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A proposal for applying nonadiabatic geometric phases to quantum computing, called double-loop method
�S.-L. Zhu and Z. D. Wang, Phys. Rev. A 67, 022319 �2003��, is demonstrated in a liquid-state nuclear
magnetic-resonance quantum computer. Using a spin-echo technique, the original method is modified so that
quantum gates are implemented in a standard high-precision nuclear magnetic-resonance system for chemical
analysis. We show that a dynamical phase is successfully eliminated and a one-qubit quantum gate is realized
although the gate fidelity is not high.
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I. INTRODUCTION

Precise and reliable control of a quantum system is an
attractive and challenging experimental issue in quantum
physics. In particular, the importance of its application to
quantum information processing has been increasing re-
cently. A promising way to achieve this is to employ geomet-
ric phases �or, more generally, non-Abelian holonomies�
�1,2� because geometric phases are expected to be robust
against noise and decoherence under a proper condition
�3,4�. A large number of studies for applying their potential
robustness to quantum computing have been done, e.g.,
phase-shift gates with Berry phases �5�, nonadiabatic geo-
metric quantum gates �6–13�, holonomic quantum comput-
ing �14–21�, quantum gates with noncyclic geometric phases
�22�, and so on.

For physical realization of geometric quantum gates,
elimination of a dynamical phase is a key point. Jones et al.
�5� implemented a controlled phase-shift gate with a Berry
phase �23,24� by quasistatistically, or slowly, controlling an
effective field in a rotating frame. They nulled dynamical
phase effects using a conventional spin-echo approach �25�.
Zhu and Wang �8� proposed a geometric quantum gate based
on the Aharonov-Anandan phase �26,27�, which should be
fast since a nonadiabatic process is employed. In their pro-
posal, elimination of a dynamical phase is achieved by a
double-loop method, where a dynamical phase cancels out
while a geometric phase accumulates along two loops.

Although several experimental techniques for the applica-
tion of geometric phases to quantum computation are avail-
able �11–13�, explicit implementations of geometric phase
gates have not been extensively studied so far. Without ex-
plicit implementations, the often-cited advantage of the ho-
lonomic quantum gates is nothing more than a desk plan.
Thus, such explicit examples are highly desirable. In this
paper, we combine Zhu and Wang’s approach with Jones et

al.’s one, employing an Aharonov-Anandan phase for fast
gate operation and a spin-echo technique for dynamical
phase cancellation, and demonstrate one-qubit gates with a
commercial liquid-state nuclear magnetic-resonance �NMR�
system. In many experiments of nonadiabatic geometric
quantum gates �11–13�, the gate operations in which the dy-
namical phase is arranged to vanish �4,28� have been
adopted. In the present paper, we show that we may have
another option for physical realization of geometric quantum
gates.

The next section summarizes Zhu and Wang’s theoretical
proposal and our modifications for practical implementation
in liquid-state NMR quantum computer. In Sec. III we de-
scribe details of our experiments, where implemented gates
are evaluated by performing quantum process tomography.
Sec. IV is devoted to summary.

II. THEORY

A. Quantum gates with orthonormal cyclic vectors

The Aharonov-Anandan phase is a geometric phase asso-
ciated with nonadiabatic cyclic time evolution of a quantum
system �26,27�. Let us write a state at t�0� t��� as ���t�� in
the Hilbert space H with dimension n. The time evolution of
a system is given by the Schrödinger equation with a time-
dependent Hamiltonian H�t�. We take the natural unit in
which �=1. The nonadiabatic cyclic time evolution of the
quantum system means that

������ = U������0�� = ei����0�� ,

where U��� is the time evolution operator and ��R. Let us
call ���0�� a cyclic vector �26�. We note that the dynamical
phase �d associated with this time evolution is

�d = − �
0

�

���t��H�t����t��dt , �1�

while the geometric component is defined as

�g = � − �d.

We take a set of orthonormal cyclic vectors, 	�uk�0��
 so that
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�uk���� = ei�k�uk�0�� ,

where k=1, . . . ,n. Hereafter, we write �uk�0�� as �uk�
for brevity. A general state ���0���H is expressed as
���0��=�k=1

n ak�uk�. Then, we have ������=U������0��
=�k=1

n ake
i�k�uk�. We denote a fixed basis in H as 	�l�
, which

corresponds to the computational basis 	�0� , �1�
 for the case
n=2. In terms of 	�l�
, we have ������=�l=0

n−1cl����l�. It means
that ak= �uk ���0��=�l=0

n−1cl�uk � l�, where cl=cl�0�. Therefore,
we find that

cl��� = �
l�=0

n−1

�
k=1

n

ei�k�l�uk��uk�l��cl� = �
l�=0

n−1

Vll�cl�, �2�

where

Vll� = �
k=1

n

ei�k�l�uk��uk�l�� . �3�

We have �k=�k,d+�k,g, where �k,d and �k,g are the dynamical
and the geometric phases associated with �uk�, respectively.

