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We present a comprehensive and self-contained simplified review of the quantum computing scheme of
Raussendorf et al. �Phys. Rev. Lett. 98, 190504 �2007�; N. J. Phys. 9, 199 �2007��, which features a two-
dimensional nearest-neighbor coupled lattice of qubits, a threshold error rate approaching 1%, natural asym-
metric and adjustable strength error correction, and low overhead arbitrarily long-range logical gates. These
features make it one of the best and most practical quantum computing schemes devised to date. We restrict the
discussion to direct manipulation of the surface code using the stabilizer formalism, both of which we also
briefly review, to make the scheme accessible to a broad audience.
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I. INTRODUCTION

Classical computers manipulate bits that can be exclu-
sively 0 or 1. Quantum computers manipulate quantum bits
�qubits� that can be placed in arbitrary superpositions ��0�
+��1� and entangled with one another ��00�+ �11�� /�2. This
additional flexibility provides both additional computing
power and additional challenges when attempting to correct
the now quantum errors in the computer. An extremely effi-
cient scheme for quantum error correction and fault-tolerant
quantum computation is required to correct these errors with-
out making unphysical demands on the underlying hardware
and without introducing excessive time overhead and thus
wasting a significant amount of the potential performance
increase.

This paper is a simplified review of the quantum comput-
ing scheme of �1,2�. The scheme requires a two-dimensional
�2D� square lattice of nearest-neighbor coupled qubits with
initialization, readout, memory, and quantum gates all oper-
ating with error rates less than approximately 1%—the least
challenging set of physical requirements devised to date.
Furthermore, despite the modest physical requirements, logi-
cal qubits �qubits of data distributed over many physical qu-
bits and protected by error correction� can be interacted over
arbitrarily large distances with time overhead only growing
logarithmically in their separation. This is remarkable as
most nearest-neighbor quantum computing schemes are as-
sociated with a time overhead that grows linearly with logi-
cal qubit separation. Finally, in most, if not all, physical
quantum computer technologies, bit flips �0�↔ �1� are less
likely than phase flips �1�↔−�1� opening the door for asym-
metric error correction schemes that make use of fewer
physical qubits to preserve a given amount of quantum data
with a given confidence level. Practically, it is also helpful if
additional error correction resources can be dynamically al-
located to critical data during the quantum computation. The
scheme we review permits both asymmetric and dynamic
error correction in a natural manner.

A number of technologies are well suited to implementing
surface code quantum computing. Proposals exist for 2D ar-
rays of qubits making use of superconductors �3,4� and semi-
conductor nanophotonics �5�. An equivalent measurement

based version of the scheme calling for a three-dimensional
cluster state �1,2,6� could be implemented using photonic
modules �7,8� or ion traps �9�.

The discussion is organized as follows. In Sec. II we
briefly review the stabilizer formalism of quantum comput-
ing �10�. Section III briefly reviews the surface code �11�,
which forms the error correction substrate of everything
that follows. Logical qubits are introduced into the surface
code in Sec. IV, along with their initialization, measurement,
and basic logical operations. Section V describes logical
controlled-NOT �CNOT� in detail. Section VI completes the
universal set of logical gates with a discussion of state
injection, state distillation, and appropriate quantum circuits
making use of the distilled states. An efficient implementa-
tion of logical Hadamard inspired by �12� that avoids the
extensive machinery of Sec. VI is described in Sec. VII.
Section VIII then describes simulations used to estimate the
threshold error rates of physical qubit initialization, measure-
ment, memory, and two-qubit gates. Looking further into the
future, Sec. IX discusses distributed quantum computing to
make it clear that impractically large 2D square lattices of
qubits are not required to tackle problems of interesting size.
Section X summarizes the discussion and points to further
reading.

II. QUANTUM STATES AND STABILIZERS

A quantum state can be specified in a number of equiva-
lent ways. Two of the most common are to choose a basis
and to express the state as a state vector such as ��00�
+ �11�� /�2. In this review, it will be much more convenient to
express this state as the unique simultaneous +1 eigenvector
of the commuting operators X � X and Z � Z. Such operators
are called stabilizers �10�. This entire review is based on the
manipulation of stabilizers.

Any set of n mutually commuting and independent opera-
tors over n qubits has a unique simultaneous +1 eigenstate.
We will restrict our attention to stabilizers that are a tensor
product of the identity operator I and the Pauli matrices X, Y,
Z �with Y =XZ real�. A set of such stabilizers cannot be used
to specify an arbitrary quantum state, though a sufficiently
broad range of states can be specified for most of our pur-
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poses. See Sec. VI A for a simple extension to the stabilizer
formalism permitting arbitrary states to be specified.

Consider a set of stabilizers M specifying state ���. Sup-
pose we wish to apply an operator U to state ���. If we
consider U���=UMU†U���, we can see that the new set of
stabilizers will be UMU†. To give an explicit example,

M = Z1Z2, Z2Z3, Z3Z4, X1X2X3X4, �1�

U = X2, �2�

UMU† = − Z1Z2, − Z2Z3, Z3Z4, X1X2X3X4. �3�

In addition to unitary manipulation, we will frequently
discuss measurement of a given operator, for example, X, Z,
or some more complicated operator involving a larger tensor
product. A very simple example is a single qubit in an un-
known state with stabilizer I and the subsequent measure-
ment of the Z operator. We will write the stabilizer of a qubit
after such a measurement as �Z. Note that the probabilities
of the two possible measurement outcomes, the +1 and −1
eigenstates of Z, are typically not recorded in the stabilizer
formalism, just their possibility. Note also that given any
operator there is always a nonzero probability of obtaining at
least one of the two eigenstates.

Care needs be taken when measuring if other nontrivial
stabilizers are present. There are three cases to consider. If
the operator to be measured can be expressed as a product of
stabilizers, no change is made to the stabilizers as we already
have an eigenstate of the operator. For example, if we have
two qubits and stabilizers Z1 and −Z2, measuring the Z1Z2
operator will always give the −1 eigenstate.

