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In this paper, we present progress on the study of the symmetric extension criterion for separability. First, we
show that a perturbation of order O�1 /N� is sufficient and, in general, necessary to destroy the entanglement of
any state admitting an N Bose-symmetric extension. On the other hand, the minimum amount of local noise
necessary to induce separability on states arising from N Bose-symmetric extensions with positive partial
transpose �PPT� decreases at least as fast as O�1 /N2�. From these results, we derive upper bounds on the time
and space complexity of the weak membership problem of separability when attacked via algorithms that
search for PPT-symmetric extensions. Finally, we show how to estimate the error we incur when we approxi-
mate the set of separable states by the set of �PPT� N-extendable quantum states in order to compute the
maximum average fidelity in pure state estimation problems, the maximal output purity of quantum channels,
and the geometric measure of entanglement.
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I. INTRODUCTION

The separability problem, that is, the problem to deter-
mine whether a given quantum state is separable or en-
tangled, is one of the most fundamental problems in en-
tanglement theory �1�. Starting from the famous positive
partial transpose �PPT� criterion �2�, nowadays we have an
enormous number of different separability criteria to choose
from �see the citation lists of review papers in this topic
�1,3–8��. Among all known separability criteria, those based
on “symmetric extensions” and “PPT-symmetric extensions”
�i.e., symmetric extensions with an additional PPT con-
straint�, as conceived by Doherty et al. �9,10�, are considered
to be among the most powerful �6�. These criteria rely on the
fact that any set of N-symmetrically extendable states �PPT
or not� converges to a set of separable states in the limit of
N→�, as first noticed by Raggio and Werner �11,12�, al-
though it also follows from the quantum de Finetti theorem
�13�. Since both the set of N-symmetrically extendable states
and the set of N-PPT symmetrically extendable states can be
characterized by semidefinite programming �14�, a well-
known optimization problem for which many free solvers are
available �such as the MATLAB toolbox SEDUMI �15��, these
tests are not only powerful, but also easy to implement. This
explains why, over all known numerical methods, the algo-
rithms created by Doherty, Parrilo, and Spedalieri �DPS� are
the most popular in the quantum information community
�notice, however, that there exist other methods for entangle-
ment detection based on semidefinite programming besides
the DPS criterion �16,17��.

This family of schemes has, though, an important draw-
back: in this approach, in order to conclude that a given state
� is entangled, it is enough to find an N such that � does not
belong to the set of N-�PPT� symmetric extendable states.
On the other hand, in order to show that a given state is
separable, we would have to prove that it admits an N-�PPT�
symmetric extension for all natural numbers N. The DPS
method then becomes useless: since we always operate under
finite time and memory constraints, all we can do in practice
is to check for the existence of N-�PPT� symmetric exten-
sions for N less or equal than some finite number N0. If the

state � under analysis happened to admit an N0 �PPT� sym-
metric extension, we could thus not conclude anything about
its separability.

Hulke and Bruss �18� tried to solve the issue by providing
a complementary criterion designed to detect separability in-
stead of entanglement, to be implemented at the same time as
the DPS criterion. Unfortunately, the time complexity of that
other method scales superexponentially with the dimension
of the subsystems involved �6�. The reduced speed of con-
vergence of the resulting two-way algorithm �much smaller
than that of the DPS criterion� thus makes it unsuitable to
study quantum correlations in high dimensional systems.

Besides, there is a more elegant way to approach the
problem.

In a recent work, Ioannou observed that, even if a state
happens to have an N0-�PPT� symmetric extension, we can at
least bound the distance between such state and the set of
separable states in terms of N0 �6�. In the language of Com-
puter Science, this means that the “truncated” DPS criterion
allows to solve an instance of an approximate separability
problem, the weak membership problem of separability
�WMEM�S��. Ioannou therefore provided an upper bound on
the full time complexity of the algorithm for WMEM based
on symmetric extension criteria.

But even after Ioannou’s work, an open question remains
to be solved. The PPT-symmetric extension criterion is con-
sidered to be stronger than the symmetric extension criterion
�9,10�. By definition, it is actually at least as strong as the
symmetric extension criterion in the sense that an N-PPT
symmetrically extendable state is N-symmetrically extend-
able. However, so far, there are no results that quantify how
strong the additional PPT constraint makes the DPS crite-
rion. In particular, since the additional PPT constraint in-
creases quadratically the size of the matrices that define the
Semidefinite Programming problem, there still remains the
possibility that the PPT criterion just makes the DPS algo-
rithm slower for WMEM�S�. In order to make this point
clear, a similar analysis as Ioannou’s should be done for the
PPT-symmetric extension criteria. Since Ioannou’s analysis
is based on the finite quantum de Finetti theorem �19,20� and
there exists no similar theorem for states satisfying the PPT
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constraint, there is no straightforward extension of Ioannou’s
work to the PPT-symmetric extension criterion.

In this paper, by analyzing these criteria in more detail,
we extend Ioannou’s result to account for the PPT condition.
The structure of this article is as follows: in Sec. II we will
give the reader a detailed explanation of the DPS criterion
and introduce the basic notation that will be used in the
paper. Then we will move on to present the main result of
this article, namely, an upper bound on the amount of noise
needed to make the DPS states separable. This will allow us
to compute upper bounds on the entanglement robustness of
these states, and on their distance to the set of separable
states. We will also briefly discuss how close our bounds are
to being optimal. In Sec. IV, we will use the previous results
to analyze the computational complexity of solving the weak
membership problem of separability through the DPS crite-
rion. In particular, we will show that the PPT constraint in
the DPS criterion reduces the dominant factor of the upper
bound on the time complexity from �k1 /��6dB to �k2 /��4dB,
where � is the accuracy parameter of WMEM�S�. In Sec. V
we will bound the speed of convergence of the DPS criterion
when applied to compute the optimal fidelity in state estima-
tion problems, the output purity of quantum channels and the
geometric entanglement of arbitrary states. There we will
perform some numerical tests to have a grasp at the actual
speed of convergence of the DPS criterion, as opposed to our
analytical upper bounds on it. In Secs. VI and VII we will
give the proof of the main theorem and explain how it can be
extended to deal with the multipartite case. Afterwards, we
will also show a very simple method to bound the entangle-
ment of general PPT states. Finally, Sec. IX will present our
conclusions.

