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An explicit algorithm for calculating the optimized Euler angles for both qubit state transfer and gate
engineering given two arbitrary fixed Hamiltonians is presented. It is shown how the algorithm enables us to
efficiently implement single qubit gates even if the control is severely restricted and the experimentally
accessible Hamiltonians are far from orthogonal. It is further shown that using the optimized Euler angles can
significantly improve the fidelity of quantum operations even for systems where the experimentally accessible
Hamiltonians are nearly orthogonal. Unlike schemes such as composite pulses, the proposed scheme does not
significantly increase the number of local operations or gate operation times.
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I. INTRODUCTION

Quantum computing �1� generally relies on the decompo-
sition of arbitrary multiqubit operations into products of el-
ementary single and two-qubit gates, which must be imple-
mented with very high fidelity. Although the availability of
an entangling two-qubit gate is crucial for universal quantum
computing �2�, single qubit operations dominate virtually
any decomposition of a multiqubit quantum gate. For ex-
ample, if we decompose a two-qubit gate into two-qubit
gates that can be generated by a natural Ising interaction and
local operations using the Cartan decomposition �3�, at most
three two-qubit terms are required in addition to 12 single
qubit rotations. Therefore the fidelity of single qubit gates is
critical, as even small single qubit gate errors quickly accu-
mulate, resulting in poor multiqubit gate fidelities even if the
entangling gate is perfect.

One approach to improving gate fidelities and gate opera-
tion times is using optimal control. In general, optimal con-
trol fields can be derived by simultaneous optimization of
many control parameters using numerical algorithms based
on Poyntriagin’s Maximum principle �see, e.g., �4–9��. Opti-
mal control may be the only viable option for implementing
quantum gates for systems with highly complex Hamilto-
nians including off-resonant excitation and multibody fixed
coupling terms �10�, but numerical optimization can be time
consuming and the resulting optimal control fields can be
quite complicated and not necessarily easy to implement. By
contrast, geometric control, vaguely inspired by nuclear
magnetic resonance �NMR� �11�, requires only sequences of
simple pulses to implement arbitrary single and multiqubit
gates. Although compared optimally designed pulses the re-

sults may be suboptimal, this approach remains popular es-
pecially in an experimental setting, due to its conceptual and
experimental simplicity. However, there are limits to the ap-
plicability of standard techniques such as the Euler and Car-
tan decomposition, for instance, when we cannot implement
local rotations about orthogonal axes, a situation that arises
in various settings, from global electron-spin architectures
�12� to charge-based semiconductor quantum dot systems
�13�.

Geometric control generally relies heavily on Lie group
decompositions such as the standard Euler decomposition
�14� of rotations in R3, which provides an explicit formula
for decomposing any rotation in R3 into a sequence of �at
most� three rotations about two fixed, orthogonal axes, ĝ and

ĥ. Due to the equivalence of SU�2� and SO�3� �SO�3�
�SU�2� / �−1,1��, it also provides an explicit scheme to de-
compose any special unitary operator in SU�2� into elemen-
tary complex rotations, combined with the generalized Car-
tan decomposition for multiqubit gates, it provides a basis
for generating arbitrary multiqubit gates. The main drawback
of the standard Euler angle decomposition is that requires
orthogonal rotation axes, or respectively, Hamiltonians,
while the Hamiltonians that are experimentally easily acces-
sible are often at best approximately orthogonal, subject to
certain simplifications such as negligible drift, rotating wave
approximation, etc. Applying the standard Euler angle de-
composition when the available basic Hamiltonians are not
orthogonal reduces the fidelity of most local gates, and hence
virtually all multiqubit quantum gates, regardless of the qual-
ity of the entangling gates, decoherence or other sources of
noise that may reduce the fidelities of quantum operations.
This is a significant problem for applications such as quan-
tum computation, where extremely high accuracy of the el-
ementary gates is a prerequisite for scalability.

One way to improve the accuracy of elementary gates is
using composite pulse sequences �15–17� to compensate for
certain systematic errors such as rotation axis alignment and
rotation angle errors. Such approaches have proved to be
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extremely valuable in ensemble-based quantum computing
schemes such as liquid-state NMR, where multiple qubits are
encoded into different nuclear spins of a larger molecule, and
the system consists of an ensemble of a large number of
identical molecules in solution. Due to magnetic field gradi-
ents, diffusion processes, and intermolecular interactions, the
actual fields experienced by the individual molecules are
subject to fluctuations, resulting in rotation angle errors, and
to a lesser extent, rotation axis errors. Composite pulses re-
duce these errors by replacing simple unitary operations �ro-
tations� with sequences of rotations designed to “cancel” cer-
tain errors. However, this systematic error cancellation
comes at the expense of increased overhead in the number of
elementary operations, and hence time required to implement
a single quantum gate, especially if the systematic errors are
so large as to require the use of concatenated composite
pulses �18�. This can exacerbate other problems such as de-
coherence. Composite pulses can be applied to implement
gates that are robust with respect to model uncertainty in
nonensemble-based systems. However, unlike in ensemble-
based schemes, where the systematic errors are a direct con-
sequence of the fact that different molecules in the ensemble
experience different forces, systematic errors due to model
uncertainty in nonensemble systems can be minimized by
experimental system identification �19–22�, and this has been
shown to be advantageous in that it reduces to level of con-
catenation required for composite pulse sequences �18�. In
this paper we show that if the actual Hamiltonians are known
to sufficient accuracy then we can significantly improve gate
fidelities with minimal overhead simply by optimizing the
Euler angles in the decomposition, potentially completely
eliminating the need for expensive composite pulse se-
quences.

