (quadrature phase) of the elec-
tromagnetic field. The commutation relation reads as [£,7]
=i, where 7Zi=1. Similar to the qubit Pauli operators, the
single mode Pauli operators are defined as X(s)=exp[—isp]
and Z(t)=explitt], where 5,7 € R. The Pauli operator X(s) is
a position-translation operator, which acts on the computa-
tional basis of position eigenstates {|g);q € R} as X(s)|q)
=|g+s). Similarly Z is a momentum-translation operator act-
ing on the computational basis of momentum eigenstates

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.80.052333

ZHANG, HE, AND ZENG

{lp);p € R} as Z(1)|p)=|p+1). These operators are noncom-
mutative and obey the identity

X($)Z(1) = e Z(0) X (). (1)

Next, we introduce some basic concepts of CV Weyl-
Heisenberg group and local Clifford group. The Pauli opera-
tors for one mode can construct a set of Pauli operators
{X;(s;),Z(t;);i=1,2,...,n} for n-mode system, which gener-
ate Weyl-Heisenberg group C;. An element G of C; can be
generally written as the following form:

G=¢"11 X,(s0Z(t), GeCy, 6e[0,2m), (2)
k

where 6 stands for a phase factor. The Clifford group C, is
the normalizer of C, i.e., it is the group of unitary operators
U satisfying UGU' € C;, VG e C,. The local Clifford opera-
tors on one mode consists of the following operators and the
products among them [14]: the position displacement opera-
tor X(s), the Fourier transform

F =expli(m/4) (£ + p*)],
and the phase operator

P(7) = expli(7/2)£°].

We could easily verify that X(s)GX'(s) € C;, FGF' € C,, and
P(n)GPi(n) eC,, VG (.

Similar to the DV condition [6], we will first introduce the
vector description of the CV Pauli operators, then give the
matrix description of CV LC operators. The mapping o be-
tween the n-mode Pauli group and the set of 2n-dimension
real column vectors is defined as

o(G) = a[e“’H Xk(sk)Zk(tk)] At tsn ).
k

3)

The multiply operation of Pauli operators is correspondingly
mapped to the addition operation of vectors, i.e,

0(G| X Gy) =0(G)) + 0(G,), G,,G, € Cy. (4)

Thus a 2n-dimension real column vectors can represent an
n-mode Pauli operator up to a phase factor.

The sufficient and necessary condition under which two
Pauli operators G; and G, are commutable is described as
follows. Two Pauli operators G; and G, are commutable if
and only if the following condition is satisfied,

O{PU’Z =2mmr, (5)
where
g;= O-(Gi)’

p= :
-1 0

I is an identity matrix, m is an integer.

Proof.  Suppose  G,=e¢'lIX(u)Z(v,) and G,
=e“lIX(a)Z(By).  Since  G,Gr=e'*Pe!Ei0kd[1X, (u
+a)Z(v+B) and G,G,=e O CuBITIX, (1 + ) Z, (v
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+B). If G, and G, are commutable, then G,G,=G,G,. It
can be concluded that v, 0y — 2 By, =2mar, where m is an
integer. Obviously, the above identity can be rewritten as
olTPcrz:ZmﬂT, where 2nX2n matrix P is defined as P
=[_0, 10], I is a n X n identity matrix,

T

o= O-(Gl) = (Uh ces Ul e 7un) 5

T

0'2=0'(G2)=(B1, ,ﬁn,al, ...,C(n) .

Now the matrix description of LC operations is given.
The one-mode LC operation is first discussed, then is gener-
alized to n-mode systems. Corresponding to mapping o,
mapping § maps the n-mode local Clifford C; group to the
set M", consisting of some 2n X 2n real matrices. First con-
sider one-mode local Clifford group C; and the set M'.

