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The signal half of an entangled twin beam, generated using spontaneous parametric downconversion, inter-
rogates a region of space that is suspected of containing a target and has high loss and high �entanglement-
breaking� background noise. A joint measurement is performed on the returned light and the idler beam that
was retained at the transmitter. An optimal quantum receiver, whose implementation is not yet known, was
shown to achieve 6 dB gain in the error-probability exponent relative to that achieved with a single coherent-
state �classical� laser transmitter and the optimum receiver. We present two structured optical receivers that
achieve up to 3 dB gain in the error exponent over that attained with the classical sensor. These are designs of
quantum-optical sensors for target detection, which can be readily implemented in a proof-of-concept experi-
ment, that appreciably outperform the best classical sensor in the low-signal-brightness, high-loss, and high-
noise operating regime.
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I. INTRODUCTION

A distant region engulfed in bright thermal light, sus-
pected of containing a weakly reflecting target, is interro-
gated using an optical transmitter. The return light is pro-
cessed by a receiver to decide whether or not the target is
present. Recent work �1–3� has shown that in the above sce-
nario, a “quantum-illumination” transmitter, i.e., one that
generates entangled Gaussian-state light via continuous-
wave pumped spontaneous parametric downconversion
�SPDC�, in conjunction with the optimal quantum receiver,
substantially outperforms a coherent-state �unentangled�
transmitter and the corresponding optimum-measurement re-
ceiver. This advantage accrues despite the loss of entangle-
ment between the target-return and the idler beams due to the
high loss and noise in the intervening medium. This is an
example of an entanglement-based performance gain in a
bosonic channel where the initial entanglement does not sur-
vive the loss and noise in the system. The SPDC transmitter
and optimal receiver combination has been shown to yield up
to a factor of 4 �i.e., 6 dB� gain in the error-probability ex-
ponent over a coherent state transmitter and optimal receiver
combination in a highly lossy and noisy scenario �3�. The
optimal receiver for the former source corresponds to the
Helstrom minimum probability of error �MPE� measurement
�4� under two hypotheses—H0: target absent, and H1: target
present. It can be expressed as a projective measurement
onto the positive eigenspace of the difference of the joint
target-return and idler density operators under the two hy-
potheses. However, no known structured optical receiver is
yet able to attain the full 6 dB predicted performance gain.

In this paper we present two structured receivers, which,
when used in conjunction with the SPDC transmitter, are
shown to achieve up to a factor of 2 error-exponent
advantage—i.e., half of the full factor of 4 predicted by the
Helstrom bound—over the optimum-reception classical sen-
sor, in the low-signal-brightness, high-loss, and high-noise
regime. The first receiver uses a low-gain optical parametric
amplifier �OPA� and ideal photon counting �5�, whereas the

second uses phase conjugation followed by balanced dual
detection. Both receivers attain the same asymptotic error
exponent, although the second receiver yields slightly better
performance than the first. Both receivers attempt to detect
the remnant phase-sensitive cross correlation between the
return-idler mode pairs when the target is present �6�. Both
of our proposed receivers, consisting of separable measure-
ments over M pairs of target-return and idler modes, offer
strictly better performance than any classical-state trans-
ceiver and have low-complexity implementations. Apart
from the binary-hypothesis target-detection problem consid-
ered here, our receivers have been shown to considerably
outperform conventional optical sensing and communica-
tions applications built on the quantum-illumination concept,
such as two-way secure communications �7� and standoff
one-vs-two-target resolution sensing �8�.

Consider M independent signal-idler mode pairs obtained
from SPDC, �âS

�k� , âI
�k��; 1�k�M. Each T-sec-long transmis-

sion comprises M =WT�1 signal-idler mode pairs, where W
is the SPDC source’s phase-matching bandwidth. Each mode
pair is in an identical entangled two-mode-squeezed state
with a Fock-basis representation �9�

���SI = 	
n=0

� 
 NS
n

�NS + 1�n+1 �n�S�n�I, �1�

where NS is the mean photon number in each signal
and idler mode. ���SI is a pure maximally entangled
zero-mean Gaussian state with covariance matrix
VSI= ��âS âI âS

† âI
†�T�âS

† âI
† âS âI�� given by

�
NS + 1 0 0 
NS�NS + 1�

0 NS + 1 
NS�NS + 1� 0

0 
NS�NS + 1� NS 0


NS�NS + 1� 0 0 NS


 .