II. DPS CRITERION

The DPS criterion for entanglement detection �9� is a nu-
merical algorithm that, combining the aforementioned results
�11–13� on N-extendibility with convex optimization meth-
ods, allows to characterize the set S of separable operators up
to arbitrary precision. The criterion arises from the following
observation: if �AB�S, then, by definition, it belongs to the
cone of bipartite product states; i.e.,

�AB = �
i

pi�ui��ui� � �vi��vi� , �1�

with pi�0 for all i.
Once this decomposition is known, we can define a uni-

parametric family of operators �ABN �B�HA � HB
�N� by ten-

soring N times the last part,

�ABN 	 �
i

pi�ui��ui� � �vi��vi��N. �2�

Let us study the properties of the newly defined operators:
first of all, from the above definition it is clear that they are
all positive semidefinite. Also, from Eq. �2� it can be seen
that tracing out the last N−1 systems we recover the initial
operator, i.e., trBN−1��ABN�=�AB, and that the last N systems
are invariant under the action of the permutation group. Fi-
nally, when viewed as an N+1-partite system, �ABN is mul-

tiseparable, and therefore must remain positive semidefinite
under the partial transposition of any bipartition of these sys-
tems.

For simplicity, we will incorporate all these properties in a
single definition:

Definition 1. Bose-symmetric extensions (BSEs)
Let �AB�B�HA � HB� be a non-negative operator. We

will say that �ABN �B�HA � HB
�N� is an N Bose-symmetric

extension �BSE� of �AB if:
�1� �ABN �0;
�2� trBN−1��ABN�=�AB; and
�3� �ABN is Bose symmetric, i.e., �ABN�IA � Psym

N �=�ABN,
where Psym

N denotes the symmetric projector of N particles.
In case �ABN is PPT with respect to all or some of its

bipartitions ABK �BN−K, we will call it a PPT Bose-symmetric
extension �PPT BSE� of �AB.

From what we have seen, it is clear that, if �AB is a
separable operator, then there exists an N �PPT� BSE of �AB
for any N. Since �PPT� Bose-symmetric extensions are de-
fined through linear matrix inequalities, the problem of de-
termining whether a given state �AB admits one or not can be
cast as a semidefinite program �SDP� �14� and therefore can
be solved efficiently for fixed N and varying dimensions. The
DPS criterion consists precisely in, given an operator �AB
whose separability is at stake, checking for the existence of
N �PPT� Bose-symmetric extensions for different values of
N.

A hierarchy of separability tests arises then naturally: if
some operator �AB does not admit a �PPT� Bose-symmetric
extension for some N �i.e., it does not pass the Nth test�, then
it has to be entangled. If, on the contrary, such extension
exists, then we would go for the �N+1�th test, that is, we
would search for N+1 �PPT� Bose-symmetric extensions of
�AB. This last test would be in general more restrictive than
the previous one, since for any N+1 �PPT� Bose-symmetric
extension �ABN+1 of �AB we can obtain an N �PPT� Bose-
symmetric extension by tracing out the last system.

Doherty et al. �10� showed that the previous hierarchy
completely characterizes the set of separable operators, in the
sense that for any entangled positive operator �AB there ex-
ists an N such that �AB does not admit an N Bose-symmetric
extension.

We will now introduce a notation that will be used for the
rest of the article: SN will denote the cone of all bipartite
operators that have an N BSE, and Sp

N will be understood as
the set of all unnormalized quantum states that admit an N
BSE that is PPT with respect to the bipartition AB�N/2� �B�N/2�.
In case we also demand normalization, we will be dealing

with the sets of states S̄N, S̄p
N. The elements of the previous

four sets will be called N-�PPT� symmetrically extendable
operators, or states, if normalized, or just DPS operators or
states. Our previous discussion can then be summarized as

S1 � S2 � S3 � . . . � S ,

Sp
1 � Sp

2 � Sp
3 � . . . � S ,
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limN→� SN,Sp
N = S . �3�

Note that S1=Sp
1�S̄1= S̄p

1� is the set of all positive semidefinite
operators �states�.

Before ending this section, we would like to point out one
additional fact. As we already explained in the introduction,
when we use the DPS criterion in practice, it is not possible
to conclude with certainty that a given state is separable.
However, in the PPT case, by checking some rank con-
straints on the density matrices output by the computer, we
can sometimes conclude separability in a finite number of
steps. In that case, we will say that the PPT BSE presents a
rank loop. We will make use of rank loops in Sec. V in order
to estimate the accuracy of our upper bounds on the error we
introduce when we perform linear optimizations over the sets
SN or Sp

N instead of S in state estimation problems. A detailed
explanation of this criterion for optimality can be found in
Appendix B.

III. CHARACTERIZATION OF SN AND Sp
N

We have seen that the sequences of sets �SN�, �Sp
N� tend to

the set S in the limit N→�. Intuitively, this means that, for
N�1, any state �AB belonging to one of these sets must be
either separable, or, at least, very close to a separable state. It
seems thus plausible that the little entanglement such states
may possess could be destroyed by some very attenuated
local noise. One of the simplest noise models one can think
of is depolarization, where a quantum state is turned into
white noise with probability p. The action of the depolarizing
channel ��p� over some state ��B�H� is given by

��p���� = �1 − p�� + p
I

d
, �4�

where d is the dimension of the Hilbert space H. Given any
bipartite quantum state �AB, shared by Alice and Bob, we
could thus define its critical disentangling probability
pc��AB� as the minimum probability with which one of the
parties, say Bob, would have to prepare the maximally mixed
state in his subsystem in order to disentangle it from Alice’s.
That is,

pc��AB� = min
p:IA � �B
�p���AB� � S̄� . �5�

Similarly, we can define the critical disentangling probability
of a set of states W as the maximum of all pc��� for all �
�W. Clearly, pc�1 for all states, although this bound can be
greatly improved if the dimensionality of Bob’s system is
small, as we shall see.

In this section, we will give upper bounds on this critical

probability valid for any state in S̄N �or S̄p
N�. Then, by means

of these results, we will provide several upper bounds on the

speed of convergence of S̄N and S̄p
N to S̄.