If the operator to be measured cannot be expressed as a
product of stabilizers and commutes with each stabilizer, the
operator is added to the list of stabilizers with a sign that
depends on whether we have projected into the +1 or −1
eigenstate of the operator. For example, if we have three
qubits and stabilizers Z1Z2 and Z2Z3, measuring Z2 will yield
one of the �1 eigenstates, meaning we will introduce the
new stabilizer �Z2. Note again that the probability of the
two outcomes is neither recorded nor known.

Finally, if the operator cannot be expressed as a product of
stabilizers and anticommutes with one or more stabilizers,
the second and subsequent anticommuting stabilizers are
multiplied by the first anticommuting stabilizer to form com-
muting stabilizers and the first anticommuting stabilizer is
replaced with the operator being measured, again with sign
depending on which state we have projected into. For ex-
ample, if we have four qubits and stabilizers Z1Z2, Z2Z3, and
Z3Z4, to measure X3 we first multiply Z3Z4 by Z2Z3 and then
replace Z2Z3 with �X3 to give the new set of stabilizers
Z1Z2, �X3, and Z2Z4. In this instance we know that the prob-
ability of the two outcomes is equal as, given any state ���
stabilized by some operator S and any operator to measure M
such that MS=−SM, we have

��� =
1
�2
� 1

�2
�1 + M���� +

1
�2

�1 − M����	 , �4�

meaning we have an equal superposition of the �1 eigen-
states of M.

Many other examples of measurements falling into each
of these three categories will be discussed in subsequent sec-
tions.

III. SURFACE CODE

The surface code was first presented in �11�. A small sur-
face showing the basic layout of qubits, a square grid with
qubits on each edge, is shown in Fig. 1. The stabilizers of
this surface are

X0X2, X0X1X3, X1X4, X2X5X7, X3X5X6X8,

X4X6X9, X7X10, X8X10X11, X9X11,

Z0Z2Z3Z5, Z1Z3Z4Z6, Z5Z7Z8Z10, Z6Z8Z9Z11. �5�

These correspond to a tensor product of Z around each face
and X around each vertex. Note that X9X11 can be expressed
as a product of the other X stabilizers. This leaves 12 inde-
pendent stabilizers on 12 qubits implying a unique state.
Given a w by h face surface, in general there will be 2wh
+w+h qubits and independent stabilizers.

Not shown in Fig. 1 are additional qubits on each face and
vertex that enable one to check the sign of the associated
stabilizer. These additional syndrome qubits make the lattice
a simple nearest-neighbor connected square lattice. Discus-
sion of the syndrome qubits and the quantum circuits used to
extract the signs of the stabilizers will be deferred until Sec.
VIII.

If no errors of any kind occur, the surface remains in the
simultaneous +1 eigenstate of every stabilizer. When dis-
cussing errors, we will restrict our attention to bit flips and
phase flips. Very general noise can be tolerated with just the
ability to correct these two types of errors �13�. Figure 2
shows the effect of single bit flips and phase flips on the
surface code—the adjacent stabilizers become negative. If
we could reliably detect when a stabilizer becomes negative,
this clearly would be sufficient to pinpoint and then correct
these single errors.

Two additional complications need to be accounted for.
First, it is possible for long chains of errors to occur. Second,
it is possible for the reported eigenvalue of a given stabilizer

2

0 1

65
3 4

7 8 9
10 11

FIG. 1. Basic layout of surface code data qubits, each repre-
sented by a circle. A data qubit is located at the center of each edge
of a square lattice. The square lattice is a guide for the eye only; it
does not represent interactions.
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to be wrong. Both of these situations are illustrated in Fig. 3.
To cope with these complications, we keep track of every
time the reported eigenvalue of each stabilizer changes.
Without loss of generality, let us focus solely on Z stabiliz-
ers, which detect bit flips, as both types of errors are treated
independently.

Figure 4�a� gives an example of appropriate Z stabilizer
information. In practice, correction is delayed as long as pos-
sible and pairs of flipped syndromes are then connected by
paths in space and time or “matched” such that the total
number of edges used is minimal, as shown in Fig. 4�b�.
Polynomial time minimum weight matching algorithms exist
�14�, hence this can be done efficiently. Recently, logarithmic
time parallel algorithms have been developed �15,16�. Note
that X errors can be matched to smooth boundaries and Z
errors to rough boundaries of the surface. A smooth bound-
ary is a boundary with four term Z stabilizers and three term
X stabilizers as shown in Fig. 5. A rough boundary is a
boundary with four term X stabilizers and three term Z sta-
bilizers, also shown in Fig. 5. Given a minimum weight
matching, bit flips are applied to the spacelike edges to cor-
rect the errors with high probability. Further discussion of the
details of error correction will be delayed until Sec. VIII.

Initialization of the surface code substrate is not com-
pletely trivial. If every qubit is prepared in the �0� state, we
automatically have the +1 eigenstate of every Z stabilizer,
but when we measure the X stabilizers the eigenstates will be

randomly positive and negative. For simplicity, we choose to
treat the random negative eigenvalues as errors and correct
them.

IV. LOGICAL QUBITS

Armed with the surface code described in Sec. III, we can
now discuss logical qubits. The simplest logical qubit con-
sists of a single face where we stop measuring the associated
Z stabilizer. This introduces one new degree of freedom into
the surface. We can manipulate this degree of freedom using
any chain of X operators connecting this face or “smooth
defect” to a smooth boundary and any chain of Z operators
encircling the smooth defect as shown in Fig. 6. We choose
to call any such X chain XL and any Z ring ZL. This implies
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FIG. 2. �Color online� Effect of single bit flips �X� and phase
flips �Z� on the surface code—adjacent face and vertex stabilizers
are made negative, respectively.