0 1 1
5(F>é[_1 O], 5(P(77))é{0 ﬂ (6)

Xw) =1, 8zZw) =1. (7)

Correspondingly, & also maps the multiply operation be-
tween Clifford operators to the multiply operation between
the matrices, which means that &(U,U,)=8U,)8U,), U,
U, € C,. Because of the following identities:

Fe''X(u)Z(v)F' = ¢ *X(= v)Z(u), (8)

P(n)e?X(u)Z(v) P! () = € * "X () Z(w + mu),  (9)

X(5)e!’X () Z(0) X (s) = VX (u)Z(v), (10)
Z(1)e'" X (u)Z(v)Z (1) = & "X (u) Z(v), (11)
it can be easily verified that o(FGF")=48(F)o(G),
a(P(n)GP'(n)=8P(n)a(G), o(X(u)GX"(u))

=8(X(u))o(G), and o(Z(v)GZ (v))=8Z(v))o(G), where G
is a one-mode Pauli operator. Because any one-mode LC
operator U can be written as the production of X(u), P(7),
and F, o(UGU")=8(U)o(G). For convenience of presenta-
tion, another operator P, (7)=FP(n)F' is defined, P,(7)
obeys the following identity:

1 0
5P () = . (12
-5 1
Because (U U,)=8U,)8(U,), &I)=8UU")=8U)8U"),
and &(I)=I, it can be found that SU")=(8(U))"". It can be
easily proven that any matrix A=[ 2] with det(A)=1 satis-
fies that

A
5 Jrccarr (- a5
8|P| = |P(=ca)FP,| - = |P(-a)P,| -~ || if d#0
B d d d
- 1 1 ,
6[P(— ab)Px<Z>P(b)Px(Z>] if d=0.
(13)
Because  det[ 8(F)]=det[ (P(7n))]=det[ 8(X(u))]=1, thus,
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det[ 8(U)]=1, which means that the set M' consists of 2 X 2
matrices whose determinates equal one.

Now it can be easily generalized to n-mode LC group Cj.
8 maps n-mode LC operator U to the matrix Q=[¢ g],
where A, B, C, and D are diagonal matrices, i.e., A
=diag(a,,...,a,), B=diag(b,,...,b,), C=diag(c,...,c,),
and D=diag(d,,...,d,), which satisfy that a; X d,—c; X b,
=1 (k=1,...,n). The fact means that [ZZ Z:] (k=1,...,n) is
the LC operator on the kth mode.

In this section, we give the vector representation of Pauli
group and the matrix representation of LC group up to a
certain phase factor. We will prove later the fact that the
phase factor can be revised to any value by Pauli operators,
which enables us not to take the phase factor into account.

III. MATRIX REPRESENTATION OF CV
STABILIZER STATE

An n-mode stabilizer state |W¥) is defined as the simulta-
neous eigenstate with eigenvalue 1 of n commutable and
independent Pauli group elements [3,15]. The set S={G
€ C,,G|W¥)=|P)} is called the stabilizer of the state |¥).
Though the number of generators of S is infinite, they in fact
belong to n kinds of different sets, each of which can be
written as {G,=e"/I1,X(ru) Z,(rv,) ,r € R}, and u; and v, are
certain numbers that are related to the state |W). The

reason is that if  eTIX(u)Z(vy)|¥)=|¥), then
e'r? exp[iﬂrg—llﬁukvk]HXk(ruk)Zk(rvk)|\I’)= [¥), VrekR,

which implies that not the value of u; and vy, but the propor-
tion of them determines the stabilizer state. This leads to the
idea that one can choose one of the operators, which have the
same proportion between their u, and v,, to be the represen-
tative of these operators without loss of generality. Thus the
stabilizer of a stabilizer state can be represented by n n-mode
independent and commutable Pauli operators with different
proportion between their u; and vy.

According to the vector representation of Pauli operators,
a stabilizer which consists of n commutable and independent
generators can be represented by a 2n X n matrix ®, whose
columns are the vectors mapped from the Pauli generator
operator [16]. Once the matrix © is given, the generators S
can be determined up to some phase factors, then the stabi-
lize state can be determined. Since the column vectors C,;
=,y Upstty,yeuy)’ and Co(rvy, ... 1, ruy, ... ruy)’,
where r € R, represent the same Pauli operator, and substi-
tuting G,(G,€S) by G,G,(G,€S) retains the stabilizer
same, any matrix ®’ that is obtained by elementary column
transformation on ® represents the same stabilizer as ©.
Here, the elementary column transformation stands for the
following operations: multiplication of a column vector by a
constant, addition of two column vectors to set the values of
one column and interchanging the position of two column
vectors. For n X n matrix, performing an elementary column
transformation on it equals to right multiplying an n X n full-
ranked matrix on it.