Before proceeding, though, a remark on notation: in this
article, we will be mainly concerned with linear operators or
quantum states acting over a bipartite Hilbert space HA
� HB, and all the formulas and bounds that we will derive in
this section and the following three will involve the dimen-
sion of the Hilbert space HB where the symmetric extensions

are to be made. For the sake of clarity, we will therefore

introduce the notation d =
def

dim HB.
The following theorems will play a key role in deriving

most of the results of this paper.
Theorem 2.

pc�S̄N� �
d

N + d
. �6�

In other words, for any operator �AB�SN, the positive
semidefinite operator

�̃AB 	
N

N + d
�AB +

1

N + d
�A � IB �7�

is separable.
Theorem 3. Define gN �or gN

�d� in case d is ambiguous� as

gN = min
1 − x:PN/2+1
�d−2,0��x� = 0� for N even,

min
1 − x:P�N+1�/2
�d−2,1� �x� = 0� for N odd, �8�

with Pn
�	,
��x� being the Jacobi Polynomials �21�. Then,

pc�S̄p
N� �

d

2�d − 1�
gN. �9�

That is, for any �AB�Sp
N, the positive semidefinite operator

�̃AB 	 �1 −
d

2�d − 1�
gN�AB +

1

2�d − 1�
gN�A � IB

�10�

is separable.
The proof of these two theorems is given in Sec. VI,

where a separable decomposition for states �7� and �10� is
also provided. Also, it is worth mentioning that, in both

cases, �̃A=�A.
Notice that, in theorem 3, gN is defined in terms of the

greatest root of Jacobi polynomials. The properties of the
roots of Jacobi polynomials have been studied for quite time
�21�. This allows us to derive an expression for the
asymptotic behavior of gN,

gN � 2� jd−2,1

N
2

, for N � 1, �11�

�2�d + 1.856d1/3 + O�d−1/3�
N

2

,

for N � d � 1, �12�

where jn,1 is the first positive zero of the Bessel function
Jn�y�.

How far can then the states in S̄N, S̄p
N be from the set S̄ of

separable states? A way to answer this question could be to
bound the maximum possible entanglement of such states.

The robustness of entanglement of a state � is defined as
the minimum amount of separable noise needed to destroy
the entanglement of such a state �22�,
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R��� =
def

min
�
��: ∃ � � S̄,s.t.

� + ��

1 + �
� S� . �13�

The robustness of entanglement is also an upper bound on
the global robustness of entanglement RG��� �22�, defined by
allowing � to be an arbitrary normalized quantum state in the
above expression. And the global robustness of entanglement
is, in turn, lower bounded by several other entanglement
measures, like the negativity, the geometric measure of en-
tanglement and the relative entropy of entanglement �22–26�.
Any nontrivial upper bound on the entanglement robustness

of the states in S̄N and S̄p
N could thus retrieve a lot of infor-

mation.
The following corollary follows straightforwardly from

theorems 2 and 3.

Corollary 4. Any �� S̄N satisfies

R��� �
d − 1

N
. �14�

Similarly, any �� S̄p
N satisfies

R��� �
gN

2 −
d

d − 1
gN

� � d

N
2

. �15�

To see why, suppose that � is normalized and use formu-

las �7� and �10� to express �̃ �i.e., �̃AB� in each case as a
convex sum of the non-negative operators � and �	 1

d−1 ��A
� IB− �̃�. Then, notice that, since �̃A=�A and �̃ is separable,
then � must also be a separable operator �61�.

Theorems 2 and 3 also allow to obtain bounds on the
distance between the states in �AB�SN, Sp

N and the set of

separable states S̄.

Corollary 5. For any �� S̄N, there exists �̃� S̄ such that

�� − �̃�1 �
2�d − 1�
N + d − 1

, �16�

�� − �̃�� �
d − 1

N + d − 1
, �17�

�� − �̃�F =
d

N + d
�tr��2� −

tr��A
2�

d
, �18�

where � · �1, � · ��, and � · �F are the trace, the operator and the
Frobenius norm, respectively.

Similarly, for any �� S̄p
N �and N�2�, there exists a state

�̃� S̄ such that

�� − �̃�1 � gN, �19�

�� − �̃�� � gN/2, �20�

�� − �̃�F =
dgN

2d − 2
�tr��2� −

tr��A
2�

d
. �21�

Proof. Here we give the proof for the bounds on the trace and

operator norm. The proof for the Frobenius norm is omitted,
since it is similar and simpler.

Let �� S̄N. The theorem 2 implies that there exists �̃� S̄,
with �̃A=�A, such that

� − �̃ =
d − 1

N + d − 1
� −

1

N + d − 1
��A � IB − �̃� . �22�

Using the triangle inequality, we have that

�� − �̃�1 �
d − 1

N + d − 1
���1 +

1

N + d − 1
���A � IB − �̃��1

=
2�d − 1�
N + d − 1

, �23�

where in the last step we used once more the fact that �A
� IB− �̃ is separable �and, therefore, positive�. Relation �16�
is thus proven.

For the operator norm, let u+�u−� be the eigenvector cor-
responding to the maximum �minimum� eigenvalue of �− �̃.
It follows that

�� − �̃�� = max�tr
�� − �̃��u+��u+��, tr
��̃ − ���u−��u−��� .

�24�

On the other hand,

tr
�� − �̃��u+��u+�� =
d − 1

N + d − 1
tr
��u+��u+�� −

1

N + d − 1
tr
��A

� IB − �̃��u+��u+�� �
d − 1

N + d − 1
, �25�

and

tr
��̃ − ���u−��u−�� = −
d − 1

N + d − 1
tr
��u−��u−��

+
1

N + d − 1
tr
��A � IB − �̃��u−��u−��

�
d − 1

N + d − 1
. �26�

The first part of the corollary has been proven.

If �� S̄p
N and N�2, then � can be seen to be PPT. Since

the PPT criterion implies the reduction criterion �27,28�, we
have that �A � IB−��0. This observation, combined with the
techniques used to derive the first set of relations, allows to
prove the second one. �

The above corollaries can be reformulated as:

Corollary 6. Suppose S̄��� is a � neighbor of the set of all

separable states S̄ in terms of the trace distance,

S̄��� =
def

�
��S̄


� � S̄1��� − �� � �� �27�

�remember that S̄1 is the set of all quantum states in HA
� HB�.