Z

X
-1 -1

-1

X X

Z

FIG. 3. �Color online� Surface code suffering from multiple er-
rors �indicated by filled dots� and an incorrect syndrome measure-
ment �indicated by dashed circle�.
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FIG. 4. �Color online� �a� Locations in space and time, indicated
by filled dots, where and when the reported syndrome is different
from that in the previous time step. Note that this is not a three-
dimensional physical structure, just a three-dimensional classical
data structure. �b� Optimal matching highly likely to lead to a sig-
nificant reduction of the number of errors if bit-flips are applied to
the spacelike edges.
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FIG. 5. �Color online� Examples of smooth and rough bound-
aries including a chain of X errors ending in a smooth boundary
without changing the sign of any stabilizers, and a chain of Z errors
ending in a rough boundary, also without leaving any evidence of
its presence. X and Z stabilizers are represented by shaded shapes.
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that, by definition, our logical qubit is initialized to �0L� as
the surface is initially in the simultaneous +1 eigenstate of
every Z stabilizer and therefore also in the +1 eigenstate of
ZL.

Larger smooth defects can be created using X measure-
ments as shown in Fig. 7. Note that arbitrarily large defects
still only introduce one degree of freedom. The given ex-
ample shows the removal of four qubits and five
stabilizers—four Z stabilizers and one X stabilizer. After the
X measurements, a number of new three term X stabilizers
are created with not necessarily positive sign. As in the case
of surface initialization, we will treat any negative eigenval-
ues as syndrome changes which will then be matched and
corrected with chains of Z operators. The qubits inside the
defect, which have been projected into a product state, play
no further role in the computation unless the defect moves.

In practice, it is inconvenient to use a logical qubit with a
logical operator that connects to a potentially distant bound-
ary. This situation can be avoided by using a pair of defects
to represent a single logical qubit as shown in Fig. 8. A chain

of X operators connecting the two defects is then used as the
XL operator. The ZL operator is any ring of Z operators
around either defect—these two classes of ZL operators are
equivalent as they have the same commutation relations.

Effectively, the above means we are choosing to represent
an arbitrary logical state by ��0L��0L�+��1L��1L� as defined in
the opening paragraph of this section. For the remainder of
the review we shall redefine �0L� and �1L� such that an arbi-
trary logical state of a double defect logical qubit can be
expressed as simply ��0L�+��1L�. Note that double smooth
defect logical qubits are also initialized to �0L� by default.

Double smooth defect logical qubits can also be initial-
ized in the �+L� state by first preparing a region of �+� as
shown in Fig. 9. Such a region is automatically in the +1
eigenstate of XL operators and X stabilizers not intersecting
the boundary. X stabilizers on the boundary will have ran-
dom sign. Smooth defects are then created by measuring all
Z stabilizers outside the desired defect locations. The signs
of the Z stabilizers will be random and we will again treat
negative stabilizers as syndrome changes, match them, and
correct them with chains of X operators. We will henceforth
refer to a double smooth defect logical qubit as simply a
smooth qubit.

Rough qubits are also possible to create via Z measure-
ments as shown in Fig. 10. In this case the ZL operator is any
chain of Z operators linking the two defects and XL any ring
of X operators around either defect. Rough qubits are initial-
ized to the +1 eigenstate of XL, �+L�, by default, although �0L�
can be prepared starting with a region of qubits in the �0�
state.
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FIG. 6. �Color online� Surface code with one additional degree
of freedom introduced by not enforcing the stabilizer associated
with one face �shaded�. This face or a region of such faces is called
a smooth defect. The degree of freedom can be phase flipped by any
ring of Z operators encircling the defect and bit flipped by any chain
of X operators connecting the defect to a smooth boundary.
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FIG. 7. �Color online� Surface code with one degree of freedom
introduced via the measurement MX of four qubits in the X basis
and removal of five stabilizers. Note that four new three term X
stabilizers are created with not necessarily positive sign �indicated
by shaded triangles�.
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FIG. 8. �Color online� Smooth qubit comprised of two smooth
defects. ZL corresponds to any ring of Z operators around either
defect. XL corresponds to any chain of X operators connecting the
two defects.
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FIG. 9. �Color online� Initializing a smooth qubit in the �+L�
state. After preparing a region of qubits each in the �+� state, every
X stabilizer on the boundary of the region and every Z stabilizer
outside the dashed regions is measured. Negative eigenvalues are
treated as errors and corrected.
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Logical measurement is similar to initialization. To mea-
sure a smooth qubit in the ZL basis, a region of qubits encir-
cling either or both defects is measured in the Z basis. In the
absence of errors every path encircling either defect will
have the same parity of Z measurements. If errors are
present, they can be detected and corrected using the stan-
dard error correction procedure as directly measuring qubits
in the Z basis is also an acceptable way to gain information
about the eigenvalues of the Z stabilizers—even parity of Z
measurements around a face corresponding to a positive ei-
genvalue and odd parity corresponding to a negative eigen-
value. Note that, as shown in Fig. 11, it is possible for every
face to have even parity, meaning no errors, and every path
around either defect to have odd parity, meaning a readout
result of �1L�.

A smooth qubit can be measured in the XL basis by mea-
suring a region including both defects in the X basis. In this
instance the parity of all chains of X measurements connect-
ing the two defects will be the same in the absence of errors.
Similarly, rough qubits can be easily measured in either logi-
cal basis.