Under hypothesis H0 �no target�, the target-return mode
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âR= âB, where âB is in a thermal state with mean photon
number NB�1. Under hypothesis H1 �target present�,
âR=
�âS+
1−�âB, where ��1, and âB is in a thermal state
with mean photon number NB / �1−��, such that the mean

noise photon number is equal under both hypotheses. Under
H1, each of the M return-idler mode pairs are in a zero-mean
Gaussian state, �̂RI

�1�, with the covariance matrix of each
mode, VRI= ��âR âI âR

† âI
†�T�âR

† âI
† âR âI��, given by

�
�NS + NB + 1 0 0 
�NS�NS + 1�

0 NS + 1 
�NS�NS + 1� 0

0 
�NS�NS + 1� �NS + NB 0


�NS�NS + 1� 0 0 NS


 .

Under H0, the joint return-idler state for each of the M mode
pairs, �̂RI

�0�, is a product of two zero-mean thermal states
��̂NB

� �̂NS
� with mean photon numbers NB and NS, respec-

tively, viz., VRI=diag�NB+1,NS+1,NB ,NS�.
The binary detection problem is the MPE discrimination

between H0 and H1 using the optimal measurement on the M
return-idler mode pairs, ��̂RI

�m���M for m=0 or 1. The mini-
mum probability of error is given by Pe,min

�M� = �1−	n�n
�+�� /2,

where �n
�+� are the non-negative eigenvalues of

��̂RI
�1���M − ��̂RI

�0���M �4�. The quantum Chernoff bound �QCB�,
given by QQCB�min0�s�1 Qs where Qs�Tr���̂RI

�0��s��̂RI
�1��1−s�,

is an upper bound to Pe,min
�M� and is asymptotically tight in the

exponent of the minimum error probability �10�. In particu-
lar, we have

Pe,min
�M� �

1

2
QQCB

M �
1

2
Q0.5

M , �2�

where the first inequality �QCB� is asymptotically tight as
M→� �12�. The QCB is customarily represented as
Pe,min

�M� �e−MRQ /2 in terms of an error exponent
RQ�−ln�QQCB�. The second inequality is a looser upper
bound known as the Bhattacharyya bound. Symplectic de-
composition of Gaussian-state covariance matrices was used
to compute the QCB �3,11� and it was shown that in the
high-loss, weak transmission, and bright background regime;
i.e., with NS�1, ��1, and NB�1, the entangled transmitter
yields a QCB error exponent RQ=�NS /NB, which is four
times �or 6 dB� higher than the error exponent
RC=�NS / �4NB� for a coherent-state transmitter with a mean
photon number NS per mode. In Fig. 1, we plot the QCB for
the entangled and coherent state transmitters showing a clear
advantage of quantum over classical illumination.

When a coherent-state transmitter is used, each received
mode âR is in a thermal state with mean photon number NB

and a mean field �âR�=0 or 
�NS for hypotheses H0 and H1,
respectively. Homodyne detection on each received mode
âR

�k� yields a variance-�2NB+1� /4 Gaussian-distributed ran-
dom variable Xk with mean 0 or 
�NS given the hypothesis.
The minimum error probability decision rule is to compare
X=X1+ ¯+XM against a threshold: “H0” is declared if

X	 �M
�NS� /2 and “H1” otherwise. The corresponding
probability of error is

Pe,hom
�M� =

1

2
erfc�
 �NSM

4NB + 2
� �

e−MRChom

2

MRChom

,

where erfc�x�� �2 /

��x
�e−t2dt, RChom

=�NS / �4NB+2� is the
error exponent, and the approximation holds for
�NSM / �4NB+2��1. When NB�1, RChom

��NS /4NB=RC,
so mode-by-mode homodyne detection is asymptotically op-
timal for the coherent-state transmitter.

FIG. 1. �Color online� The figure shows five plots of error-
probabilities and bounds thereof as a function of M. The two solid
curves marked by arrows �from top to bottom respectively� are the
coherent-state �blue� and the entangled Gaussian-state �red� trans-
mitters. The third solid curve �black, in between the aforementioned
QCB curves� plots the error-probability performance of the OPA
receiver, whereas the dash-dotted curve shows the performance of
the phase-conjugate receiver. The curve plotted with circules de-
picts the error-probability performance of the coherent-state trans-
mitter and homodyne detection receiver, which is in fact a lower
bound to the performance of an arbitrary classical-state transmitter,
including classically correlated signal-idler transmitter states. The
parameters used to generate the plots are NS=0.01, NB=20, and �
=0.01.
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II. OPA RECEIVER