II. QUANTUM GATE ENGINEERING USING LIE GROUP
DECOMPOSITIONS

Quantum computing generally relies on decomposing
multiqubit gates into products of elementary single and two-
qubit gates, which can be applied simultaneously or sequen-
tially to produce a desired unitary evolution. Following the
idea of using realistic physical Hamiltonians to generate
quantum gates efficiently �23–25�, one approach is to decom-
pose a desired unitary operation U into elementary unitary
operations that can be easily generated by natural Hamil-
tonian flows of the system. For instance, given a system with
a natural Ising coupling �z

�1��z
�2� between adjacent qubits, and

the ability to generate arbitrary local unitary operations, any
two-qubit gate can be factorized into a product of local op-
erations, and the natural flows Z�t�=exp�−it�z

�1��z
�2�� using

the Cartan decomposition �26�

U = U1�Kx
†Z��1�Kx��Ky

†Z��2�Ky�Z��3�U2, �1�

where Z��� corresponds to free evolution of the system un-
der the Ising-coupling Hamiltonian for the time t=�, and U1,
U2, Kx, and Ky are simultaneous local operations on both
qubits. U1 and U2 depend on the particular gate to be imple-
mented, while Kx=Ux

�1���� � Ux
�2����, where Ux

�k����=exp�
−i �

2 �x
�k��, k=1,2, and similarly for Ky. The Cartan decompo-

sition can be generalized to interactions involving more than
two qubits �7�, and an explicit algorithm to calculate the
generalized Cartan decomposition was presented in �27�.
Similar decompositions also exist for other natural nonlocal
Hamiltonians but we still require very accurate single qubit
gates. In principle such gates are easy to implement. Any
W�SU�2� can be written as

W��,�,�� = � cos���ei� sin���ei�

− sin���e−i� cos���e−i� � �2�

where 0���
�
2 , 0�� ,��2�. We also have W=exp�−iH̃�

with −iH̃�su�2�, i.e.,

H̃ = H̃�d� = dx�x + dy�y + dz�z �3�

with the usual Pauli matrices

�x = �0 1

1 0
�, �y = �0 − i

i 0
�, �z = �1 0

0 − 1
� . �4�

Let d= �dx ,dy ,dz� with �= �d� and n=�−1d. As H2=�2I,
where I is the identity matrix, we have

e−itH = exp�− i�t�nx�x + ny�y + nz�z��

= cos��t�I − i sin��t��nx�x + ny�y + nz�z�

= �cos��t� − inz sin��t� − �ny + inx�sin��t�
�ny − inx�sin��t� cos��t� + inz sin��t�

�
and comparison of the last equation with Eq. �2� shows that
W=exp�−iTH� if we choose n, � and T such that

�T = arccos�cos � cos �� �5a�

n = − S−1�sin � sin �,sin � cos �,cos � sin �� �5b�

with S=sin��T�. Thus, if we have full control over the single
qubit Hamiltonians then we can implement any single qubit
gate in a single step, and if there are no constraints on the
magnitude � of the Hamiltonian then the gate operation time
T can be made arbitrarily small.

Unfortunately, for most physical systems we cannot
implement arbitrary Hamiltonians even locally. For example,
the single qubit Hamiltonians for many potential qubit sys-
tems from ions to quantum dots are of the form H= 1

2 �dz�z

+dx�x� or H= 1
2 �dx�x+dy�z�, restricting us to rotations about

axes in the xz or xy planes, respectively. If we have sufficient
control over both dx and dz such as to be able to perform
rotations about two orthogonal axes in the plane, then we can
still implement arbitrary single qubit gates using the standard
Euler decomposition, e.g.,

W��,�,�� = Uz�� + � −
�

2
�Ux���Uz�� − � +

�

2
� , �6�

where Ux���=exp�i �
2 �x� and Uz���=exp�i �

2 �z� are elemen-
tary rotations about the x and z axis, respectively.

However, in practice there are often more constraints, lim-
iting us to varying one or both parameters within a certain
range. For example, for certain solid-state architectures such
as charge-based semiconductor quantum dot systems �13�, it
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is difficult or impossible to dynamically control the tunnel
coupling d in the model Hamiltonian H=	
�z+d�x. Thus
d� �dmin,dmax� and if dmin�0 then we cannot implement ro-
tations about the z axis, no matter how much control we have
over the energy level splitting 	
, and practical constraints
often make it impossible to find operating parameters
�	
1 ,d1� and �	
2 ,d2� such that the corresponding Hamil-
tonians are exactly orthogonal. The same problem arises for
other architectures where the amount of control is limited,
such as global electron-spin systems where many electron
spins in quantum dots are simultaneously controlled by a
fixed global field, and we can only control the detuning 	

of individual spins from the global field via local voltage
gates �12�. In other cases 	
 may be fixed while we have
limited control over the coupling strength dx or Rabi fre-
quency.