V. LOGICAL CNOT

So far, we have discussed two types of logical qubits,
smooth and rough, schemes to initialize and measure them in
the ZL and XL bases and ZL and XL operations. The only two
logical qubit gate in this scheme is the logical CNOT gate. To
understand how logical CNOT works, we first need to under-

stand in detail the effect of moving a smooth defect.
Consider Fig. 12�a�. This shows a smooth defect and two

stabilizers—a single face Z stabilizer and a ZL stabilizer. If
we now measure the center qubit in the X basis as shown in
Fig. 12�b�, we will be left with the center qubit in the �X
eigenstate and a stabilizer equal to the product of the face
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FIG. 10. �Color online� Initializing a rough qubit in the �+L�
state via Z basis measurements MZ and ignoring stabilizers
�shaded�. XL is any ring of X operators around either defect. ZL is
any chain of Z operators linking the two defects.
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FIG. 11. Example of measurement of a smooth qubit in the ZL

basis in the absence of errors. Note that the measurements around
every face have even parity whereas the parity of any path of mea-
surements encircling either defect is odd. The figure thus corre-
sponds to the measurement result �1L�.
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FIG. 12. �Color online� �a� Smooth defect and surface in the +1
eigenstate of ZL. �b� After measuring the center qubit in the X basis,
the shape of the ZL operator is deformed. �c� Measuring and possi-
bly correcting the indicated Z stabilizer using a bit flip on the center
qubit completes the movement of the defect.
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and the path. We have effectively deformed the shape of the
ZL stabilizer without changing its sign. The movement of the
defect can be completed by measuring the Z stabilizer indi-
cated in Fig. 12�c� and possibly correcting the sign of the
result by applying an X operator to the center qubit. By re-
peating this process we can see that moving a smooth defect
deforms the shape of ZL stabilizers passing nearby.

Consider Fig. 13�a�. This shows a smooth defect and three
XL stabilizers. Measuring the center qubit in the X basis as
before, we see in Fig. 13�b� that this has potential side ef-
fects, with a negative eigenvalue indicating the creation of
three term negative X stabilizers and XL stabilizers of

changed sign. As shown in Fig. 13�c�, the measured qubit or
qubits in the case of a larger defect are individually phase
flipped to ensure they are all in the +1 eigenstate. Pairs of
three term negative X stabilizers are corrected with chains of
phase flips along the boundary of the defect. Note that this
also corrects any XL stabilizers of changed sign. Figure 13�d�
shows the effect of completing the movement of the defect
by measuring the appropriate Z stabilizer. With the signs of
the XL stabilizers appropriately corrected, all XL stabilizers
attached to the defect remain attached to the defect with un-
changed sign. By repeating this process we can see that mov-
ing a smooth defect drags around XL stabilizers attached to it.

At first glance, the procedure described in the previous
paragraph does not appear to be fault tolerant as it seems to
rely on perfect measurement and correction of single qubits.
Indeed, the procedure is not fault tolerant unless a larger
defect is used as shown in Fig. 14�a�. After measuring a
region of qubits in the X basis and using the individual mea-
surements to give the sign of the X stabilizers across the
entire measured region by taking their local parity, we use
phase flips to reset them to the +1 eigenstate as best as we
are able. We do not assume that we achieve this perfectly.
Resetting helps simplify the later incorporation of these qu-
bits into the surface code.

The three term negative X stabilizers on the boundary left
over after resetting are again treated as syndrome changes
and corrected using the procedure outlined in Sec. III and
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FIG. 13. �Color online� �a� Smooth defect and surface in the +1
eigenstate of XL. �b� After measuring the center qubit in the X basis,
it is possible that three term X stabilizers and XL stabilizers with
negative sign are created �potential locations indicated by shaded
triangles�. �c� All signs can be corrected by applying the appropriate
single-qubit Z operators and chains of Z operators. �d� Measuring
and possibly correcting the indicated Z stabilizer using a bit flip on
the center qubit completes the movement of the defect.
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FIG. 14. �Color online� �a� Movement of a large smooth defect
via many measurements in the X basis. Many pairs of three term X
stabilizers with negative sign are likely to be created �indicated by
shaded triangles�. �b� After several rounds of error correction, it
becomes exponentially unlikely that three term X stabilizers with
negative sign remain that were generated in the measurement round.
New chains of errors on the boundary can occur, but these will be
corrected during normal error correction after the size of the defect
is reduced to complete the movement.

FOWLER, STEPHENS, AND GROSZKOWSKI PHYSICAL REVIEW A 80, 052312 �2009�

052312-6



described in more detail in Sec. VIII with the exception that
if the procedure suggests connecting to syndrome changes on
the boundary, either new or old, the direction of the chain of
operators correcting these changes is chosen such that the
minimum number of sites on the old �reliable� boundary are
changed. By doing this, every round error correction makes
it exponentially less likely that the three term negative X
stabilizers created during the measurement step in a fixed
unit length of boundary still remain. This implies that the
number of rounds of error correction required to achieve a
fixed probability of no errors remaining from the measure-
ment step only grows logarithmically with the length of
boundary. Note, however, that during the correction proce-
dure new errors can occur. The primary desirable feature of
these new errors is that they are unlikely to form very long
chains.

Figure 14�b� shows a potential challenge when it is time
to shrink the size of the defect and complete its movement. It
is possible for a pair of errors to remain with one error on the
boundary of the region of defect about to be healed and the
other error on the boundary of the region of defect to remain.
As shown, without correction, this would result in XL stabi-
lizers with sign dependent on where they attach to the moved
defect—a situation that is not allowed. However, by measur-
ing all appropriate X stabilizers outside and on the boundary
of the final position of the defect �indicated by a dashed line�
before measuring all of the Z stabilizers outside the final
position, the presence of these two errors is preserved and
subsequent correction by a chain of Z operators ensures that
the sign of all deformed XL stabilizers is the same.

To summarize the smooth defect movement procedure, a
region of qubits is measured in the X basis, corrected as best
as possible so that each measured qubit is in the +1 eigen-
state, which takes constant time. Several rounds of error cor-
rection are then applied until it is sufficiently likely that only
new errors occurring after the initial measurements are now
present on the boundary of the new region, which takes a
time that grows logarithmically in the length of the boundary,
then measurement of all X stabilizers outside and on the
boundary of the desired final position of the defect, measure-
ment of all Z stabilizers outside the final defect position, and
finally error correction until it is sufficiently likely that only
errors occurring after the Z stabilizers were measured re-
main, which takes a time that grows logarithmically in the
area being corrected. This movement procedure deforms
nearby ZL stabilizers and drags around XL stabilizers attached
to the defect and takes a total time that grows only logarith-
mically in the distance the defect is moved.