Unlike the coherent-state transmitter, the entangled trans-
mitter results in zero-mean joint return-idler states under
both hypotheses. The sole distinguishing factor between the
two hypotheses that makes quantum illumination perform
superior to the unentangled coherent-state transmitter are the
off-diagonal terms of VRI bearing the remnant phase-
sensitive cross correlations of the return-idler mode pairs
when the target is present. The OPA receiver uses an optical
parametric amplifier to combine the incident return and idler
modes âR

�k� and âI
�k�, 1�k�M, producing output mode pairs:

ĉ�k� = 
GâI
�k� + 
G − 1âR

†�k� �3�

and

d̂�k� = 
GâR
�k� + 
G − 1âI

†�k�, �4�

where G�1 is the gain of the OPA �see Fig. 2�. Thus, under
both hypotheses ĉ�k� is in an independent, identical, zero-
mean thermal state, �̂c=	n=0

� �Nm
n / �1+Nm�1+n��n��n�, for

m� �0,1�, where the mean photon number is given by
N0�GNS+ �G−1��1+NB� under H0, and N1�GNS

+ �G−1��1+NB+�NS�+2
G�G−1�
�NS�NS+1� under H1.
The joint state of the M received modes,

�ĉ�k� ,1�k�M�, is the M-fold tensor product �̂c
�M, and the

M-fold product of thermal states is diagonal in the M-fold
tensor product of photon-number bases. Therefore, the opti-
mum joint quantum measurement to distinguish between the
two hypotheses is to count photons on each output mode ĉ�k�

and decide between the two hypotheses based on the total
photon count N over all M detected modes using a threshold
detector. The probability mass function of N under the two
hypotheses is given by

PN�Hm
�n�Hm� = �n + M − 1

n
� Nm

n

�1 + Nm�n+M ,

where n=0,1 ,2 , . . . and m=0 or 1. The mean and variance of
this distribution are MNm and M�m

2 , respectively, where
�m

2 =Nm�Nm+1�. The minimum error probability to distin-
guish between the two distributions PN�H0

�n �H0� and
PN�H1

�n �H1� using M independent and identically distributed
�i.i.d.� observations is bounded above by the classical Bhat-
tacharyya bound �5�,

Pe,OPA
�M� �

1

2
e−MRB, �5�

where with a small OPA gain G=1+
2, 
�1, the error ex-
ponent RB is given by

RB =

2�NS�NS + 1�

2NS�NS + 1� + 2
2�1 + 2NS��1 + NS + NB�
� �NS/2NB,

�6�

for a choice of 
2=NS /
NB, for NS�1, ��1, and NB�1
�13�. Therefore, by construction, for a weak transmitter op-
erating in a highly lossy and noisy regime, the OPA receiver
achieves at least a 3 dB gain in error exponent over the
optimum-receiver classical sensor whose QCB error expo-
nent RC=�NS /4NB. For NS�1 and 
�1, both N0 and
N1�1. Hence, a single-photon detector �as opposed to a full
photon-counting measurement� suffices to achieve the per-
formance of the receiver depicted in Fig. 2. Due to the cen-
tral limit theorem, for M �1, PN�Hm

�n �Hm�, m� �0,1� ap-
proach Gaussian distributions with mean and variance MNm
and M�m

2 , respectively. Hence, for M �1,

Pe,OPA
�M� =

1

2
erfc�
ROPAM� �

e−MROPA

2

MROPA

,

where an error exponent ROPA= �N1−N0�2 /2��0+�1�2 can be
achieved using a threshold detector that decides in favor of
hypothesis H0 if N	Nth, and H1 otherwise, where
Nth� �M��1N0+�0N1� / ��0+�1��. Figure 1 shows that Pe,OPA

�M�

is strictly smaller �by 3 dB in error-exponent� than
Pe,hom

�M� —the error probability achieved by the coherent state
transmitter with a homodyne detection receiver. One can
show using convexity arguments that in the high background
regime, Pe,hom

�M� is in fact a strict lower bound to the error
probability achievable by an arbitrary classical-state trans-
mitter, which includes classically-correlated signal-idler
mixed states �i.e., those that admit a Glauber-Sudarshan P
representation�

III. PHASE-CONJUGATE RECEIVER

The phase-conjugate �PC� receiver is another receiver
whose error-probability achieves the same 3 dB error-

FIG. 2. In the OPA receiver, the return modes and idler modes
are inputs to an OPA with gain G. The total number of photons, N,
are counted at one output port. The receiver decides in favor of
hypotheses H0 if N is below a threshold Nth and in favor of H1,
otherwise.