The property of generation matrix ©. If there exists a
simultaneous eigenstate |¥) with eigenvalue 1 of G, and G,,
o,=0(G,) and o,=0(G,) should satisfy the following con-
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dition that O'ITPO'ZZO, and the generation matrix should
satisfy the following relation:

0’PO =0. (14)

Proof. Because u;, and vy can be scaled by the same factor
r while remaining the stabilizer operator of the eigenstate.
For G| =X, (ruy)Z(rv;), r e R satisfies that G}|¥)=|¥),
if it is commutable with G,=e"TIX(a;)Z(B,), then Srv,ay
—2ZruBr=2mar. The equation is correct if and only if m=0
for any value of r. This means UITP0'2=O, with o and o,
being the column of ©. It can be verified easily that @7PO
=0.

Applying the matrix representation of LC group, the evo-
lution of a stabilizer under LC operators can be calculated as
®,=00,. The stabilizer ®, and O, are equivalent under LC
operation if and only if there exist Q and N satisfying that

0,=00N, (15)

where N is a 2n X 2n invertible matrix standing for a elemen-
tary column transformation and Q stands for the LC opera-
tions.

Phase. In the above discussion, we do not take the phase
into account. The matrix ® represents the stabilizer up to
phase factors, which can be changed by any value through
Pauli operator. Remembering that 8(X(s))=I and &(Z(r))=1I,
which means that X(s) and Z(¢) only change the phase of a
Pauli operator, while the displacement in phase space re-
maining the same. Suppose G,=e'l, X, (a,)Z,(B,) is the
Pauli operator whose phase factor 6 will be adjusted, and
Go=11;X,(u;)Z,(v,) applies on G, obtaining G,G,G}
=BG S (aqu— Beuy) is the amount that phase
factor changes. For a stabilizer with the generator
{Gl R Gn}’ where G,'= em"HX[k(aik)Z[k(,Bik) (l= 1 R ,i’l). We
want to adjust the phase {6;} of the generator {G,} into {6,
+¢} (i=1,...,n) by G=11;X(u)Z;(v;), one needs to solve
the following equations:

Uy P
ay coay, — B e
ay oy, =By = Bou || Un _
"
Ay Ay _Bnl _Bnn :
u}’l (P}’l
(16)
Because the left matrix of Eq. (16), which is

[z XT][° /1=07P" is full-ranked with a rank of n, the
rank of the coefficient matrix equals the rank of the aug-
mented matrix. Thus the equations above must have a solu-
tion, and the dimension of the solution space is n. There must
be a Pauli operator G=11,X,(u;)Z;(v;) which could be able to
change the phase factors {6;} of generator {G,} to be any
values. So, we could apply local Clifford operations to obtain
the desired phases.
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IV. LC EQUIVALENCE BETWEEN STABILIZER STATES
AND WEIGHTED GRAPH STATES FOR CV

A. CV weighted graph states

A weighted graph state is described by a mathematical
graph G=(V,E), i.e., a finite set of n vertices V connected by
a set of edges E, where every edge is specified by a factor
Q,, corresponding to the interaction strength between the
modes a and b [13]. The method to get n-mode weighted
graph states is as following. First to prepare n phase-
squeezed states, approximate to the zero-phase eigenstates.
Then apply quantum nondemolition (QND) operation
[CAQ)] operation with different interaction coefficient (),
to each pair of modes {a,b} connected by a weighted edge in
the graph. Because all C, operations commute each other,
the order in which C, are applied does not matter. Now the
n-mode state has become n-mode weighted graph state, sat-
isfying that g,=(p,—2Q,,%,) — 0, where a € V is a vertex of
the graph and b € N, are the neighbor of a. Thus the corre-
sponding stabilizer for the CV weighted graph state is
{G(O=exp(-itg,) =X (ONZ,(Q,,6) | €€ R}. Applying re-
sults in Sec. II, the generator matrix of a CV weighted graph
state can be expressed as ®=[?], with G as a symmetrical
matrix standing for the adjacent matrix for the weighted
graph and I an n-order identity matrix.