Now that we have a thorough understanding of the effect
of moving a smooth defect, we can return to the question of
how to build a logical CNOT. Any gate can be completely
specified by stating its action on computational basis states
and can be specified up to global phase by stating its action
on a basis of stabilizers. Specifically, if we have a system of
two qubits and denote the CNOT between them with the first
qubit as the control as �12, by simple matrix multiplication
we can show that the following relationships hold:

�12�I � X��12
† = I � X , �6�

�12�X � I��12
† = X � X , �7�

�12�I � Z��12
† = Z � Z , �8�

�12�Z � I��12
† = Z � I . �9�

These relationships can be combined to determine the action
of CNOT on an arbitrary two-qubit stabilizer. To show that we
have a logical CNOT, it is sufficient to show that we can
transform logical stabilizers in the above manner. Figures 15
and 16 show that the logical versions of Eqs. �7� and �8� hold
if we use a smooth qubit as the control and a rough qubit as
the target and braid one of the smooth defects around one of
the rough defects. It is not important in which direction the
braiding is done, only that the defect returns to its initial
position. It is also not important which smooth defect is
moved nor which rough defect it is braided around. It is
similarly straightforward to show that Eqs. �6� and �9� hold.

We do not yet have what we truly need—a CNOT between
logical qubits of the same type. Define MX, MZ to take the
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MX MX MX MX
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c.) d.)
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equivalent

FIG. 15. �Color online� �a� Surface containing a smooth qubit in
the +1 eigenstate of XL and a rough qubit. The lower smooth defect
has been braided around the upper rough defect using X measure-
ments. Note that is not possible to complete the braiding in one step
as a ring of X measurements corresponds to measurement of the
rough qubit in the XL basis. �b� Via correction of many Z stabilizers,
the XL operator is dragged around the upper rough defect. �c� Ad-
ditional X measurements extend the defect back to its original po-
sition. �d� Further correction of Z stabilizers returns the defects to
their original positions but the surface is now in the +1 eigenstate of
both the smooth and rough XL operators.
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value 0 when the +1 eigenstate is measured and 1 when the
−1 eigenstate is measured. Consider Fig. 17�a�. This is built
entirely out of logical circuit elements described above and is
equivalent to ZMX on the target qubit followed by CNOT fol-
lowed by XMZ on the target qubit. This is in turn equivalent to
CNOT followed by �Z � Z�MX followed by XMZ on the target
qubit. We will adopt the policy of applying corrective logical
operations based on the measurement results immediately
after such a CNOT to simplify the discussion of more com-
plicated circuits. Figure 17�a� can also be represented as a
braiding of defects of different types in two dimensions of
space and one dimension of time as shown in Fig. 17�b� and
simplified in Fig. 17�c�. Note that since logical CNOT is built
out of defect movement, which takes a time that grows loga-

rithmically in the distance moved, and defect measurement,
which takes constant time, the total time required to execute
logical CNOT grows only logarithmically in the separation of
the logical qubits.

VI. STATE INJECTION AND NON-CLIFFORD GATES

The set of gates discussed so far is not universal. To com-
plete the universal set, we will first describe how it is pos-
sible to non-fault-tolerantly prepare arbitrary logical states
and then discuss state distillation �17,18� and non-Clifford
gates based on these distilled states.

A. State injection

Consider Fig. 18. We will focus on the numbered qubits
and the four stabilizers, X1X2X3X5, X5X7X8X9, Z2Z4Z5Z7,
Z3Z5Z6Z8, centered on qubit 5. The discussion of this section
applies to a surface of arbitrary size—we shall see that none
of the necessary manipulations affects stabilizers further
away. We shall only explicitly work through the creation of
an arbitrary rough qubit—the procedure for creating an arbi-

b.)

MX

MX

MXMXMX

a.)

MX

MX

MX

MX

MX

MX MX MX MX

MX

MX

c.) d.)
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FIG. 16. �Color online� �a� Surface containing a smooth defect
and a rough defect in the +1 eigenstate of ZL. The lower smooth
defect has been braided around the upper rough defect using X
measurements, deforming the shape of the rough ZL operator. �b�
By first correcting many Z stabilizers and then performing further X
measurements, the smooth defect can be extended back to its origi-
nal position. �c� A final round of Z stabilizer correction returns the
defects to their original configuration but with the state of the sur-
face changed. �d� The ZL operator shown in part �c� is equivalent to
the tensor product of smooth and rough ZL.

MZ

MX

0L

+L

control in control out

target in

target out

ancilla

ancilla

a.)

b.)

MZ

MX

0L

+L

control in control out

target in

target out

ancilla

ancilla
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FIG. 17. �Color online� Smooth qubits are represented by black
lines and rough qubits by lighter lines. �a� Circuit equivalent to ZMX

on the target qubit followed by CNOT between the control and target
qubit followed by XMZ on the target qubit. �b� Schematic represent-
ing the initialization, braiding, and measurement of defects in a
surface code to implement �a�. Time runs from left to right, and the
surface code should be imagined oriented vertically and into and
out of the page. �c� Simplified schematic equivalent to �b�.
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FIG. 18. Surface code fragment and numbered qubits used to
assist the visualization of the discussion of Sec. VI A.
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trary smooth qubit can be obtained by exchanging the roles
of X and Z.

To create an arbitrary rough qubit, begin by measuring
qubit 5 in the X basis. This gives a state stabilized by

1 2 3 4 5 6 7 8 9

X X X X

X X X X

�− 1�MX X

Z Z Z Z Z Z

. �10�

If the −1 eigenstate is obtained, apply either Z2Z4Z5Z7 or
Z3Z5Z6Z8 to create the +1 eigenstate,

1 2 3 4 5 6 7 8 9

X X X

X X X

X

Z Z Z Z Z Z

. �11�

Next, Hadamard transform �for pedagogical clarity� and then
unitarily rotate qubit 5 to the desired state,

�

1 2 3 4 5 6 7 8 9

X X X

X X X

Z

Z Z Z Z Z Z
�

+ �

1 2 3 4 5 6 7 8 9

X X X

X X X

− Z

Z Z Z Z Z Z
� . �12�

Measure either Z2Z4Z5Z7 or Z3Z5Z6Z8,

�

1 2 3 4 5 6 7 8 9

X X X X X X

Z

�− 1�MZ Z Z Z Z

�− 1�MZ Z Z Z Z
�

+ �

1 2 3 4 5 6 7 8 9

X X X X X X

− Z

�− 1�MZ Z Z Z Z

�− 1�MZ Z Z Z Z
� .