In these examples �and other similar systems� we have a
fixed drift Hamiltonian and constraints on a controllable pa-
rameter. Without loss of generality, let us consider H���
= d

2 ��x+��z� with d�0 fixed and �� �0,�max�. Tr��x�z�=0
and Tr��x

2�=Tr��z
2�=Tr�I�=2 shows that the Hilbert-Schmidt

inner product 	H��1� 
H��2��=Tr�H��1�†H��2�� satisfies

	H��1�
H��2�� � 	H�0�
H��max�� =
d2

2
, �7�

and �H����=�	H��� 
H����=d��1+�2� /2. Thus, provided d
�0, the angle 
 between the Hamiltonians H�0� and H��max�
is determined by

cos 
 =
	H�0�
H�max

�

�H�0���H�max
�

=
1

�1 + �max
2

. �8�

Thus, 
→ �
2 only for �max→�. For any finite value of �max

the maximum angle between the accessible rotation axes will
be less than �

2 . If we use the standard Euler decomposition of
a single qubit gate

U = Ux���Uz���Ux��� , �9�

assuming Ux���=exp�−i �
2 X� and Uz���=exp�−i �

2 Z�, but the

actual “z” rotation is a rotation about Z̃=X cos 
+Z sin 

with 
= �1��� �

2 then the gate actually implemented is

Ũ = Ux���Uz
����Ux��� �10�

with Uz
����=exp�−i �

2 Z̃�. If there are no other errors the gate
fidelity will be

F��,�� =
1

2

Tr�U†Ũ�
 =

1

2

Tr�Uz���†Uz

�����


= cos2��/2��1 − cos���/2�� + 
cos���/2�
 �11�

and the gate error E�� ,��=1−F�� ,��. Thus the maximum
single qubit gate error is 1− 
cos�� �

2 �
=E��� ,�� and, noting
	cos2�x��= 1

2 , the average single qubit gate error is Eavg���
= 1

2 �1−cos�� �
2 ��, and for the maximum single qubit error to

be below 10−4, the rotation angle error must be less than �
=0.9% or equivalently

cos��

2
�� = sin 
 =

�max

�1 + �max
2

� 0.9999 �12�

or �max�70.7054. Hence, to keep the maximum gate error
for a single qubit gate below the error threshold of 10−4, for
example, we would have to be able to make the energy split-
ting 	
 �the controllable parameter� at least 71 greater than
the fixed coupling d, even if there were no other sources of
error. If a controlled-NOT �CNOT� gate is implemented using
the Cartan decomposition �Eq. �1�� with ��1 ,�2 ,�3�
= �� /4,� /4,0� and U1=U1

�1�
� U1

�2�, U2=U2
�1�

� U2
�2�, Kx

=Kx
�1�

� Kx
�2�, Ky =Ky

�1�
� Ky

�2�, where

Kx
�1� = Kx

�2� = Ux��� , �13a�

Ky
�1� = Ky

�2� = Ux���Uz��� , �13b�

U1
�1� = U2

�1� = Uz�1.75�� , �13c�

U1
�2� = Ux�0.5��Uz�1.5��Ux�1.5�� , �13d�

U2
�2� = Uz�1.5��Ux�0.5�� , �13e�

then assuming that our z rotations Uz
���� are really rotations

about the tilted axis Z̃=X sin� �
2 ��+Z cos� �

2 ��, shows that the
fidelity of the CNOT gate will be �0.9999 unless the rotation
axis angle error is less than about 0.6%, or �max�100, even
if the entanglement-generating Ising-coupling terms are per-
fect and there are no other sources of error such as decoher-
ence. In practice, other sources of error would mean that the
error resulting from the rotation axis misalignment would
have to be much smaller, and thus �max much bigger, for the
total errors to remain below the error threshold. Also note
that for �max=1 the rotation axis angle error is 50%, and the
maximum single qubit gate error is 1−cos�� /4�, almost
30%, and the error for a CNOT gate implemented using the
Cartan decomposition above with unoptimized single qubit
gates jumps to over 50%, assuming no errors in the Ising
terms.

III. OPTIMIZED EULER DECOMPOSITION

The previous section shows that accurate single qubit
gates are crucial, and even small deviations of the experi-
mentally accessible single qubit Hamiltonians from orthogo-
nality are problematic, not to mention situations where the
experimentally accessible Hamiltonians are far from or-
thogonal. It is also known that any local unitary operation, in
principle, can be generated exactly by performing a sequence
of complex rotations about any two �fixed� Hamiltonians H1
and H2 that generate su�2�, i.e., satisfy �H1 ,H2��0. Various
Lie group decompositions have been considered for the re-
lated problem of implementing local qubit operations exactly
in the presence of various types of fixed drift terms �28�.
Ideally, however, we would like a simple explicit algorithm
to calculate an optimal sequence of rotations given a fixed
set of Hamiltonians �rotation axes� and an arbitrary local
gate.
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In the following we consider general decompositions of
SO�3� instead of SU�2� using the equivalence between SU�2�
and SO�3� �modulo �1�. The advantage of considering
SO�3� is that it is easier to visualize rotations in R3 than
complex rotations in SU�2�. As a brief reminder we recall
that any quantum state of a two-level system can be repre-
sented by a density operator

� = ��r,�,�� =
1

2
�1 + r2 cos � r2e−i� sin �

r2ei� sin � 1 − r2 cos �
� �14�

with 0����, 0���2�, and 0�r�1, and we can define
a unique mapping between density operators � of constant
purity Tr��2�= 1

2 �1+r2� and points on a sphere of radius r in
R3 by

��r,�,�� � s�r,�,�� = r
sin � cos �

sin � sin �

cos �
� . �15�

The evolution of � under a constant Hamiltonian H then
corresponds to a rotation of the Bloch vector s about the unit
axis n̂=�−1d with the constant angular velocity �= �d�, as
defined in Sec. II. Given two Hamiltonians H1 and H2 we

calculate the corresponding normalized Bloch vectors ĥ and
ĝ and note that the angle between the rotation axes is given
by