B. Single-qubit case

Let us consider a single-qubit system. We choose the
Hamiltonian H1�t� as

H1�t� = −
1

2
��t� · � ,

with NMR in mind, where �= ��x ,�y ,�z� and

��t� = „�1 cos��rft − 	�,− �1 sin��rft − 	�,�0… . �4�

We note that ��t� is a time-dependent parameter correspond-
ing to the external field and �
 �
=x ,y ,z� is the 
th com-
ponent of the Pauli matrices. One can freely control �0 by
taking a proper rotating frame. The transformation to the
rotating frame with the frequency �rf is made possible by the
unitary transformation U=ei�rf�zt/2 and the Hamiltonian in
the rotating frame is

H1r = U†H1U − iU† d

dt
U = −

1

2
�m · � , �5�

where �= ��1
2+�2�1/2, �=�0−�rf, m= �sin 
 cos 	 ,

sin 
 sin 	 , cos 
�, and tan 
=�1 /�. The solution of the
Schödinger equation is

���t�� = ei�rft�z/2ei�tm·�/2���0�� . �6�

We denote the eigenstates of m ·� with eigenvalues �1 as
����. Their explicit forms are

��+� = e−i	/2 cos



2
�0� + ei	/2 sin




2
�1� ,

��−� = − e−i	/2 sin



2
�0� + ei	/2 cos




2
�1� ,

where �0� and �1� are the eigenstates of �z with eigenvalues
+1 and −1, respectively, and taken as the computational ba-

sis. The corresponding Bloch vectors of ���� are

��������� = � m .

We require that ���� be cyclic vectors. Since ��+� and ��−�
are mutually orthogonal, they are identified as 	�uk�
 in Sec.
II A. It follows from Eq. �6� that the execution time � must
satisfy the condition ��rf�� /2=�, i.e., �=2� / ��rf�. Then,
������� is written as

������� = ei������ ,

where ��=���� / ��rf�. Figure 1 shows an example of
��t� and the closed trajectory on the Bloch sphere corre-
sponding to ��+�. Using Eq. �1�, we find that the dynamical
phase is

��,d = �
�

2
��1 sin 
 + �0 cos 
� = �

���1
2 + �0��

��rf��
,

while the geometric phase is

��,g = �� − ��,d = ��1 �
�rf

��rf�
�

�

 .

Based on Eqs. �2� and �3�, we obtain a unitary gate with the
dynamical and the Aharonov-Anandan phases with respect to
the computational basis 	�0� , �1�
,

V��� = �cos � − i sin � cos 
 − ie−i	 sin � sin 


− iei	 sin � sin 
 cos � + i sin � cos 


 ,

where �=2�−�+=�− has been used to simplify the notation.

C. Cancellation of dynamical phases

We closely follow Zhu and Wang’s proposal �8� in order
to eliminate a dynamical phase. They proposed the use of
two successive unitary operations, in which a dynamical
phase cancels out while a geometric phase accumulates along
these two operations. Each unitary operation associated with
a loop is characterized by time-dependent external field �4�.
The loop parameter corresponding to the ith loop is denoted
by �i�t� �i=1,2�. Thus, in principle, we have four indepen-
dent parameters in each loop, i.e., �i,1, �i,rf, 	i, and �i,0. We
note that they are not always tunable in a real experimental
situation.
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FIG. 1. Example of dynamics of a single-qubit cyclic vector. �a�
A time-dependent external field ��t� and �b� a closed trajectory on
the Bloch sphere corresponding to a cyclic vector ��+�t��, 0� t
��=2� / ��rf�. The end point of each arrow represents the initial
value. We set the parameters �0=2�, �1=0.5�2�, �rf=0.8�2�,
and 	=0 in Eq. �4�.
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We will search for the condition under which the dynami-
cal phases associated with the two loops cancel each other as
shown in Fig. 2. We focus on the case in which 	i=0 and
�1,rf=�2,rf���rf��0 for simplicity. The first loop �loop 1� is
described by