�13�

If the −1 eigenstate of Z2Z4Z5Z7 and Z3Z5Z6Z8 is obtained,
apply X5 and then either X1X2X3X5 or X5X7X8X9 to give the
desired logical state,

�

1 2 3 4 5 6 7 8 9

X X X X X X

Z

Z Z Z Z

Z Z Z Z
�

+ �

1 2 3 4 5 6 7 8 9

X X X X X X

− Z

Z Z Z Z

Z Z Z Z
� . �14�

After creating an arbitrary logical qubit using the proce-
dure above, the two halves of the logical qubit would be both
moved apart and made larger as quickly as possible to make
the logical qubit fault tolerant.

B. State distillation

For our purposes, we are interested in the injection of two
particular states �Y�= �0�+ i�1� and �A�= �0�+ei�/4�1�. These
states have very special properties. Consider Fig. 19�a�. This
takes an arbitrary state ��� and six ancilla qubits initialized to
�0� and creates a logical qubit protected by the seven-qubit
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ψ

FIG. 19. �a� Encoding circuit for the seven-qubit Steane code.
�b� Distillation circuit for the �Y�= �0�+ i�1� state.

HIGH-THRESHOLD UNIVERSAL QUANTUM COMPUTATION … PHYSICAL REVIEW A 80, 052312 �2009�

052312-9



Steane code �19�. A peculiar property of this encoding circuit
is that if it is run backward with seven states approximately
equal to �Y� as in Fig. 19�b�, the output ��� will be closer to
�Y�. This is state distillation �17,18�. Repeated multiple
times, arbitrarily high fidelity �Y� states can be obtained ex-
ponentially quickly. Specifically, if the input states each have
a probability p of X, Y, or Z error, the output state will have
probability 7p3 of error �2�.

Some technicalities exist surrounding the actual values of
the measurements indicated in Fig. 19�b�. If perfect �Y� states
are input, Table I summarizes the possible measurement pat-
terns, their probabilities, and the output state. It can be seen
that in some cases a corrective Z operator needs to be applied
to the output. If less than perfect �Y� states are input, other
measurement patterns have nonzero probability. If a mea-
surement pattern not listed in Table I is obtained, the distilled
state is discarded. Note that for high fidelity input states the
probability of obtaining an unacceptable measurement pat-
tern is asymptotically zero; thus few distilled states need to
be discarded.

A very similar distillation circuit exists for the �A� state.
Figure 20�a� shows the encoding circuit for the 15-qubit
Reed-Muller code �20�. Running this backward yields the
distillation circuit shown in Fig. 20�b�. As before, given per-

fect input states, only certain measurement patterns are pos-
sible and all measurement patterns result in the desired �A�
state, though this time up to an X, Y, or Z operator. Conver-
gence is similarly rapid with error probability p input states
yielding an error probability 35p3 output state �17�.

Note that both Figs. 19�b� and 20�b� are made of opera-
tions that can be performed easily and efficiently using the
surface code. In particular, the single control multiple target
CNOT can be implemented in the same amount of time as a
single CNOT. The input �Y� and �A� states would be created
factory style, with any errors detected early in the non-fault-
tolerant process of their creation resulting in a restart of the
creation process. Logical ancilla states that are likely to be
sufficiently good would then be recursively fed into logical
surface code versions of Figs. 19�b� and 20�b� until suffi-
ciently high fidelity ancilla states are obtained.

C. Non-Clifford gates

Given states of the form ��0�+ei��1�� /�2, rotations RZ���
and RX��� can be performed using the circuits shown in Figs.
21�a� and 21�b�, respectively. Note that both of these circuits
are probabilistic and actually perform rotations XRZ�−�� and
ZRX�−�� if the measurement indicates a negative eigenstate.
If we wish to apply RZ�� /2� or RX�� /2� and discover we
have actually applied rotations XRZ�−� /2� or ZRX�−� /2�,
the correct gate can be achieved simply by a subsequent
application of Z and X. If attempting RZ�� /4� and we dis-
cover we have applied XRZ�−� /4�, an ancilla state �0�+ i�1�
needs to be ready for an attempt to apply RZ�� /2�X. If we
again measure a negative eigenstate, subsequent application
of ZX gives the desired rotation.

TABLE I. Possible measurement patterns after running the distillation circuit of Fig. 19�b� with perfect
�Y� states and no gate errors.

Pr�M� MX MX MX MZ MZ MZ ���

0.125 0 0 0 0 0 0 Z�Y�
0.125 0 0 1 1 1 1 Z�Y�
0.125 0 1 0 1 0 1 �Y�
0.125 0 1 1 0 1 0 �Y�
0.125 1 0 0 0 1 1 �Y�
0.125 1 0 1 1 0 0 �Y�
0.125 1 1 0 1 1 0 Z�Y�
0.125 1 1 1 0 0 1 Z�Y�
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FIG. 20. �a� Encoding circuit for the 15-qubit Reed-Muller code.
�b� Distillation circuit for the �A�= �0�+ei�/4�1� state.
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FIG. 21. �a� Circuit performing the single-qubit unitary
XMZRZ��−1�MZ�� given an appropriate ancilla state. �b� Circuit per-
forming the single-qubit unitary ZMXRX��−1�MX�� given an appro-
priate ancilla state.
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VII. LOGICAL HADAMARD

The Hadamard gate is called for in many quantum algo-
rithms. In principle we could simply use the relation

H � RZ��/4�RX��/4�RZ��/4� �15�

and the constructions of Sec. VI. There is, however, a much
more efficient way �12�.