B. Equivalence between stabilizer state and weighted
graph state for CV

We have shown that CV weighted graph state is a kind of
stabilizer state. In this section, we will illustrate that any
stabilizer state can be transformed to a CV weighted graph
state by applying LC operation.

The following proof contains three steps. First we will
prove that a 2n X n generator matrix =[)Z(] of a stabilizer
can be transformed to

R! S|

Z Z
R S
R! 0
R2 0

by elementary column transformation, where Sf and R}( are
invertible matrices. Second we will prove that Fourier trans-

formation can transform matrix ® into @’:[;], where X is
an n X n invertible matrix. Finally, the stabilizer state can be
transformed into graph state by elementary column transfor-
mation and phase operation.

For a stabilizer with generator matrix ®:[)Z(]’ we trans-
form this generator matrix into the following form:

"R, O
by performing elementary column transformation on .
Here, assumed that R, is a full rank n Xk matrix and &
=rank X; the blocks R, and §, have dimensions n Xk and n

X (n—k), respectively. Next, as R, has rank k, it has an in-
vertible k X k submatrix. We assume that the first k rows of
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R, consist of the invertible kX k submatrix without loss of

generality, i.e.,
R, = )l‘
* R)zc ’

where the upper k X k-block R; is invertible and Rf has di-
mensions (n—k) X k. Partitioning S. similarly into a
k> (n—k)-block S! and a (n—k) X (n—k)-block S, i.e.,

4 S? .

Then we will prove that S? is an invertible matrix. Remem-
bering that O7PO=0, it results in S!R,=0. Suppose that
there exists (n—k)-dimensional real column vector x such
that (Sf)Tx=0; then the n-dimensional real column vector v
=(0,...,0,x))T satisfies that SZTsz and, therefore, v=R,y
for some k-dimensional real column vector. This last equa-

tion reads
0| [R Ry
x| Ri Y= R)zcy '

Since that R! is invertible, Rly=0 implies that y=0, yielding
that x=R}2Cy=O. This proves that S? is invertible. So, up to
now we have proven that

R! !
R} S
R! 0
R2 0

in which S? and R}C are invertible matrices by elementary
column transformation.
In the next step, we perform Fourier transformation

5l

on the modes k+1,...,n. It is easy to verify that this opera-
tion yields a new generator matrix ®’=[§], where

_ |R! s!
Z=| 3
R2 0

X { R)lc O ]
= 2 2 |-
_Rz _Sz

Matrix X is invertible because R! and S? are invertible ma-
trices, respectively.
Last, performing column transformation X~! on @', we

will get
Z%-1
o [zx ]
1

ZX7' is symmetrical because ®"7PO®”=0. Then perform
phase operator

and
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1 —A,
P(_Am):|:0 ] :|,

where A,, is the mth diagonal elements of ZX~!, to make the
diagonal of the upper-block all zeroes. This final generator
matrix represents a stabilizer of a weighted graph state, since
its upper-block is symmetrical with a zero diagonal and its
lower-block is an n-order identity matrix.

This proof is the counterpart to the proof of M. Van den
Nest [6], who showed that the DV stabilizer state is equiva-
lent to DV graph state under LC operations. With some
modification, the proof of M. Van den Nest can be used to
prove the equivalence between CV stabilizer state and graph
state, just as we have shown above.

Here we explain the definition of CV stabilizer state
again. A n-mode CV stabilizer state is the eigenstate with
eigenvalue 1 of the CV Pauli operators represented by the set
{6;,,i=1,...,n} and ©. The matrix ® 2nXn is full-ranked
matrix, it satisfies @TP@=0. A stabilizer state is also the
eigenstate of the operators in an Ablien subgroup of Pauli
group [15], meaning ®7PO=0. Here the fact that the stabi-
lizer state is unique can be proved. If there exist two states
defined by {6;} and O, according to Secs. III and IV, one can
find the same LC operations that transform the two states
into the same weighted graph states, which means the two
initial states are the same states. So the quantum state defined
by {6} and O is unique.