 = arccos�ĥ · ĝ� , �16�

and 
�0 if and only if �H1 ,H2��0.
Any target operator W�� ,� ,���SU�2� is equivalent

�modulo �1� to a rotation R�a ,b ,c��SO�3� acting on the
Bloch vector s with a= 1

2�, b= 1
2 ��+�� and c= 1

2 ��−��, and
we have explicitly

R�a,b,c� = 
− b1c1 + a2b2c2 b2c1 + a2b1c2 − a1c2

− b1c2 − a2b2c1 b2c2 − a2b1c1 a1c1

a1b2 a1b1 a2
� ,

�17�

where a1=sin�a�, a2=cos�a�, and similarly for b and c.
Proposition. Any rotation R�SO�3� about an arbitrary

axis in R3 can be decomposed in a series of rotations about

two �nonidentical� fixed rotation axes ĥ and ĝ in R3 as fol-
lows:

R = �Rĥ��3 + �2�Rĝ��1�Rĥ��0� , p = 0

Rĥ��3�Xp−1Rĝ���Rĥ��̃2�Rĝ��1�Rĥ��0� , p � 0
� ,

�18�

where the parameters p, �0, �1, �2, and �3 are given explicitly
in Algorithm 1, and X=Rĝ���Rĥ���, �̃2=�2+�.

We would like emphasize here that the important part
from an application point of view is not the existence of a
general decomposition of the form �18�, which was predicted
by �29� and shown in �30�, but the simple Algorithm 1 to
compute the Euler angles �= ��0 , . . . ,�2p+2� in the decompo-
sition based on analytical formulas. In most cases the Euler
angles in decompositions about nonorthogonal rotation axes

can only be determined numerically using optimization tech-
niques �31�, but in this case we are in the fortunate position
that we can derive relatively simple analytic formulas for all
Euler angles.

Before we discuss the derivation of this result and the
algorithm, we should briefly justify the use of the expression
“optimized” Euler angles in the title. The factorization �18�
shows that in general 2�p−1�+5=2p+3 rotations are neces-
sary, and for � f �� the maximum number of steps is 2p+3
� ��


 �+1, which is equal to the order of generation of SO�3�,
which is k= ��


 �+1 according to Lowenthal’s criterion �29�.
This means that the decomposition is optimal in the sense
that we achieve unit fidelity, and that we cannot generate

arbitrary rotations using rotations about the fixed axes ĥ and
ĝ in fewer steps in general �34�. Optimality in terms of the
number of rotation steps is often related to time optimality as
more rotation steps generally will take longer to complete,
although time optimality is not guaranteed. For instance, if
rotations about one axis can be implemented much faster
than rotations about the other then a sequence that requires
more steps but fewer slow rotations by larger angles may be
faster to implement. Also, it should be noted that while the
decomposition �18� generally provides the best way to
implement a quantum gate in SU�2� exactly using a minimal
number of rotations about two fixed axes, we may be able to
implement a particular gate substantially faster if we can
dynamically vary the rotation axes continuously. For ex-
ample, consider a system with Hamiltonian H= d

2 ��x+��z�.
If we can temporally vary ��t� to take any value in the range
�0,�max� rather than two fixed values, e.g., 0 and �max, then
we may be able to implement a particular gate faster by
numerically optimizing ��t� instead of using the optimized
Euler angle decomposition. The attractivity of the general-
ized Euler decomposition lies in its simplicity. It is a simple
“bang-bang” control scheme that can be used to achieve unit
fidelity when we have limited control and cannot �or do not
wish to� implement complicated temporal control field pro-
files ��t�.

Algorithm 1. Calculate generalized Euler angles for decomposition
of arbitrary R�SO�3�.

Input: R�SO�3�, unit vectors ĥ , ĝ�R3, ĥ� � ĝ.

Output: Euler angles �= ��0 , . . . ,�2p+2�


=arccos�ĥ · ĝ�

��af ,�af�=Polar�Rĥ , ĥ , ĝ�
p= ��af /2
�
if p�0

p= p−1

end

�=�af −2
p

�1=−arccos�cot 
 tan�� /2��
�2=−arccos��−cos2 
+cos �� /sin2 
�
�3=�af

Tp= �Rĥ���Rĝ����p
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S1=Rĝ�−�1�Rĥ�−�2�TpRĥ�−�3�

��b1 ,�b1�=Polar�S1RRŷ�� /2�ĥ , ĥ , ĝ�
�0=�b1

if p=3

�= ��0 ,�1 ,�2+�3�
else

�= ��0 ,�1 ,�2+� ,� , . . . ,�
2p−1

,�3�
end

�=�+2���2�−�� / �2���

Algorithm 2 (Polar). Compute polar coordinates of â with respect

to orthogonal frame induced by ĥ and ĝ.

Input: unit vectors â , ĥ , ĝ�R3

Output: polar coordinates �� ,�� of â

ẑ= ĥ

y= ĥ� ĝ

ŷ=y / �y�

x̂= ŷ� ĥ

�=arccos�â · ẑ�
�=arctan�â · ŷ , â · x̂�

The derivation of the algorithm is based on steering of a
state represented by a vector s0�R3 of length r to another
state s f �R3 the same distance from the origin using only
rotations about the two fixed rotation axes given by the unit

vectors ĥ and ĝ. An algorithm and detailed explanation how
to move from one point on the sphere �Fig. 1� to another

though a sequence of rotations about two fixed axes ĥ and ĝ
is presented in Appendix A. However, this algorithm on its
own is not sufficient for gate engineering as a single point
and its image on the unit sphere in R3 are not sufficient to
uniquely determine a rotation in R�SO�3�. Rather, we need
at least two �nonantipodal� points and their images to fix R.