Consider Fig. 22. This shows a smooth qubit cut out of a
larger lattice using Z measurements. Note that the three term
Z stabilizers thus created would need to be corrected as they
would have random sign. Without correction, the indicated
ZL stabilizer would have random sign after the measure-

ments. Note that the ring of Z measurements provides no
information about the state of the smooth qubit—such a ring
is equivalent to the logical identity operator.

The logical Hadamard gate can now be performed trans-
versely. Every face Z stabilizer becomes a vertex X stabilizer.
The rough boundary becomes a smooth boundary. The
smooth qubit becomes a rough qubit. Stabilizers ZL and XL
are interchanged. This last point is precisely the action of
logical Hadamard.

The interchanging of faces and vertices does create a
slight problem—faces and vertices are no longer where they
should be. Before connecting the logical qubit to the rest of
the lattice, it would need to be moved diagonally in any
direction a half lattice spacing. This could be achieved via
physical swap gates. After realignment, the complete surface
of stabilizers would be measured and corrected once more.

We are still not quite done—our logical qubit has been
converted from smooth to rough. By preparing a smooth an-
cilla qubit in the �+L� state and performing a simple smooth-
rough CNOT followed by measurement of the rough qubit in
the ZL basis and application of XL if the −1 eigenstate is
obtained, we can convert the rough qubit back into a smooth
qubit, completing the process. While not completely trivial,
this complete process is vastly simpler than the necessary
ancilla state preparation and distillation associated with Eq.
�15�.

VIII. THRESHOLD ERROR RATE

In our simulations we look at a planar square lattice with
two smooth and two rough boundaries. This type of a lattice
lets us encode one logical qubit. Our general calculation
strategy involves preparing the system in the simultaneous
+1 eigenvalue of all Z and X stabilizers and observing how
long it takes for the encoded logical state to change as a
result of randomly generating errors.

We have not yet discussed how X and Z stabilizers are
actually measured. Figure 23 shows that a fifth syndrome
qubit is required to detect whether the state of the surface ���
is in the �1 eigenstate of a Z or X stabilizer �21�. If the
surface ��� is in neither eigenstate, the circuit projects the
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FIG. 22. �Color online� A smooth qubit isolated from a larger
piece of surface code using a ring of Z measurements so that logical
Hadamard can be applied by local transversal Hadamard gates.
Shaded triangles in the upper part of the figure represent three term
Z stabilizers of negative sign. See text for details.
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FIG. 23. Circuit showing how an additional syndrome qubit �top
line of each figure� is used to measure �a� Z stabilizers and �b� X
stabilizers.
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surface into a state ���� that is one of the �1 eigenstates. It
takes six steps to perform such a measurement. The syn-
dromes are initialized, a CNOT operation is applied between
each syndrome and the qubit to the north, west, east, and
south, and finally every syndrome qubit is itself measured, as
schematically shown in Fig. 24. This order of the CNOT gates
has been chosen to ensure that adjacent syndrome circuits
sharing a pair of data qubits are strictly ordered—one syn-
drome circuit touches both data qubits before the other syn-
drome circuit. CNOT gate orders without this property result
in entangled syndrome qubits that provide no useful informa-
tion for error correction. The placement of a syndrome qubit
on each vertex and in the center of each face plus the CNOTs

required during the circuit imply that we need a 2D nearest-
neighbor coupled lattice of qubits.

The threshold error rate is derived from four error rates in
our simulations—initialization error pi, readout error pr,
memory error pm, and the error associated with a two-qubit
gate pg. Note that we combine any single-qubit gates with
neighboring two-qubit gates and thus do not have a separate
single-qubit error rate. All four of these error rates are set to
the same value p and all operations are assumed to take the
same amount of time to permit our threshold error rate to be
compared with others in the literature �2,20,22�.

By initialization, we mean initialization to the state �0�.
An initialization error is therefore accidental preparation of
state �1� with probability p. By readout, we mean readout in
the Z basis. A readout error is a classical error—the qubit is
projected into the �1 eigenstate of Z, but with probability p
the eigenstate reported by the measurement device is incor-
rect. A memory error is the application of X, Y, or Z, each
with probability p /3, to an idle qubit. A two-qubit gate error
is the application of one of the 15 nontrivial tensor products
of I, X, Y, and Z, each with probability p /15, after perfect
application of the two-qubit gate.

As was briefly outlined in Sec. III, after each syndrome is
read, its value is checked against a result from the previous
iteration, and if the values differ, the syndrome change loca-
tion �in time and space� is recorded. Next, a matching of all
the syndrome changes collected up to this point �an example
is shown in Fig. 4�a�� is used to guess where errors occurred.
Since shorter error chains are more likely than longer ones,
we use a minimum weight matching algorithm to do this
�14�. Before the matching algorithm can find a minimum
weight solution, we convert all the syndrome change results

into a graph, with locations of the syndrome changes repre-
senting the nodes and edges between these nodes having a
weight which depends on the distance between them. The
edge weight is measured in faces along the spatial dimen-
sions and syndrome extraction cycles along the time dimen-
sion.

We once again stress that some error chains may begin at
the boundary and end somewhere inside the lattice �see Fig.
5�. In such cases, we can only observe the syndrome change
on the interior of the lattice. To account for this �meaning
enable the matching algorithm to guess that the error chain
started on a boundary�, for every interior node, we always
create a closest boundary node. The edges between different
boundary nodes are set to be of weight zero. One way to
prepare our graph would be to include an edge between ev-
ery pair of nodes �since in principle we do not know where
actual errors occurred�, but in practice this is not necessary.
Only edges that connect nodes which are not further from
each other than the sum of the weights between each node
and their closest boundary nodes are included, since nodes
that are further apart will always be matched with their re-
spective closest boundaries in preference to each other.