Then, the following relations hold:

NAVASCUÉS, OWARI, AND PLENIO PHYSICAL REVIEW A 80, 052306 �2009�

052306-4



S̄N � S̄� 2�d − 1�
N + d − 1

 � S̄�2
d

N
 , �28�

S̄p
N � S̄�gN� � S̄�2� d

N
2 , �29�

where the approximations are granted to hold in the limit
N�d�1.

This corollary suggests that the upper bounds for S̄p
N con-

verge quadratically faster than those for S̄N. In other words, if
these bounds were optimum, then we would have proven that
the additional PPT constrain gives the DPS criterion a qua-
dratic speed-up.

It is then natural to wonder if such bounds are indeed
optimal. We will argue that at least the scaling of the upper

bounds for S̄N is correct, i.e., fixing dA and d, the maximum
possible entanglement robustness of any bipartite state �AB
arising from an N Bose-symmetric extension scales with N
as O�1 /N�.

To see this, let N=2K−1, and consider the N+1 bipartite
state given by

�ABN� 	
1

CK
�
perm

�0 · 0
︷

K

1 · 1
︷

K

� , �30�

where CK is a normalization factor. Define now �AB
	 trBN−1��ABN��ABN��. Clearly, �AB�SN. Now, it can be
shown that

�AB =
K − 1

2�2K − 1�
��00��00� + �11��11�� +

K

2�2K − 1�
��01� + �10��

���01� + �10�� . �31�

The partially transposed operator �AB
TB has a negative eigen-

value −1 /2�2K−1� corresponding to the eigenvector ��00�
− �11�� /�2, whose maximum Schmidt coefficient is 1 /�2.
According to �22�, this implies that R��AB�=1 / �2K−1�
=1 /N. Bound �14� is, therefore, tight for dA=d=2. Since for
any pair for Hilbert spaces HA, HB of dimensions greater
than 1 we can embed the previous family of states in B�HA
� HB�, it follows that the optimal upper bound on the en-
tanglement robustness of partial traces of Bose-symmetric
extensions must scale as O�1 /N�. On the other hand, bound

�15� guarantees that the corresponding value for S̄p
N at least

scales as O�1 /N2�; i.e., theorem 3 allows to derive an upper
bound for the entanglement robustness that decreases asymp-
totically faster than the optimal upper bound in the general
Bose-symmetric case.

Note that the above considerations also allow us to obtain
a dimension-dependent lower bound on the maximum pos-

sible entanglement robustness Rsup
N of a state in S̄N. Following

the lines of �29�, consider the state �	�AB
�M, with �AB given

by Eq. �31�. Clearly, �� S̄N, with dA=dB=d=2M. As
−1 / �2N� is the only negative eigenvalue of �AB

TB and, there-
fore, the sum of its positive eigenvalues adds up to 1
+1 / �2N�, the negativity of � �30� �i.e., minus the sum of the
negative eigenvalues of �TB� can be seen equal to

N��� = �
j=0

��M−1�/2� � M

2j + 1
�1 +

1

2N
M−2j−1

�2N�2j+1

=
��1 +

1

2N
 +

1

2N
�M

− ��1 +
1

2N
 −

1

2N
�M

2

=
�1 +

1

N
M

− 1

2
�

M

2N
, �32�

where the last approximation is valid in the limit of large N.
Since R����N��� �23�, it follows that R����O�log�d� /N�.
That is, for fixed dimension d, Rsup

N satisfies O�log�d� /N�
�Rsup

N �O�d /N�.

IV. COMPUTATIONAL COMPLEXITY OF WMEM(S)

In this section, we will analyze the consequences of the
previous results on separability from the point of view of
Computer Science. Actually, there are several different ways
to describe the separability problem as a computational prob-
lem �6�. We chose to focus our attention in an approximated
separability problem called the weak membership problem of
separability. This “promise” problem �as opposed to a “de-
cision” problem� roughly consists on deciding the separabil-
ity of a given state, but allowing an uncertainty parameter-
ized by �. In this section we will derive upper bounds on the
time and space complexity when we attack this problem via
the DPS criterion.

The “in-biased” weak membership problem is defined as
follows �6�:

Definition 7. Weak membership problem of separability
�WMEM�S��.

Given a bipartite quantum state �� S̄1 and rational ��0,
assert either that

� � S̄��� �33�

or

��” S̄ , �34�

where S̄��� is a � neighbor of S̄; i.e., S̄���= 
�� S̄1 : �̃

� S̄� S̄1 , ��̃−��1���.
In the above definition, ���1=tr����†�, the trace norm of

the operator �, although, in principle, we could have chosen
other norms or distance measures as an accuracy parameter.

WMEM�S� is, thus, an approximation of the conventional
separability problem in the sense that an algorithm solving
WMEM�S� may assert Eq. �33� for a state �AB having just a
small amount of entanglement. This approximated formalism
is more practical than a nonapproximated or exact formalism
such as EXACT-QSEP �6� because of the inevitable errors
we incur in both numerical and experimental studies, that
should somehow be accounted for in our analysis of separa-
bility. A fair amount of effort has been devoted to the study
of the time complexity of WMEM�S�, the most remarkable
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result being that, if dA�dB, then WMEM�S� is NP hard
whenever 1 /� increases exponentially �31� or polynomially
�32� with respect to dB.

We will now proceed to evaluate the time complexity of
WMEM�S� when solved through the DPS criterion. First,
following the discussion of Doherty et al. �10�, SN can be
characterized by a semidefinite program with ��dim Hsym

N �2

−dB
2�dA

2 free variables and a matrix of size �dim Hsym
N �dA on

which we will impose the positivity constraint. On the other

hand, for S̄p
N, the PPT constraint implies demanding positiv-

ity from an additional matrix of size �dim Hsym
N/2 �2dA. Since

the time complexity of an SDP with m variables and of ma-
trix size n is O�m2n2� �with a small extra cost coming from
an iteration of algorithms�, the dominant factors for the
asymptotic time complexity of these tests can be written as

Symmetric:dA
6�dim Hsym

Nsym�6, �35�

PPT symmetric:dA
6�dim Hsym

Nppt�4�dim Hsym
Nppt/2�4, �36�

where Nsym and Nppt are the sizes of the extensions needed to
achieve a given accuracy parameter �.