V. MATRIX EQUATION TO DETERMINE THE
EQUIVALENCE BETWEEN STABILIZER
STATES UNDER LC OPERATIONS

In Sec. III, we have shown that two stabilizer states ©®,;
and O, are LC equivalent if and only if there exist a LC
operation Q and a 2n-order invertible matrix N such that
®,=00,N. In Sec. IV it is proved that any stabilizer state is
equivalent to a weighted graph state under LC operations, so
we can investigate the equivalence between two stabilizer
states under LC operations by studying the equivalence be-
tween weighted graph states under LC operations.

Now let ®, and O, be the generator matrices of two graph

states, namely,
|: 1 :|
1
1

G
®2={12}’

where G| and G, are the adjacent matrices of the two graph
states respectively. If ®; and ®, are LC equivalent, using
Eq. (9), we get that @,=00;N. Transiting the matrices on
both sides of the equation, we get N'O]Q"=0]. Right mul-
tiplied by P®,, obtaining N'O!Q"P®,=01P®,. Noticing
that ®§P®2=O and N is invertible, the above equation can be
reduced to @] Q"PO,=0. Suppose that Q:[é g], it is simple
to calculate that

and

G1A+B— GICGZ—DG2=0,
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3 4

1

FIG. 1. Number assigning rule of the nodes in the graphs.

AD-BC=1, (17)

where A, B, C, and D are diagonal matrices.

Thus, by calculating the above equations, we can get LC
operations that transform O, to ®,, and if the equations
above have no solution, the two weighted graph states are
not LC equivalent. To determine whether the two stabilizer
states are LC equivalent, one can first transform the stabilizer
states into graph states by the LC operations proposed in Sec.
IV, then apply Eq. (17) to determine whether the two corre-
sponding graph states are LC equivalent or not. If the two
corresponding graph states are LC equivalent, the two stabi-
lizer states are also LC equivalent. Otherwise, the two stabi-
lizer states are not LC equivalent.

VI. APPLICATION TO FIVE-MODE UNWEIGHTED
GRAPH STATE

Unweighted graph state is a kind of graph state with the
same interaction coefficients on all edges. For DV un-
weighted graph states, which are equivalent to DV stabilizer
states under LC operations, the LC operations on the quan-
tum states have been translated to local complementation of
the corresponding graphs [6]. However, for CV unweighted
graph states, the case becomes more complicated. We will
show latter that for CV unweighted graph states, LC opera-
tions in the five-mode unweighted graph states can no longer
be implemented by the local complementation on the corre-
sponding graphs. We will also apply the LC equivalence cri-
terion in Sec. V to five-mode unweighted graph states and
give the different graph classes that are not LC equivalent for
five-mode graph states. In this paper, each vertex of each
graph is assigned a number according to the following rule,
which is illustrated as Fig. 1, i.e., the vertex beneath the
graph is 1, and 2, 3, 4, and 5 clockwise from 1.

Applying the criterion proposed in Sec. V to every pair of
five-mode unweighted graph states with different adjacent
matrices whose number is 728, we get 28 different graph
states that are not LC equivalent, whose graphs are shown in
Fig. 2. It is obvious that some of the graphs in Fig. 2 are
isomorphic, but they cannot be transformed into each other
without exchanging modes of different vertices. Here, No.
M(N) represents that there are N graph states that are equiva-
lent with graph state No. M under LC operations.

In the case of DV, DV graph states are LC equivalent if
and only if the graphs of the graph states are equivalent
under local complement operation [6]. The action of the local
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No.1(66)  No.2(66)  No.3(6)  No.4(14)
No.5(14)  No.6(14)  No.7(14)  No.8(14)
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FIG. 2. Classification of five-mode unweighed graph states that

are not equivalent to each other under local Clifford operators.

complement rule can be described as follows: letting G
=(V,E) be a graph and a € V be a vertex, the local comple-
ment of G for vertex a, denoted by \,(G), is obtained by
complementing the subgraph of G generated by the neigh-
borhood N, of a and leaving the rest of the graph unchanged.
However, for the case of CV, this rule is no longer available.
Considering the graphs in Fig. 3, by application of local
complement on the node 4 of the left graph, we can get the
right graph, but there does not exist LC operations that real-
ize such transformation. The proof is not difficult. Applying
Eq. (17) and solving this equation, one will find that no
solution exists. Now we will show the LC operation among
the graphs that are LC equivalent to the graph No. 4(14) in
Fig. 2. The graphs are shown in Fig. 4. The LC operations
are as follows:

FIG. 3. Applying local complement on the node 4 of the graph
on the left, one can get the graph on the right. However there does
not exist local Clifford operations to implement such trans-
formation.
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FIG. 4. Five-mode graphs that are LC equivalent to graph No.
4(14) in Fig. 2.