This may seem surprising as the parametrization �2� for a
unitary operator W�SU�2� shows that the image W
�� of a
single Hilbert space vector 
�� is sufficient to fix all three
parameters. The corresponding real rotation �17�, however,
cannot be fully determined by the image of a single Bloch
vector. Rather the mapping of a single point in R3 defines a
one-parameter family of elements of SO�3�, and a second
�nonantipodal� point and its image are required to fix all
three parameters a ,b ,c of R. The reason for this apparent
discrepancy is that when we transform from complex Hilbert
space vectors 
�� to density matrices �= 
��	�
 the informa-
tion about the global phase of the initial and final states,
which helps fix W uniquely, is lost.

Any pair of nonantipodal initial points �â0 , b̂0� and their

images �â f , b̂ f�, are sufficient, but it is convenient to choose
the initial points to be the orthogonal set of initial states

â0 = ĥ = �0,0� , �19a�

b̂0 = Rŷ��

2
�â0 = ��

2
,0� , �19b�

where the pairs �� ,�� are the polar coordinates

� = ��â� = arccos�â · ẑ� , �20a�

� = ��â� = arctan�â · ŷ, â · x̂� �20b�

of the unit vectors a0 and b0 with respect to the rectangular
coordinate system �x̂ , ŷ , ẑ� defined by

ẑ = ĥ, ŷ =
ĥ � ĝ

�ĥ � ĝ�
, x̂ = ŷ � ĥ . �21�

and the four-quadrand arctangent is

arctan�y,x� = �
arctan
y/x
 x � 0, y � 0

� − arctan
y/x
 x � 0, y � 0

� + arctan
y/x
 x � 0, y � 0

2� − arctan
y/x
 x � 0, y � 0.
� �22�

Then we compute the polar coordinates of the correspond-
ing images under the target rotation R

â f = Râ0 = ��af,�af� , �23a�

b̂ f = Rb̂0 = ��bf,�bf� . �23b�

and use the state transfer algorithm �Algorithm 3� to calcu-
late S1, the series of rotations that steer â f to â0,

S1 = Rĝ�− �1�Rĥ�− �2�TpRĥ�− �af� ,

where T=Rĥ���Rĝ��� and p is the largest integer strictly less
than �af /2
, i.e., p= ��af /2
�−1. The generalized Euler
angles �1 and �2 can be obtained by inserting � f =0 and �0
=�af −2p
�0 into subroutine PR2 �see Appendix B�

�2 = − arccos�cot 
 tan��af − 2p


2
�� , �24a�

FIG. 1. �Color online� Sphere with arbitrary rotation axes, re-
spective coordinate system and an arbitrary vector â �angles � and
��.
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TABLE I. Optimized Euler angles �in units of �� for various single qubit gates and different values of �.

��H̃1� indicates a rotation by � about the normalized axis H̃1. E0 is the gate error that results if the standard
Euler angles for �=� are used. The gate errors using the optimized Euler angles truncated to four decimal
digits are �3�10−9 for all gates, and can be made arbitrarily small by increasing the number of significant
digits of the Euler angles.

� E0 �%� ��H̃1� ��H̃2� ��H̃1� ��H̃2�

S2 � 0 0 1.7500 0

100 0.0007 0.0013 1.7500 0.0013

50 0.0029 0.0026 1.7499 0.0026

10 0.0727 0.0132 1.7487 0.0132

5 0.2844 0.0264 1.7448 0.0264

1 4.2893 0.1359 1.6359 0.1359

S � 0 0 1.5000 0

100 0.0025 0.0032 1.5000 0.0032

50 0.0100 0.0064 1.4999 0.0064

10 0.2481 0.0319 1.4968 0.0319

5 0.9710 0.0641 1.4873 0.0641

1 14.6446 0.5000 1 0.5000

UHad � 0 1.5000 1.5000 1.5000

100 0.0025 1.5032 1.5000 1.5032

50 0.0100 1.5064 1.4999 1.5064

10 0.2481 1.5319 1.4968 1.5319

5 0.9709 1.5641 1.4873 1.5641

1 14.6442 0 1 0

U1
�2� � 0 0.5000 1.5000 1.5000

100 0.0025 0.5032 1.5000 1.5032

50 0.0100 0.5064 1.4999 1.5064

10 0.2481 0.5319 1.4968 1.5319

5 0.9709 0.5641 1.4873 1.5641

1 14.6443 1 1 0

U2
�2� � 0 0 1.5000 0.5000

100 0.0025 0.0032 1.5000 0.5032

50 0.0100 0.0064 1.4999 0.5064

10 0.2481 0.0319 1.4968 0.5319

5 0.9709 0.0641 1.4873 0.5641

1 14.6445 0.5000 1 1

Ky
�1� � 0 0 0 1 1

100 0.0050 0.5000 1.9936 0.5000 1

50 0.0200 0.5001 1.9873 0.5001 1

10 0.4963 0.5032 1.9362 0.5032 1

5 1.9419 0.5127 1.8718 0.5127 1

1 29.2893 1 1 1 1
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�1 = − arccos�− cos2 
 + cos��af − 2p
�
sin2 


� . �24b�

Since S1b̂ f = � �
2 ,�b1� and b̂0 are unit vectors with the same

�-angle ��= �
2 �, the same series of rotations preserves the

distance between the points, hence

b̂0 = Rĥ�− �b1�S1b̂ f .