�1�t� = ��1,1 cos �rft,− �1,1 sin �rft,�1,0� , �7�

while the second loop �loop 2� by

�2�t� = − ��2,1 cos �rft,− �2,1 sin �rft,�2,0�Ry��� . �8�

Let Ry����SO�3� represent a rotation around the y-axis by
an angle �. The rotation angle � is chosen so that the corre-
sponding cyclic vectors ��i,�� for these two loops satisfies

��1,�� = eic��2,�� , �9�

where c�R. In other words, the Bloch vectors correspond-
ing to ��1,�� coincide with those to ��2,��. Using the notation
in Eq. �5�, we find that in the loop i

mi = kiOi, ki = �sin 
i,0,cos 
i� ,

where O1=I3, O2=Ry���, and we write the 3�3 unit matrix
as I3. The rotation angle 
i is defined as

tan 
1 =
�1,1

�1
, �1 = �1,0 − �rf, �10�

tan 
2 =
�2,1

�2
, �2 = �2,0 + �rf. �11�

The angle � is explicitly given as

� = 
2 − 
1.

Figure 3�a� shows an example of the time-dependent external
fields �1�t� and �2�t�. The corresponding closed trajectory
on the Bloch sphere is drawn in Fig. 3�b�, in which the initial

point corresponds to a cyclic vector ��1,+�. Figure 3�b� shows
that ��1,+� is not only cyclic for loop 1 but also for the total
process �i.e., loop 1 and loop 2� due to connection condition
�9�. It is necessary to search for �i,a and �rf�a=0,1� so that

�1,d + �2,d = 0, �12�

�1,g + �2,g = �� . �13�

We write them more explicitly as follows:

�1,1
2 + �1,0�1

�1
=

�2,1
2 + �2,0�2

�2
, �14�

�1

�1
+

�2

�2
= 2 − � , �15�

where �i= ��i,1
2 +�i

2�1/2. There may be many combinations of
�i,a and �rf for a given � which satisfy conditions �14� and
�15� �8�. We note that a set of the parameters employed in
Fig. 3 is one example for the solution of Eqs. �14� and �15�,
in which �= 1

2 .
After the elimination of a dynamical phase, we have a

one-qubit geometric quantum gate

VZW = ei����1,+���1,+� + e−i����1,−���1,−� . �16�

D. Spin-echo approach

Zhu and Wang’s proposal for eliminating a dynamical
phase is not feasible for a conventional commercial NMR
system where a field along the z axis is strictly constant. In
other words, it is difficult to realize �2�t� in Eq. �8�. In the
present paper, we propose an experimentally feasible
method, in which the loop 2 is divided into three successive
steps while the loop 1 remains unchanged. The separation of
the loop 2 is motivated by the spin-echo technique frequently
employed in NMR experiments, in which the direction of
time is reversed by an application of a pair of � pulses.
Three successive operations are �a� a rotation around the y
axis by ��=
2−
1�, �b� an operation corresponding to pre-
cession by a field −��2,1 cos �rft ,�2,1 sin �rft ,�2,0� for a du-

FIG. 2. Schematic diagram of double-loop method for dynami-
cal phase cancellation according to the proposal by Zhu and Wang
�8�. Two time-dependent magnetic fields are applied sequentially.
The first magnetic field �loop 1� rotates counterclockwise, while the
second one �loop 2� rotates clockwise in order to eliminate a dy-
namical phase.
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FIG. 3. �Color online� Example of Zhu-Wang’s double-loop
method. The time-dependent external fields �1�t� and �2�t� are
shown in �a�, while the closed trajectory on the Bloch sphere cor-
responding to the cyclic vectors ��1,+� and ��2,+� in �b�. We note that
these are connected and thus form one closed trajectory. We set the
loop parameters �1,1=�2,1=2�, �rf=0.7�2�, �1,0=0.27�2�,
and �2,0=1.5�2� in Eqs. �7� and �8�. We note that these param-
eters are calculated on the basis of a condition for nulling dynami-
cal phases in Ref. �8�. In this example, �= 1

2 in Eq. �13�.
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ration �=2� / ��rf�, and �c� a rotation around the y axis by −�.
The rotations Ry���� correspond to the basis vector change
and back as shown in Fig. 4. Rotation around the y axis by �
is easy to realize by a radio-frequency �rf� pulse, which cor-
responds to the unitary operator