Thus, at this stage, even though S̄p
N converges to S̄ faster

than S̄N, there still remains the possibility that the algorithm

based on the sets 
S̄p
N� is slower than the one based on the

sets 
S̄N� because of the increase in time complexity that
arises from imposing positivity on the partially transposed
operator. The following calculation will rule out this possi-
bility.

From Eq. �28� of corollary 6, we have that

Nsym �
�2 − ���dB − 1�

�
,

Nppt �
�2jdB−2,1

��
. �37�

Taking into account that jd,1�d+O�d1/3� �21�, the final ex-
pressions for upper bounds of the time complexity with re-
spect to one method and the other are

O�dA
6�2e

�
�6dB, for S̄N

O�dA
6� e2

�
�4dB, for S̄p

N, �38�

where we just wrote the dominant �exponential� terms and
omitted all polynomially growing terms. Note that the scal-
ing law derived for the non-PPT DPS criterion is valid as
long as the optimal bounds on the trace distance to the set of
separable states scale as dB /N. We conjecture that such is the
case, although all our attempts to derive an analytical proof
have failed so far. Under this assumption, the above formula
thus shows that the criterion based on PPT BSEs indeed
requires less steps than the one based on plain BSEs in order
to solve WMEM�S� for a given accuracy �.

The space complexity of both the plain DPS criterion and
the PPT DPS criterion, though, is of the same type. This is

because, although the PPT condition imposes �at least� a qua-
dratic speedup in the speed of convergence, it also increases
quadratically the size of the matrices involved in the SDP.
Thus one effect cancels the other, and the size of the matrices
needed in both cases to solve WMEM�S� up to a given pre-
cision � is comparable for any value of dB. It follows that,
according to our bounds, in some situations it may be more
convenient not to use the PPT condition in order to save
memory space.

Our experience with the DPS method suggests, however,
that this expectation is not realistic, but rather a consequence
of the nonoptimality of the bounds implicit in theorem 3.
Actually, in practice, the algorithm based on PPT BSEs
seems to have smaller space complexity than the one based
on general BSEs.

A big underestimation of the role of the PPT condition in
the DPS criterion could also explain why bound �38� behaves
much worse than the asymptotic expressions �k /��2dB de-
rived in �6� for the performance of the algorithm conceived
by Ioannou et al. for entanglement detection �33,34�. Indeed,
as we will see, our bounds on the distance between the sets

S̄p
N and the set of separable states are far from optimal, at

least for small values of dA. Therefore, a more refined analy-
sis could in principle end up with a different scaling law for
this distance, that would eventually lead to a much better
estimate of the time complexity of methods based in PPT
BSEs.

V. APPROXIMATE ALGORITHMS FOR STATE
ESTIMATION, MAXIMUM OUTPUT PURITY, AND

GEOMETRIC MEASURE OF ENTANGLEMENT

There are many relevant quantities in quantum informa-
tion whose definition involves a linear optimization over a
set of separable operators. The maximum average fidelity in
state estimation problems �35,36�, the output purity of a
quantum channel �37� or the geometric measure of entangle-
ment �1� are examples of such quantities. In order to com-
pute these functions, we could think of an approximate algo-
rithm that optimized over the sets SN or Sp

N instead of S, and
it is easy to see that such an algorithm would give the correct
answer in the limit of large N.

So far, we have seen how theorems 2 and 3 can be used to
derive bounds related to the separability problem. In this
section we will show how to use these same theorems to
bound the precision of the approximate linear optimizations
over the cone of separable operators mentioned above.

A. State estimation problems

In a general state estimation scenario, a source chooses
with probability pi a virtual quantum state i that is encoded
afterwards into another quantum state i�, to which we are
given full access. The goal of the game is to measure our
given state by means of a positive operator valued measure
�POVM� 
Mx�x and thus obtain a classical value x that we
will use to make a guess �x on the original state i, which
from now on we will assume to be pure. In conventional
estimation theory, we usually restrict the guess �x to be one
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of the original states 
i�i �35,36�. In this section, however,
we will consider the more general setting in which we are
allowed to choose arbitrary states as a guess.

Being i a pure state, the efficiency of the protocol as a
whole can be parametrized in terms of the average fidelity f ,

0 � f 	 �
i,x

pi tr�i�Mx�tr��xi� � 1, �39�

and the state estimation problem consists on determining F,
the maximum fidelity among all possible measure-and-
prepare schemes �Mx ,�x�. Since F can be used as well to
determine whether a given quantum channel can be simu-
lated or not by an entanglement breaking channel, this prob-
lem is also referred to as the Quantum benchmark problem
�38–42�.

In �43�, it is explained how to map the SE problem into a
linear optimization over the set S of separable states, via the
relation

F = max
tr��AB�AB�:�AB � S,�A = I� , �40�

where �AB=�ipii� � i is given by the particular SE prob-
lem. There it is also shown that any separable decomposition
of the optimal operator �AB=�xMx � �x corresponds to the
optimal strategy �Mx ,�x�.

Now, consider the sequence of optimization problems,

FN 	 max
tr��AB�AB�:�AB � SN,�A = I� ,

Fp
N 	 max
tr��AB�AB�:�AB � Sp

N,�A = I� , �41�

From Eq. �3�, it is immediate that F1�F2�F3� . . . �F,
with limN→� FN=F. An analogous property holds for the
bounds Fp

N. Note that these maximizations are SDPs and
therefore can be easily computed.

Unfortunately, given limited computational �and specially
memory� resources, it is only possible to compute these
bounds up to some index N. In spite of the asymptotic con-
vergence of the sequence, FN or Fp

N could very well be far
away from the actual solution of the problem. Is there any
way to estimate the error of the truncation?

Take �AB�SN�Sp
N� to be the operator that maximizes Eq.

�41�. Theorem 2 �3� then implies that �̃AB, as defined by Eq.
�7� �Eq. �10��, corresponds to a feasible state estimation strat-

egy, since it is separable and �̃A=�A= I. Moreover, we can

use the separable decomposition of �̃AB that appears in Sec.
VI to express it as a measure-and-prepare protocol �Mx ,�x�.