The Rĥ rotations leave â0 unchanged and we have

â0 = Rĥ�− �b1�S1â f .

Thus R=S1
−1Rĥ��b1� and we have the decomposition

R = Rĥ��3�XpRĥ��2�Rĝ��1�Rĥ��0� , �25�

where X=T−1=Rĝ���Rĥ��� and �0=�b1, �3=�af and �1, �2 as

in Eq. �24�. If p�1 we can combine the two subsequent ĥ
rotations, while for p=0, Tp=I, thus the optimal decomposi-
tion is

R = �Rĥ��3 + �2�Rĝ��1�Rĥ��0� , p = 0

Rĥ��3�Xp−1Rĝ���Rĥ��̃2�Rĝ��1�Rĥ��0� , p � 0
�

with �̃2=�2+�, which completes the proof.

IV. APPLICATIONS

To apply the results in the previous section to implement
a quantum gate

U = exp�i��nx�x + ny�y + nz�z�� �26�

given the Hamiltonians

H1 =
d

2
�x, H2 =

d

2
��x + ��z� , �27�

we identify the normalized Hamiltonians H̃1=�x and H̃2

= ��x+��z� /�1+�2 with the unit vectors ĥ= �1,0 ,0�T and ĝ
= �1,0 ,��T /�1+�2, respectively, and use Algorithm 1 to de-
compose the corresponding SO�3� representation of the tar-
get operator U

A = exp���nxRx + nyRy + nzRz�� , �28�

where Rx, Ry and Rz are the rotation generators

Rx = 
0 0 0

0 0 2

0 − 2 0
�,Ry = 
0 0 − 2

0 0 0

2 0 0
�,Rz = 
 0 2 0

− 2 0 0

0 0 0
� .

Table I shows the optimized Euler angle decomposition
results for the gates S=exp�i �

4 �z�, S2=exp�i �
8 �z�,

UHad = exp�i �

2�2
��x + �z�� �29�

as well as for the single qubit gates �Eq. �12�� required to
implement a CNOT gate via the Cartan decomposition �1�.
Gates that require only �x rotations have been omitted as
they are trivial to implement with the given Hamiltonians.
Using the optimized Euler angles rounded to four significant
digits, the gate errors for all single qubit gates in the table, as
well as the CNOT gate, are below 3�10−9 for values of �
shown, while the gate errors using the standard Euler angles
increase to almost 30% for Ky and �=1. The error for the
resulting CNOT gate increases from �10−4 for �=100 to
over 51% for �=1. Also note that the penalty for nonor-
thogonal Hamiltonians in terms of the number of rotation
steps required is actually rather small unless � is very small.
Indeed for ��1 all of the elementary gates in the table can
be implemented in at most four steps, and for ��1, this is
indeed the maximum number of steps required for any single
qubit gate. To see this recall that Lowenthal’s criterion guar-
antees that the maximum number of steps in the decomposi-
tion of any single qubit gates is

K = ��



� + 1 = � �

arccos��1 + �2�−1/2� � + 1, �30�

which yields K=3 for �=� and K=4 for 1����, K=5 for
�=1, K=6 for ��cos�� /5��−2−1���1, and so forth.

V. CONCLUSIONS

The Euler decomposition of unitary operators in SU�2� is
widely used to implement single qubit gates by decomposing
them into products of rotations about two orthogonal axes
determined by fixed Hamiltonians. The approach can be
problematic however as experimentally accessible Hamilto-
nians in many cases may not be orthogonal. Depending on
the situation, in some cases the Hamiltonians can be made
almost orthogonal, while in others the constraints may be far
more severe. In either case, however, lack of orthogonality of
the underlying Hamiltonians leads to errors in the gates
implemented, and even small errors can propagate. A rota-
tion axis angle error of even 1% results in single qubit gate
errors above the error threshold of 10−4 even if there are no
other sources of errors, and the single qubit errors compound
and lead to even larger errors for two-qubit gates. Such sys-
tematic errors can easily be corrected, however, by adapting
the Euler decomposition to the actual Hamiltonians avail-
able.

We have presented an explicit algorithm to calculate the
optimized Euler angles for any single qubit gate and two
arbitrary fixed Hamiltonians, and shown that we can substan-
tially improve single and two-qubit gate fidelities by using
optimized rather than standard Euler angles. The idea is at-
tractive because the computational overhead to calculate the
optimized Euler angles is minimal and the implementation is
no more demanding than standard geometric control, i.e., no
additional resources are required. There is a small price to
pay in terms of an increase in the number of rotation steps
required to implement a particular gate, but unless the maxi-
mum angle between the experimentally accessible Hamilto-
nians is very small, this increase is very slight, e.g., from at

IMPROVING QUANTUM GATE FIDELITIES USING… PHYSICAL REVIEW A 80, 052329 �2009�

052329-7



most three steps for orthogonal Hamiltonians to four for
Hamiltonians with angle 
 greater than 45° and five if 

=45°. For a model Hamiltonian H���= d

2 ��x+��z� with a
fixed coupling parameter d, this condition is satisfied if the
energy level splitting can be made at least as large as the
tunneling energy d, or �=1, whereas the standard Euler de-
composition would require �→�, or energy level splittings
that are orders of magnitude greater than the tunneling en-
ergy d to achieve near-orthogonal Hamiltonians.