FIG. 3. �Color online� In the PC receiver, the phase-conjugated
return modes and the idler modes are inputs to a balanced difference
detector. If the difference in the total number of clicks, N, over all
M received modes is less than a threshold Nth, the receiver decides
H0, and H1 otherwise.
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exponent gain over the optimal classical transceiver in the
asymptotic operating regime NS�1, ��1, and NB�1, and
has slightly better performance than the OPA receiver �see
Fig. 1�. As illustrated in Fig. 3, the receiver phase conjugates
all M return modes âR

�k�, 1�k�M according to

âC
�k� = 
2âV

�k� + âR
†�k�, �7�

where âV
�k� are vacuum-state operators needed to preserve

the commutator. The conjugated return and the retained
idler are then detected by a dual, balanced difference
detector: the output modes of the 50–50 beam splitter,
âX

�k�= �âC
�k�+ âI

�k�� /
2 and âY
�k�= �âC

�k�− âI
�k�� /
2, are detected and

fed into a unity-gain difference amplifier, such that the final
measurement is equivalent to

N̂�k� = N̂X
�k� − N̂Y

�k�, �8�

where N̂X
�k�= âX

†�k�âX
�k� and N̂Y

�k�= âY
†�k�âY

�k�. The final decision is
based on the sum of the photon counts N over all M modes.

To simplify the subsequent analysis, let us define

N̄X� �N̂X
�k��, N̄Y � �N̂Y

�k��, N̄C� �âC
†�k�âC

�k��, and N̄I� �âI
†�k�âI

�k��.
Under hypothesis H0, the modes âC

�k� and âI
�k� are in product

thermal states, whereas under H1 they are in a zero-mean
joint Gaussian state with nonzero phase-insensitive cross
correlation given by �âC

†�k�âI
�k��=
�NS�NS+1�=Cq. Measure-

ment of N̂�k�, 1�k�M, produces a sequence of i.i.d. random
variables Nk with mean and variance given by N0=0 and

�0
2= N̄X�N̄X+1�+ N̄Y�N̄Y +1� under hypothesis H0, and

N1=2Cq and �1
2= N̄X�N̄X+1�+ N̄Y�N̄Y +1�− �N̄C− N̄I�2 /2

under hypothesis H1. Under hypothesis H0 we have

N̄X= N̄Y = �N̄C+ N̄I� /2, whereas N̄X= �N̄C+ N̄I� /2+Cq, and

N̄Y = �N̄C+ N̄I� /2−Cq holds for hypothesis H1. Finally, we

have N̄C=1+NB for H0, N̄C=1+�NS+NB for H1, and be-
cause the idler is unaffected under either hypothesis,

N̄I=NS. For large M, and hypothesis Hm, m� �0,1�, the dis-
tribution of N=	k=1

M Nk approaches a Gaussian distribution
with mean and variance given by MNm and M�m

2 , respec-
tively. Therefore, the probability of error

Pe,PCR
�M� �

1

2
erfc�
RPCRM� �

e−MRPCR

2

MRPCR

,

where an error exponent RPCR= �N1−N0�2 /2��0+�1�2 can be
achieved using a threshold detector that decides in favor of
hypotheses H0 when N	Nth and in favor of H1 otherwise,
where Nth= �M��1N0+�0N1� / ��0+�1��. The corresponding
error exponent is given by

RPCR =
�NS�NS + 1�

2NB + 4NSNB + 6NS + 4�NS
2 + 3�NS + 2

� �NS/2NB,

�9�

where NS�1, ��1, and NB�1.
The PC receiver achieves the same 3 dB error-exponent

gain as the OPA receiver over the optimum-reception classi-
cal transceiver though the performance of the former is
slightly better in absolute terms �see Fig. 1�. One reason for
this is that balanced dual-detection cancels the common-
mode excess noise in âX and âY, which is reflected by the
negative term �N̄C− N̄I�2 /2 in the variance of Nk under hy-
pothesis H1. On the other hand, the OPA receiver operates at
very low gain, thus, requires much less pump power than
unity-gain phase conjugation.

In summary, we have proposed two receiver structures,
both viable for low-complexity proof-of-concept experimen-
tal demonstrations using off-the-shelf optical components,
which in conjunction with the SPDC entangled-state source,
could substantially outperform classical transceivers for vari-
ous entangled-state optical sensing applications, such as
standoff target detection, one-vs-two-target resolution sens-
ing �8�, and two-way secure communications �7�.
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