The fidelities F̃N or F̃p
N associated to these strategies, al-

though nontrivial, will not be optimal in general, but they
should provide a lower bound for F. From Eq. �40�, it is easy
to see that

F̃N =
N

N + d
FN +

1

N + d
,

F̃p
N = �1 −

dgN

2�d − 1�Fp
N +

gN

2�d − 1�
. �42�

Notice that both lower bounds asymptotically converge to F.
That is, from the solutions of the semidefinite programs �Eq.

�41�� it is possible to obtain a sequence of state estimation
strategies that converges to the optimal measure-and-prepare
scheme.

To have a grasp on the efficiency of the method, consider
the following state estimation problem: suppose we have a
device that outputs two copies of one of the four qubit states

�k��k=1

4 	
�0� , �1� , �+� , �−�� with equal probabilities. Our
task is to estimate the state produced by the device. How-
ever, due to the environmental noise, once we are ready to
measure the copies, those have degraded into �k
	������k��k��= �1−���k��k�+�I /2. The results for �
=0.3 are shown in Fig. 1, for both the PPT and non-PPT case
and different values of N.

We used the MATLAB package YALMIP �44� in combination
with SEDUMI �15� to perform the numerical calculations.
Note that the curve corresponding to the upper bounds is
constant, i.e., FN=FM =F�, for all M, N. This suggested that
F� could be equal to F, the solution of the problem, although
we did not observe any rank loop in the matrices output by

FIG. 1. Upper �squares� and lower �circles� bounds for the maxi-
mum fidelity F as a function of N. The dashed line indicates the
value of the exact solution, attained exactly by the PPT upper
bounds on F from N=2 and onwards. The minimum difference
between the upper and lower bounds is of the order of 10−2 in both
plots.
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the computer. We thus had to force the rank loop to occur.
Using rank minimization heuristics �45� we checked for the
existence of low rank PPT BSEs of �AB such that
tr��AB�AB��F�−�. Taking �=10−4, the computer returned a
matrix with a rank loop, therefore proving the optimality of
F� up to this precision.

We performed a similar analysis for d=3, this time con-
sidering the problem where a degraded copy of one of the
states

��ij� = cos� j�

6
�0� + sin� j�

6
cos� i�

6
�1� + sin� j�

6
sin� i�

6


��2� , �43�

�where i and j run from 0 to 5� is sent to us with probability
1/36 through a depolarizing channel �→��0.2����. In this
case we were also able to force a rank loop in the PPT BSEs,
so we again knew the optimal solution. Figure 2 illustrates
our numerical results.

Note that, in both cases, the lower bounds on the solution
behave very similarly as the upper bounds given by the DPS
criterion, as long as we are considering the non-PPT case. In
the PPT case, however, our bounds prove to be terrible, since
the second available upper bound obtained through the DPS
criterion already seems to attain the optimal solution. We
will discuss briefly this topic in Sec. IX.

The main features of the practical performance of the
DPS criterion have already been illustrated above. Therefore,
in the following two problems we will just stick to analytical
results.

B. Maximal output purity of quantum channels

Let � be a quantum channel. The maximal output purity
�37� � of � is defined as

� = max
�

�������, �44�

where the maximization is to be performed over all normal-
ized quantum states �.

At first sight this quantity may seem extremely nonlinear.
We will show that, actually, Eq. �44� can be reformulated as
a linear optimization over the set of separable states.

Denote by �AB the Choi operator corresponding to �, i.e.,
����=trA��AB · IA � ��. It follows that

� = max
�

������� = max
�,�

tr��AB · � � �� , �45�

with �, ��0, tr���=tr���=1, or, equivalently,

� = max
tr��AB�AB�:�AB � S̄� . �46�

As in the state estimation case, it is possible to define
decreasing sequences ��N�N, ��p

N�N of upper bounds on � that
converge asymptotically to the optimal output purity of the
channel. Using theorems 2 and 3, together with the fact that
trB��AB�= IA, we have that there exist sequences ��̃N�N, ��̃p

N�N
of lower bounds on � given by

�̃N =
N

N + d
�N +

1

N + d
,

�̃p
N = �1 −

dgN

2�d − 1��p
N +

gN

2�d − 1�
. �47�

C. Geometric entanglement of tripartite pure states

Let ��ABC be a pure tripartite state. A popular entangle-
ment measure for this kind of systems is the so-called geo-
metric entanglement �46,47� �that some mathematicians may
recognize as the square of the � norm �48��, defined as

E = max
�A,�B,�C

���A���B���C��ABC��2. �48�

Notice, though, that, if we fix �A and �B, the state �C maxi-
mizing the overlap will have to be proportional to
��A���B��ABC�. This overlap will be therefore equal to

FIG. 2. Upper �squares� and lower �circles� bounds for the maxi-
mum fidelity F as a function of N in dimension 3. This time, the
minimum difference between our lower bounds and the exact solu-
tion is around 0.03 �and it is attained in the non-PPT case�.
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trC���A���B��ABC��ABC���A���B�� = tr��AB��A���A� � ��B�

���B�� , �49�

where �AB=trC��ABC��ABC��. It follows that E can also be
reformulated as a linear optimization over S; i.e.,

E = max
tr��AB�AB�:�AB � S̄� . �50�

As before, converging and decreasing sequences �EN�N,
�Ep

N�N of upper bounds on E can be derived via the DPS
criterion, and theorems 2 and 3 allow us to obtain comple-

mentary increasing sequences of lower bounds �ẼN�N, �Ẽp
N�N,

given by

ẼN =
N

N + d
EN +

1

N + d
�A,

Ẽp
N = �1 −

dgN

2�d − 1�Ep
N +

gN

2�d − 1�
�A. �51�

Here �A denotes the smallest eigenvalue of �A.

VI. PROOF OF THEOREMS 2 and 3

The purpose of this section is to derive theorems 2 and 3.
But first, a few words on notation.