Overall, the overhead in terms of complexity of the pulse
sequences is small compared to alternative ways to correct
for rotation axis errors, such as composite pulse sequences,
and this overhead seems acceptable, considering that relax-
ing the need to be able to perform rotations about orthogonal
axes may allow for substantial simplifications of the under-
lying architectures. Another source of overhead of the tech-
nique is the need for initial characterization of the Hamilto-
nians. It must also be stressed that optimized Euler angles are
designed to minimize errors for a single system. They cannot
compensate for ensemble errors, i.e., errors arising from the
fact that individual systems in a large ensemble may experi-
ence different fields and thus different effective rotations.
However, the approach is an effective way to improve gate
fidelities for nonensemble systems with nonideal Hamilto-
nians.

Further work is necessary to extend the results to higher-
dimensional systems. Another issue is that different gates
require different amounts of time to implement. This is not a
problem for a single system but would be for a large register
if one wants to implement gates on different qubits simulta-
neously. Here we have only used two fixed Hamiltonians
with a fixed angle between them. In many cases, however,
we may be able to vary the controllable parameter continu-
ously up to some maximum value. An interesting question in
this regard is whether we can exploit the �limited� variation
in the tilt angle to design simple geometric controls that al-
low us to implement arbitrary gates in a fixed amount of
time.
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APPENDIX A: STATE TRANSFER ALGORITHM

The objective of state transfer is to steer the system from
a known initial state s0= �r ,�0 ,�0� on a sphere of radius r to
a target state s f = �r� ,� f ,� f�. With unitary control only states
on the same sphere as the initial state are accessible by per-

forming a sequence of rotations about the axes ĥ and ĝ,
respectively. We shall assume r=1, noting that the sequence
of rotations that steers the normalized initial state â0 to the

normalized target state â f steers s0 to s f if they lie on the
same sphere of radius r, and to a state s f� that is as close to
the target state as we can get with unitary control if r�r�.

A general strategy to get from s0 to s1 with a minimum

number of rotations about the axes ĥ= ẑ and ĝ
= �sin 
 ,0 ,cos 
�T, following �30� and earlier work
�29,32,33�, is to rotate the initial state by a suitable angle
about either axis to map it to a point on the great circle in the
x̂ , ẑ plane, followed by a sequence of � rotations, alternating

about the ĥ and ĝ axis, until the angle �� of the current state
differs by less than 2
 from the � f of the target state, i.e., we
are within direct reach of the target state, followed by a final
rotation by a suitable angle about the same axis we started
with. By Lowenthal’s criterion any state can be reached from
any other state in at most k+1 steps, k being the smallest
integer �

�

 −1 �29�, and for 
= �

2 at most two steps are re-
quired.

Based on this idea, we can derive an explicit algorithm for
calculating the generalized Euler angles of an optimal de-

composition given the angle � between the rotation axes ĥ
and ĝ, and the relative coordinates ��0 ,�0� and �� f ,� f� of the
initial and final state. Assume �0�� f and 
�� /2. If �0
−� f �2
 then we can get from ��0 ,0� to �� f ,0� in two steps,
either by rotating ��0 ,0� around ĝ by an angle �, followed by

a rotation about ĥ by an angle � �Subroutine PR1�, or by a

rotation around ĥ by an angle �, followed by a rotation
around ĝ by an angle � �Subroutine PR2�. If �0−� f �2
 then
we move from the initial point to a point with �0�−� f �2
 via

a sequence of � rotations around axes ĝ and ĥ as described
before. If 
�� /2 but �0�� f then we exchange the initial
and final points, apply the algorithm and finally reverse the
sequence of rotations. If 
�� /2 we set ��1 ,�1�= ��
−�0 ,�0�, ��2 ,�2�= ��−� f ,� f�, and 
̃=�−
 and apply the
algorithm.

The algorithm returns a list of pairs �� , r̂�, where �

� �0,�� is a generalized Euler angle and r̂= ĥ or r̂= ĝ indi-
cates the rotation axis, which defines the necessary sequence
of the rotations. E.g., if �0�� f, 
�

�
2 and routine PR1 was

used, then

s�� f,� f� = Rĥ�� f�Rĥ���Rĝ���TpRĥ�− �0�s��0,�0� .

�A1�

where the angles � and � are given by

cos � =
sin �0 − cot 
�cos � f − cos �0�

sin � f
, �A2a�

cos � =
− cos 
 cos�
 − �0� + cos � f

sin 
 sin�
 − �0�
. �A2b�

Similarly, if PR2 was used
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s�� f,� f� = Rĥ�� f�Rĝ���Rĥ���TpRĥ�− �0�s��0,�0� ,

�A3�

where the angles � and � are determined by

cos � =
sin � f − cot 
�cos �0 − cos � f�

sin �0
, �A4a�

cos � =
− cos 
 cos�
 − � f� + cos �0

sin 
 sin�
 − � f�
. �A4b�

The procedures PR1 and PR2 are described in Appendix B,
and in both cases we have

Tp = Rĥ���Rĝ��� . . . Rĥ���Rĝ���

2p rotations

.

�A5�

The minimal number of steps can be calculated explicitly. If

�0=� f then only a single rotation about ĥ is required, other-
wise the minimal number of steps to get from ��0 ,�0� to

�� f ,� f� starting with a rotation about ĥ is N=2p+2+��q�,
where ��q�=1 for q�0 and 0 otherwise,

p = int���0 − � f�/2
� , �A6a�

q = cos � f − �tan 
�sin �̄ − sin � f cos � f� + cos �̄� ,

�A6b�

and �̄=�0−2p
. Here, int�x� indicates the integer part of x.
The minimal number of steps to get from ��0 ,�0� to

�� f ,� f� starting with a rotation about ĝ is N�=2+����
−� f��2p+1+��q��, where

p = int���� − � f�/2
� , �A7a�

q = cos � f − �tan 
�sin �̄ − sin � f cos � f� + cos �̄� ,

�A7b�

with ��=arccos�cos 
 cos �0+sin 
 sin �0 cos �0�−
 and �̄
=��−2p
.