Ry��� = e−i��y/2. �17�

We emphasize here that ��2,��=Ry�����1,��. We assume that
the pulse duration is infinitely short for simplicity. It should
be noted that this operation does not generate a dynamical
phase since the y axis is perpendicular to both k1 and k2
�4,28�. The operation corresponds to a precession by a field

−��2,1 cos �rft ,�2,1 sin �rft ,�2,0� for �=2� / ��rf� is given as

U2� = ei�2��−k2�·�/2,

from Eq. �6�. The identity

Ry�− ��ei�k2·�/2Ry��� = ei��−k2�·�/2,

implies that U2� can be realized by a precession under the
field ��2,1 cos �rft ,−�2,1 sin �rft ,�2,0� for �=2� / ��rf� sand-
wiched by a pair of �� pulses �25�. We again assume that
Ry���� is implemented for an infinitely short pulse for sim-
plicity.

Summarizing the above arguments, the total process is
described by Ry�−��Ry�−��U2���Ry���Ry���U1��� �29�,
which is equivalent to Eq. �16� if the dynamical phase is
zero. The unitary operator Ui��� is defined as Ui���
=ei�rf��y/2ei�iki·�/2. The geometric gate which we are going to
demonstrate takes the form

Uecho = Ry�− ��U2���Ry���Ry���U1��� . �18�

Although the complete realization of Zhu and Wang’s origi-
nal proposal �16� requires Ry�−�� at the end of process �18�,
we can omit it for constructing a geometric quantum gate
since Ry�−�� does not generate any dynamical phase here.
We note that VZW=Ry�−��Uecho. Under conditions �12� and
�13�, the matrix representation of Eq. �18� in the computa-
tional basis 	�0� , �1�
 is given by

Uecho = �cos����cos��/2� − i sin����cos � − cos����sin��/2� − i sin����sin �

cos����sin��/2� − i sin����sin � cos����cos��/2� + i sin����cos �

 , �19�

where �= �
2+
1� /2. We note that �� is the total geometric
phase. Pulse sequence �18� leads to intuitive understanding
of the cancellation mechanism of the dynamical phase. Let
us consider the case of 
1=
2, i.e., the two loop are com-
pletely identical, for simplicity. If no � pulse is applied, the
dynamical property of the loop 1 is the same as that of the
loop 2 and the total dynamical phase is the addition between
the contributions from the loops 1 and 2. It should be noted
here that the ��-pulses induce the time-reversal dynamics in
the form of U2� in the loop 2. Under the time-reversal trans-
formation, the sign of the dynamical phase associated with
the loop 2 is inverted and hence the dynamical phase is com-
pletely eliminated. It is necessary to employ different pro-
cesses between the loops 1 and 2 to prevent the cancellation
of the geometric phase associated with the two loops. Matrix
representation �19� implies that Uecho contains three param-
eters �, �, and �. Due to the limitation in the control param-
eters, it may be difficult to choose them independently in a
standard liquid-state NMR. We will show that � and �
should be regarded as functions of � and �1 in Sec. II E, in
order to satisfy Eqs. �12� and �13� as shown in Table I. On
the other hand, we are still able to use the rf phase 	. Thus,

we have the necessary number of free parameters to express
arbitrary elements of SU�2�.

E. Implementation in liquid-state NMR

We implement the double-loop scheme in liquid-state
NMR. We take different loop parameterization from that of
Zhu and Wang for ease of implementation. We consider the
system in a rotating frame defined by �ref. Hereafter, we will
denote an angular frequency x measured with respect to this
rotating frame as x̃�x−�ref. Thus, one can explicitly under-

TABLE I. Solutions of Eqs. �12� and �13� for �= 1
2 and �

=�1 / ��̃0�=0.5,0.3,0.1 in the rotating frame so that �̃0�0. We note
that �i��̃i,rf�=2�, �=
2−
1, and �= �
1+
2� /2.

� �̃1,rf / �̃0 �̃2,rf / �̃0

�
�rad�

�
�rad�

0.5 −0.6815 0.7803 −0.7298 −0.639

0.3 −0.8221 1.105 −0.9571 −0.589

0.1 −0.9422 1.609 −1.008 −0.542

FIG. 4. Schematic diagram of double-loop method for dynami-
cal phase cancellation on the basis of a spin-echo approach. Two
�four� soft �hard� square pulses are applied. We note that Ry���
=e−i��y/2, in which �=
2−
1.
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stand which quantities are controllable by choosing a proper
rotating frame.