1—2: A=diag(1,1,1,1,1),
C = diag(~ 1,0,0,0,0),

B =diag(0,0,- 1,-1,0),
D =diag(1,1,1,1,1),

1 —3: A=diag(1,1,-1,1,0),
B =diag(- 1,-1,0,1,- 1),

D =diag(1,1,-1,0,1),

C = diag(0,0,0,- 1,1),

1—4: A=diag(1,1,1,-1,0),
B=diag(-1,-1,1,0,- 1),
D = diag(1,1,0,— 1,1),

C =diag(0,0,- 1,0,1),

1—5 A=diag(1,1,1,1,1),
B =diag(- 1,-1,0,0,— 1),

D =diag(1,1,1,1,1),

C = diag(0,0,0,- 1,0),

1 —6: A=diag(-1,-1,1,0,1),
B =diag(0,0,- 1,—1,1), C=diag(0,0,0,1,—1),
D =diag(-1,-1,1,1,0),

1—-7: A=diag(1,-1,1,0,— 1),
B =diag(1,0,—1,—1,0), C=diag(-1,0,0,1,0),

D = diag(0,- 1,1,1,- 1),

1—8: A=diag(-1,1,1,0,— 1),
B=diag(0,1,-1,-1,0), C=diag(0,-1,0,1,0),

D =diag(-1,0,1,1,- 1),

1—9: A=diag(1,1,0,-1,0),
C =diag(0,0,-1,0,1),

B = diag(0,0,1,0,— 1),
D =diag(1,1,0,- 1,0),

1—10: A=diag(1,1,-1,0,0),
C =diag(0,0,0,- 1,1),

B =diag(0,0,0,1,- 1),
D =diag(1,1,-1,0,0),
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1 11: A=diag(0,- 1,1,0,— 1),
B =diag(1,0,0,-1,0), C=diag(-1,0,0,1,0),
D = diag(0,~ 1,1,0,— 1),

1—12: A=diag(0,-1,0,1,— 1),
B=diag(1,0,— 1,0,0), C=diag(~1,0,1,0,0),
D =diag(0,- 1,0,1,- 1),

1 —13: A=diag(-1,0,1,0,— 1),
B=diag(0,1,0,— 1,0), C=diag(0,—1,0,1,0),
D =diag(-1,0,1,0,— 1),

1—-14: A= diag(— 1,0,0,1,-1),
B=diag(0,1,— 1,0,0), C=diag(0,~1,1,0,0),
D =diag(-1,0,0,1,-1).

The local operations are represented by Qz[é f,], with A,
B, C, and D illustrated above, respectively. In the above
equations, we do not take the phase into account because the
phase can be adjusted to any value by Eq. (16). It is empha-
sized that anyone of the operations above is not unique,
meaning that there are a number of different LC operations
that can implement the same transformation.

VII. CONCLUSION

In this paper, we map the n-mode Pauli operator into
2n-dimension real column vector, and map n-mode local
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Clifford operator U into 2n X 2n matrix Q. Continuous vari-
able stabilizer state is described by its generator matrix ©.
We prove the fact that any stabilizer state could be reduced
to the corresponding weighed graph state under local unitary
operation in the Clifford group. A matrix equation, which is
used to determine whether two stabilizer states are equivalent
or not under local unitary operation in the Clifford group, is
proposed. Then we demonstrate that our theory could be able
to correctly and quickly find the equivalent classes of five-
mode unweighed graph states. For one class of five-mode
unweighed graph states that are equivalent each other under
LC operations, we apply the proposed method to solve the
problem that how to find the corresponding LC operations
between two five-mode graph states.

In addition, we also illustrate that local complement rule
which governs discrete variable graph states is no longer
available for CV graph states. The reason may be as follows.
Under DV condition, the stabilizer states are equivalent to
unweighed graphs, but under CV condition the stabilizer
states are equivalent to weighted graphs.
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