Given a unitary operator U, by �U� we will denote the
state U�0�. Also, for any permutation �� PN, V��B�H�N�
will represent the corresponding permutation operator. V
alone must be understood as the SWAP operator acting over a
bipartite system H�2; i.e.,

V = �
i,j=0

d

�i��j��j��i� . �52�

To finish, Hsym
N will denote the symmetric subspace of H�N

�the dimension of H will be clear from the context�.
We will now proceed to prove theorems 2 and 3.
The basic idea for both proofs is to notice that the original

problem of finding a separable state �62� �̃AB very close to
�AB from its BSE �ABN can be viewed as a probabilistic state
estimation problem �49�.

Consider the following protocol, in which Alice plays a
passive part:

�1� a copy of �ABN is distributed to two parties, Alice and
Bob;

�2� Bob performs an incomplete measurement over HB
�N,

described by the POVM 
Mx�0�x, with �xMx� I. As a re-
sult, he obtains either an outcome x or a fail message, indi-
cating that his measurement has failed to produce an out-
come;

�3� if Bob receives a fail message, then he makes it pub-
lic. Otherwise, he prepares a state �x�B�HB�, and both Al-
ice and Bob would output the state

trBN�Mx�ABN���x

px
with prob-

ability px=trBN�Mx�BN�.
The state Alice and Bob will produce conditioned on a

non fail message will be then given by

�̃AB = �
x

trBN�Mx�ABN� � �x

�ypy
, �53�

and is, therefore, a separable state. Moreover, since any en-
tanglement breaking map can be decomposed as a measure-
ment followed by the preparation of a state, this is the most
general linear map we can apply over HB

�N in order to return

a separable state �̃AB.
But how to find a measure-and-prepare strategy for Bob

such that �̃AB is close to �AB? A possible scheme could be
that Bob pretended that his subsystems are N identical copies
of an unknown pure state, performed tomography over each
of these subsystems independently and then prepared a state
consistent with the average values he would measure. This
strategy should give good results in the particular case where
�ABN can be approximated by a state of the form

� p�U�dU�U � �U��U��N. �54�

However, supposing that the state had the form above, an
even better strategy would be to allow Bob to perform col-
lective measurements over his subsystems and then prepare
the most convenient state.

In conclusion, Bob should apply a POVM that allows him
to efficiently identify the state U�0��0�U† out of N copies of
it. Because in principle Bob has no a priori knowledge of
p�U�dU, it is reasonable that he assumes that p�U�dU=dU,
the Haar measure.

In this particular case, the best state estimation strategy
and the best probabilistic state estimation strategy coincide
�49�. This implies that Bob should apply the POVM

�U��U��NdU�U and prepare the state �U��U� whenever he
gets the result U. Therefore,

�̃AB =
�dU trBN�IA � �U��U��N+1�ABN � IB�

�dU tr��U��U��N�BN�
. �55�

To evaluate these integrals it is enough to notice that:
�1� for any operator C,

� dUU�NC�U†��N = �
��PN

c�V�, �56�

for some coefficients c�. In particular,

� dU�U��U��N =
�d − 1� ! N ! Psym

N

�N + d − 1�!
=

�d − 1� ! ���PN
V�

�N + d − 1�!
.

�57�

�2� Due to the fact that �ABN acts over HA � Hsym
N , for any

�� PN+1,

trBN
��ABN � IB�IA � V��

= ��A � IB, if ��N + 1� = N + 1

�AB, otherwise
� .

�58�

Finally, we arrive at the expression
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�̃AB =
N

N + d
�AB +

1

N + d
�A � IB. �59�

We have just proven theorem 2.
The next step is to extend the previous ideas to account

for the PPT condition, and a possible way is to modify the
previous bipartite protocol to give Bob the ability to trans-
pose part of his state before proceeding with any measure-
and-prepare scheme. Suppose then that Bob partially trans-
poses a partition B�, corresponding to half of Bob’s systems
in �ABN �we will take N even for simplicity�. Following the
previous arguments, Bob could pretend that he and Alice are
sharing a state �AB

TB� very similar to

� p�U�dU�U � ��U��U� � �U���U����N/2. �60�

The benefits of this apparently useless step become evident
when we take into account the well established fact that it is
easier to estimate a state from a copy and its complex con-
jugate than from two identical copies �49,50�. In the case of
N=2, the optimal POVM has the form 
U � U��������U
� U��†dU�, where ��� is a linear combination of �00� and
�+�=�i�ii�, the �non-normalized� maximally entangled
state. The optimal strategy for general N is not known, but
we suggest the measurement

�UdU 	 �U � U���N/2�������U†
� �U��†��N/2dU ,

�61�

followed by the preparation of �U��U�. Here ��� is an arbi-
trary linear combination of the states �63� ��n�
	�00��n�+�N/2−n; i.e.,

��� = �
n=0

N/2

cn��n� . �62�

Of course, applying the POVM �U over �AB
TB� is equivalent to

apply the �nonpositive� map associated to
U�N������TB��U†��N/2 over our state �ABN. That way, we can
use the same tricks employed in the computation of Eq. �55�.

A fast way to perform these calculations is to notice that,
for m�n,

��n���m�TB� = �00��00��n
� �I � �0��0���m−n

� V�N/2−m.

�63�

Therefore, there exists a pair of permutations �, ��� PN
such that

V���n���m�TB�V��
† = �0��0��m+n

� I�N−m−n. �64�

But IA � V�
† �ABN =�ABNIA � V�=�ABN, so

trBN��ABNIA � U�N��n���m�TB��U†��N� = trBN��ABNIA � �U�

��U��m+n
� I�N−m−n� . �65�

In the end, we have that

�̃AB = �1 − d
c�†Ãc�

c�†B̃c�
�AB +

c�†Ãc�

c�†B̃c�
�A � IB, �66�

where Ã and B̃ are square matrices given by

B̃nm =
�n + m�!

�n + m + d − 1�!
,Ãnm =

�n + m�!
�n + m + d�!

,

n,m = 0,1, . . . ,N/2. �67�

In case of odd N, we would make Bob partially transpose
�N−1� /2 parts of his state and then use the following �in-
complete� POVM:

U�N������TB� � �0��0��U†��NdU . �68�

After the appropriate computations, we again arrive at ex-

pression �66�, but the form of Ã and B̃ changes to

B̃nm =
�n + m + 1�!
�n + m + d�!

,Ãnm =
�n + m + 1�!