We further optimize graph creation by noting that matches
which are temporally far behind the current time step are
unlikely to be modified by recent syndrome changes and
therefore can be “remembered” from previous iterations.
These techniques let us minimize the size of the graph that is
passed to the matching algorithm which, despite scaling
polynomially in the number of edges and nodes, can often
still take substantial computing time. An example of a suc-
cessful minimum weight perfect match is shown in Fig. 4�b�.

As outlined at the beginning of this section, in order to
know if the simulation should continue or not, we need to
determine whether the lattice suffered a logical error �and
hence the encoded state has changed�. A logical error corre-
sponds to a chain of errors that starts on one boundary and
ends on the opposite one. In order to detect if a logical error
has occurred, we repeat the readout cycle with all the error
sources set to zero �i.e., set pi= pr= pm= pg=0, in other words
have a “perfect readout”�. This allows us to be certain that
any logical Z�X� error can be recognized by solely checking
if the parity of Z�X� operators crossing a vertical �horizontal�
line of qubits is odd. A simple example of this is shown in
Fig. 25. If no logical error is detected, we revert the simula-
tion state to what it was just before the perfect readout cycle
was executed and continue on.

During every run, we note how many syndrome extrac-
tion cycles it took for a logical error to be observed. The
simulation is repeated many times for different lattice sizes
and values of the physical error rate p. All of this data is then
used to calculate the average number of steps until a logical
error occurs for a given lattice size and p. The graph of Fig.
26 shows the obtained results. In it we see a log-log plot of
the average time until failure versus the physical error rate p
for lattice sizes ranging from 4 to 20 faces across. We ob-
serve a crossing at approximately p
6.0	10−3, which is
our numerical threshold. If the physical error rate is below
this threshold value, the average number of readout cycles
until failure can be increased arbitrarily by increasing the
distance of the code �lattice size�.

FIG. 24. �Color online� Syndrome measurement typically in-
volves six gates: syndrome initialization, CNOT with the four sur-
rounding data qubits �fewer on boundaries�, and finally syndrome
readout.
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IX. DISTRIBUTED COMPUTING

In this section, we show that distributed quantum comput-
ing can be performed in a natural manner. For our purposes,
a distributed quantum computer will consist of a number of
separate rectangular lattices of qubits each capable of hold-
ing at least two logical qubits. Computing shall proceed by
first moving logical qubits that need to interact onto a com-
mon plate before attempting the logical interaction. The
movement of logical qubits from one plate to another is the
only additional capability we need to discuss.

Consider Fig. 28�a�. This shows a plate containing a
rough qubit and an empty plate. Note that rough defects do
not need to be kept very well separated from smooth bound-
aries as no error chain can link a rough defect with a smooth
boundary. Figure 27 shows the minimum permissible sepa-
ration from long straight boundaries and corners. Rough de-
fects do, however, still need to be kept well separated from
each other.

To move the rough qubit from one plate to the other, it
must be possible to perform remote gates between either two
complete edges or a smaller section of two edges if the plates

are large relative to the size of a logical qubit. Generally
speaking, implementing remote gates would be expected to
involve entanglement distribution and purification �23�. We
will not discuss the details here besides mentioning that this
leads to significant qubit and gate overhead implying remote
gates should be kept to a minimum.

Consider Fig. 28�b�. This shows the pairs of qubits, in-
cluding syndrome qubits, that need to be remotely interacted
to enable a single round of the error correction to proceed
seamlessly across the two plates. Note that one column of
qubits on the empty plate has been omitted as though it is
idle, but note that this figure does not include the qubits
required for entanglement purification and it is unlikely that
there would be idle qubits on the boundary in practice. In
general, the joined plates will be in a random eigenstate of

FIG. 25. �Color online� Logical Z�X� error detection involves
checking if the parity of Z�X� operators along any of the vertical
�horizontal� lines of qubits is odd. Above, we show this in an ex-
ample of a logical Z error.
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FIG. 27. �Color online� Potential X error chains �dashed lines�
around a rough defect and consequent minimum separation from
long straight smooth boundaries and two types of corners such that
X error chains beginning and ending on the smooth boundary are
not more likely than an X error ring around the rough defect.
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FIG. 28. �a� A rough qubit ready to be sent to a separate piece of
surface code. �b� Remote gates are used to join the two surfaces
together. �c� A sequence of measurements is used to move the rough
qubit. After the necessary correction associated with completing the
movement, the long-range gates can be discontinued to separate the
two pieces of surface code once more.

HIGH-THRESHOLD UNIVERSAL QUANTUM COMPUTATION … PHYSICAL REVIEW A 80, 052312 �2009�

052312-13



both the X and Z stabilizers straddling both plates. We shall
treat these random values as errors and correct them.

After correction of the join, the rough qubit can be moved
over to the other plate via Z measurements as shown in Fig.
28�c�. First the border Z stabilizers of this extended defect
would need to be corrected as discussed in Sec. V, then,
when shrinking the size of the defects to move the logical
qubit, the unneeded regions of X stabilizers measured and
corrected once more. Both of these correction procedures
take a number of time steps that only grow logarithmically
with the size of the computation and the length or area being
corrected. After the necessary correction has been completed,
error correction can continue on each plate individually with-
out any further long-range interactions.

The most common reason to move a logical qubit from
one plate to another would be to perform a remote CNOT.
This would be achieved by creating a rough qubit on the
control plate, braiding it around the control qubit, sending
the rough qubit to the target plate, and completing the nec-
essary braiding and measurement operations entirely on the
target plate.

X. CONCLUSION AND FURTHER READING

We have presented a simplified yet comprehensive review
of the 2D version of the quantum computation scheme origi-
nally presented in �1,2�. We started with a description of the
surface code, as well as the stabilizer formalism which is
used throughout this paper. We discussed in detail logical
state initialization, logical CNOT, and non-Clifford group
gates, which make use of state distillation. We calculated a
numerical threshold for the surface code and obtained a
value of p
6.0	10−3 which is commensurate with other
calculations in the literature �2,20,22�.
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