Algorithm 3. Calculate sequence of rotations about arbitrary, fixed

axes ĥ and ĝ required to move from one point on the unit sphere
to another.

Input: ��0 ,�0�, �� f ,� f�—polar coordinates of initial and final
point with respect to relative coordinate system �21�.

Output: List of pairs �� , û�, û� �ĥ , ĝ� defining rotation steps
necessary to get from initial state to final state.

if �0=� f return ��� f −�0 , ĥ��
else

p= ���0−� f� /2
�
�0=�0−2p


if �0=� f return

��� f , ĥ� , �� , ĝ� , �� , ĥ� , . . . �� , ĝ� , �� , ĥ�

2p pairs

, �−�0 , ĥ��

else if �0�
 or �2
−�0�0 and 2
−�0�� f�
return

��� f , ĥ� , �� , ĝ� , �� , ĥ� , . . . , �� , ĝ� , �� , ĥ�

2p pairs

,

PR2��0 ,� f ,�� , �−�0 , ĥ� �

else return

��� f , ĥ� , �� , ĝ� , �� , ĥ� , . . . , �� , ĝ� , �� , ĥ�

2p pairs

,

PR1��0 ,� f ,�� , �−�0 , ĥ� �

end

end

end

APPENDIX B: SUBROUTINES PR1 AND PR2

Both procedures take only the � angles of the initial and
final points, �0 and � f, respectively, and the angle � between

the axes ĥ and v̂ as input, assuming that the points have
already been shifted to the x̂-ẑ plane.

1. Subroutine PR1

Figure 2 shows that �MB�= �MQ�� and �NA�= �NQ�� and

cos � =

MB · MQ�


�MB�2 , cos � =

NA · NQ�


�NA�2 . �B1�

Noting that A= �sin �0 ,0 ,cos �0� and Q�= �q , p , cos � f� for
suitable values of p and q, and taking Q= �q ,0 ,cos � f� to be
the projection of Q� onto the x̂-ẑ plane, shows

(b)(a)

FIG. 2. �Color online� Rotations on the sphere and projection to
the x-z plane for subroutine PR1.
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cot 
 = −
QA · x̂

QA · ẑ
=

sin �0 − q

cos �0 − cos � f
�B2�

and thus q=sin �0−cot 
�cos � f −cos �0�. Noting further that
B= �sin � f ,0 ,cos � f� and M= �0,0 ,cos � f�, shows that
MQ�= �q , p ,0�, MB= �sin � f ,0 ,0�, and therefore

cos � =
q sin � f

sin2 � f
=

sin �0 − cot 
�cos � f − cos �0�
sin � f

.

�B3�

Furthermore, we have N=r�sin 
 ,0 ,cos 
� with r=cos��0
−
� and 
NA
=sin��0−
�, and

NA = �sin �0 − r sin 
,0,cos �0 − r cos 
� ,

NQ� = �q − r sin 
,p,cos �0 − r cos 
� ,

NA · NQ� = �sin �0 − nx��q − nx� + �cos �0 − nz�2,

which after some simplification gives

cos � =
− cos 
 cos�
 − �0� + cos � f

sin 
 sin�
 − �0�
. �B4�

2. Subroutine PR2

Figure 3 shows that �MA�= �MQ�� and �NB�= �NQ�� and

cos � =

MA

MQ�



MA
2
, cos � =


NB

NQ�


NB
2

. �B5�

Noting that B= �sin � f ,0 ,cos � f� and Q�= �q , p , cos �0� for
suitable p and q as before, shows that

cot 
 = −
QB · x̂

QB · ẑ
= −

sin � f − q

cos � f − cos �0
, �B6�

i.e., q=sin � f −cot 
�cos �0−cos � f�.

Taking Q= �q ,0 ,cos �0� to be the projection of Q� onto
the x̂ẑ plane, and noting that A= �sin �0 ,0 ,cos �0� and M
= �0,0 ,cos �0� shows that MQ�= �q , p ,0�, MA
= �sin � f ,0 ,0�, and thus

cos � =
q sin �0

sin2 �0
=

sin � f − cot 
�cos �0 − cos � f�
sin �0

.

�B7�

Furthermore, we have N=r�sin 
 ,0 ,cos 
� with r
=cos�� f −
� and 
NB
=sin�� f −
�, and

NB = �sin � f − r sin 
,0,cos � f − r cos 
� ,

NQ� = �q − r sin 
,p,cos �0 − r cos 
� ,

NA · NQ� = �sin �0 − nx��q − nx� + �cos �0 − nz�2,

which after some simplification gives

cos � = − cot 
 cot�
 − � f� + cos �0 csc 
 csc�
 − � f�

=
− cos 
 cos�
 − � f� + cos �0

sin 
 sin�
 − � f�
. �B8�
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ample, then Algorithm 1 returns �= � 3

2� ,� , 3
2�� for the swap

gate �x, whose SO�3� representation is RX=diag�1,−1,−1�,
which corresponds to the decomposition Rĥ� 3

2��Rĝ���Rĥ� 3
2��

and can be simplified to Rĝ��� as Rẑ�a�Rx̂���Rẑ�a�=Rx̂��� for
any a�R.
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