We take a common value

�̃0 = �0 − �ref � 0

to �1,0 and �2,0. The value of �̃0 in the experiment will be
explained in Sec. III B. Similarly, we assume that �1,1=�1
and �2,1=�1. Instead of these simplification, we allow dif-
ferent values with respect to �rf between the two loops, i.e.,
�rf=�1,rf in Eq. �7� and �rf=�2,rf in Eq. �8�. These changes
do not alter the basic strategy for searching parameters that
satisfy �1,d+�2,d=0 and �1,g+�2,g=��. We consider the two
loops in the rotating frame in which the frequency is �̃i,rf, the
amplitude �1, and the duration �i=2� / ��̃i,rf�, i.e.,

�̃i�t� = ��1 cos �̃i,rft,− �1 sin �̃i,rft,�̃0� �0 � t � �i� .

The solutions �̃i,rf / ��̃0� are numerically obtained for given
����1 / ��̃0�� and �.

We summarize our parameter choice. First of all, we
adopt a common value to �1,0 and �2,0, i.e., �̃0 in the rotat-
ing frame defined as the angular frequency �ref. The value of
�1�=�1,1=�1,2� is given by �1=���̃0�, in which � is a posi-
tive number. For a given � and an aimed geometric phase �,
we can numerically find proper �̃i,rf so that �1,d+�2,d=0 and
�1,g+�2,g=��. The results for �= 1

2 and �=0.5, 0.3, and 0.1,
for example, are shown in Table I. From the observation of
Eqs. �10� and �11�, the sign of �̃1,rf should be opposite to the
one of �̃2,rf. It should be noted that the parameters given in
Table I are compatible with this requirement. The resultant
geometric quantum gate is Eq. �19�. The values of ��=
2
−
1� and ��=�
2+
1� /2� are given in Table I.

When �= 1
2 , Eq. �19� takes the form

Uecho��� = e−i��y/2ei�2�2k2·�/2e−i��+���y/2ei�1�1k1·�/2

= e−i�/2�cos � sin �

sin � − cos �

 , �20�

which we experimentally demonstrate in the next section.

III. EXPERIMENTS

A. Sample and spectrometer

We implement a one-qubit gate described by Eq. �20�
with a conventional commercial NMR system. We employed
a JEOL ECA-500 NMR spectrometer �30� whose hydrogen
Larmor frequency is approximately 500 MHz. 13C nucleus in
a 0.6 ml, 0.2M sample of 13C-labeled chloroform �Cam-
bridge Isotope� in d-6 acetone is employed as a qubit, while
protons are decoupled by a standard decoupling technique,
called WALTZ �25�. We have chosen 13C-labeled chloroform
for future experiments involving two-qubit gates. The trans-
verse and the longitudinal relaxation times are T2�0.3 s and
T1�5 s, respectively. The longitudinal relaxation time is
shorten by adding a small amount of Fe�III� acetylacetonate
so that a repetition rate can be increased. T2 and T1 without
Fe�III� acetylacetonate are �0.3 s and �20 s, respectively.

B. Pulse sequence

As we discussed in the previous section, gate �20� can be
realized with two rotating magnetic fields and two hard
�short� pulses. The rotating fields are effectively obtained by
two soft �long� pulses which are rotating with different fre-
quencies �̃i,rf=�i,rf−�ref �i=1,2� in the rotating frame with
frequency �ref. The first soft pulse �loop 1� is a usual square
pulse, while the second soft pulse �loop 2� is a �frequency�
shifted laminar square pulse �SLP� �31�. This SLP is em-
ployed in order to obtain the same phase 	 in Eq. �4� for
loop 2 as that for loop 1, i.e., 	1=	2.

We take ��̃0�=2��1000 rad /s and 	i=0 throughout the
experiments. The condition 	i=0 is taken for simplicity as
mentioned in the beginning of Sec. II C. We independently
calibrate the strengths of the soft and hard pulses in order to
minimize a nonlinearity error in setting the rf pulse ampli-
tude. The duration thp of a hard � pulse is set to 21.6 �s
throughout the experiments. We ignore thp in setting the
phase of the second soft pulse, which is justified by the fact
that thp��̃0��2�. The precision of pulse duration control is
100 ns. The durations ti,sp of two soft pulses are set to

ti,sp��̃i,rf� = 2� .

We demonstrate three different gates with �=0.5, 0.3, and
0.1. We note that the phase of the second hard pulse corre-
sponding to Ry�−�� must be adjusted, presumably because
the oscillator in the NMR spectrometer is disturbed in gen-
erating a SLP. It should be recalled that a SLP employs in-
tensive phase modulation.

C. Results

Implemented gates with �= 1
2 are evaluated by performing

quantum process tomography �32�. The practical details are
explained in Ref. �33�. A quantum process E, such as a gate
operation or relaxation process, is

� � E��� =

�
k

Ek�Ek
†

�
k

Ek
†Ek

in the operator sum �or Kraus� representation �34,35�. When
all Ek’s are determined, E is considered to be identified. This
identification is called quantum process tomography.

The Bloch sphere in Fig. 5�a� is mapped under the gate
operations to the surfaces in Figs. 5�b�–5�d�, which corre-
spond to �=0.5, 0.3 and 0.1, respectively. If the gate opera-
tions are perfect, the surfaces are the spheres of unit radius
�i.e., the Bloch sphere�. The left panel of each row shows the
theoretical final state. In the middle panels, the results for the
single gate operation are shown. Finally, the right panels are
for the two-successive �double� gate operation. The Had-
amard gate obtained when �=−� /4 is, for comparison,
shown in the right panel of Fig. 5�a�. From these figures, we
find that Uecho��� in Eq. �20� is implemented although it is
not perfect.

We numerically evaluated the fidelity of the implemented
gate using the entanglement fidelity �33,35� given by

GEOMETRIC QUANTUM GATES IN LIQUID-STATE NMR… PHYSICAL REVIEW A 80, 052311 �2009�

052311-5



Fe�I0,E � Uecho
−1 � =

�
k

�Tr�EkUecho�− ��I0��2

Tr��
k

EkUecho�− ��I0Uecho
† �− ��Ek

†�

=

�
k

�Tr�EkUecho�− ��I0��2

Tr��
k

EkI0Ek
†�

,

where Uecho is a super operator corresponding to the unitary

operator Uecho��� �i.e., Uecho���=Uecho����Uecho
† ����, I0

=1 /2, and 1 is the identity matrix of dimension 2. One can
find that Fe�I0 ,E �Uecho

−1 �=1 when the gate operation E is per-
fect. In the case of two-successive gate operation, Fe�I0 ,E2�
gives a measure of the fidelity since �Uecho����2=−1. The
entanglement fidelities corresponding to the gate operations
are summarized in Table II.

The fidelities of the demonstrated gates are not high. This
may be attributed to the inhomogeneous rf field. The free-
induction-decay signal of the thermal state after a 5� /2
pulse, which corresponds to the operation e−5��x/4 for ex-
ample, reduces to about 85% of that after a � /2 pulse, which
corresponds to the operation e−��x/4 for example. This fact
indicates that there is some rf field inhomogeneity which
may account for most of the reduction in the fidelities in
Table II. Pulse sequences in usual NMR operations are de-
signed so that the rf field inhomogeneity does not affect mea-
surements, for example, by employing composite pulses.
Such techniques are not available in our experiments.

IV. SUMMARY

We demonstrated the elimination of the dynamical phase
and the implementation of the quantum gates with pure
nonadiabatic geometric phases in a liquid-state NMR quan-
tum computer, based on the double-loop method. By means
of a spin-echo technique, we modified the original proposal
so that quantum gates are implemented in a standard high
precession NMR system for chemical analysis. We have pro-
posed and experimentally verified an alternative method to
eliminate dynamical phase. The extension of the present
method to two-qubit operations is an important future work
�36�. We believe that our work is the step toward physical
realization of working geometric quantum gates and further
efforts should be made for improvement of the gates.
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FIG. 5. Gate operations visualized. The Bloch sphere in �a� is
mapped to the surfaces in �b�–�d� under the gates with �=0.5, 0.3
and 0.1, respectively. The right surface in �a� is an expected Bloch
sphere when �=−� /4, which corresponds to the Hadamard gate.
Each left panel in �b�–�d� corresponds to the theoretical final state.
The middle panels are the results for the single gate operation
Uecho���. The right panels are for the two-successive �double� gate
operations.

TABLE II. The entanglement fidelities for single and double
operations with �=0.5, 0.3, and 0.1.

� Fe�I0 ,E �Uecho
−1 � Tr�E�I0�� Fe�I0 ,E2� Tr�E2�I0��

0.5 0.75 1.00 0.74 1.02

0.3 0.88 1.08 0.83 1.07

0.1 0.84 1.07 0.85 1.06
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