�n + m + d + 1�!
,

n,m = 0,1, . . . ,�N − 1�/2. �69�

Obviously, in order to guarantee that �AB is close to �̃AB,
it is in our interest to minimize the quantity

fN�c�� 	
c�†Ãc�

c�†B̃c�
�70�

over all possible vectors c�. Details on how to calculate the
minimum of Eq. �70�, together with the expression of the
optimal c� can be found in Appendix A. The result is

min
c�

fN�c�� =
1

2�d − 1�
gN. �71�

This concludes the proof of theorem 3.
Notice that in both cases the given separable decomposi-

tion of the states �̃AB is continuous. Because of the presence
of the Haar measure, however, via Design Theory it is pos-
sible to arrive at an approximate �51� or exact �52� finite
separable decomposition for these operators.

VII. EXTENSIONS TO MULTISEPARABILITY

So far, we have only been considering separability in bi-
partite systems. In this section, we show that almost all the
results we have derived can be easily extended to deal with
separability in m-partite scenarios. More concretely, we will
show how to generalize theorems 2 and 3 to the multipartite
case, since, as we have already seen, most of the other results
are just corollaries of these two theorems.

In this case, we will be interested in sets SN of states that
derive from an N locally �PPT� Bose-symmetric extension
�53�.

Definition 8. N locally Bose-symmetric extension.
Let �123. . .�B�H1 � H2 � H3 � . . .� be a non-negative op-

erator. We will say that �12N3N. . .�B�H1 � H2
�N

� H3
�N
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� . . .� is an N locally Bose-symmetric extension of �123. . . if:
�1� �12N3N. . .�0;
�2� tr2N−13N−1. . .��12N3N. . .�=�123. . .; and
�3� �12N3N. . . is independently Bose symmetric in systems

2,3 ,4. . ..
As before, in case such extension is PPT with respect to

some partition, we will denote it as an N PPT locally Bose-
symmetric extension.

How close is �123. . . to the set of separable states? Con-
sider a triseparable system, for instance, and suppose that we
have an N locally Bose-symmetric extension �ABNCN for
�ABC. In order to estimate the distance of �ABC to the set of
triseparable states we could conceive a protocol where the
state �ABNCN is distributed between Alice, Bob, and Charlie.
As before, Bob and Charlie could then independently apply
probabilistic state estimation over their subsystems and pre-
pare both a quantum state depending on their measurement
outcomes.

From what we already have, the derivation of the final

expression of the triseparable state �̃ABC is straightforward.
Equation �7� describes the action of Bob’s strategy over any
bipartite state. Considering the partition ACN �BN, it follows
that the resulting tripartite state after Bob performs state es-
timation will be

N

N + dB
�ABCN +

1

N + dB
�ACN � IB. �72�

Now it is Charlie’s turn. This time we will take the parti-
tion AB �CN. The final result is that

�̃ABC =
N2

�N + dB��N + dC�
�ABC +

N

�N + dB��N + dC�
�AB � IC

+
N

�N + dB��N + dC�
�AC � IB +

1

�N + dB��N + dC�
�A

� IBC �73�

is a triseparable state.
The generalization to more parties is immediate. Invoking

again the definition of depolarizing channels �Eq. �4��, in

m-partite separability the expression for �̃1234. . . would be

�̃1234. . . = �I1 �
i=2

m

��pi�
���1234. . .� , �74�

where

pi =
di

N + di
. �75�

The corresponding expression for �̃123. . . when it arises
from an N locally Bose-symmetric extension, PPT with re-
spect to the partition 12�N/2�3�N/2� . . . �2�N/2�3�N/2�. . ., is still Eq.
�74�, but this time

pi =
di

2�di − 1�
gN

�di�. �76�

VIII. POWER OF PPT ALONE

The Peres-Horodecki criterion, aka the PPT �positive par-
tial transpose� criterion �2�, is one of the most popular exis-
tent criteria for entanglement detection. It is simple, it pro-
vides a very good approximation to the set of separable
states in small dimensional cases and it usually leads to ana-
lytical results when applied over families of quantum states.
Actually, some entanglement measures, like the negativity
�30� or the PPT entanglement robustness �1� are based on the
PPT condition.

It is interesting, thus, to try to determine how good the
PPT criterion is for entanglement detection alone, i.e., not in
combination with Doherty et al.’s method. Here, through a
very simple argument, we obtain a result in this direction.

The main idea of our derivation stems from the fact that
positivity under partial transposition is equivalent to separa-
bility in C3 � C2 systems �54�. Suppose, then, that we have a
PPT state �AB�B�HA � HB�, with dA�3, and dB�2, and
consider the �non-normalized� state �̃AB given by

�̃AB �� dUdWPU
3

� PW
2 �ABPU

3
� PW

2 , �77�

where dU and dW denote the Haar measures corresponding
to S�dA� and SU�dB�, respectively, and

PU
3 	 U�

k=0

2

�k��k�U†,PW
2 	 W�

k=0

1

�k��k�W†. �78�

It follows that �̃AB is a convex combination of unnormal-
ized states �U,W	 PU

3
� PW

2 �ABPU
3

� PW
2 , with �U,W�B�C3

� C2�. Notice, also, that each �U,W is PPT, since

�U,W
TB = �PU

3
� PW

2 �ABPU
3

� PW
2 �TB = PU

3
� PW�

2
�AB

TB PU
3

� PW�
2

� 0. �79�

Since PPT equals separability in C3 � C2 systems, it fol-
lows that each �U,W is separable and so is �̃AB, since by
construction it is a convex combination of these states.

It only rests to find an analytical expression for �̃AB. Using
the previous techniques it is straightforward to arrive at

Theorem 9. Let �AB�B�HA � HB� be a PPT normalized
quantum state, with dA�3, dB�2. Then, for

pA =
dA�dA − 3�

dA
2 − 1

,pB =
dB�dB − 2�

dB
2 − 1

, �80�

the state ��pA� � ��pB���AB� is separable.
Note that, in the particular case dA=3, dB=2, then �̃AB

=�AB.
By simple application of the tools already developed, we

end up with the following corollary.
Corollary 10. For any PPT state �AB, with dA�3, dB�2,

RG��AB� �
1

12
�dA + 1��dB + 1� − 1, �81�

and there exists a separable state � such that

��AB − ��1 � 2 −
24

�dA + 1��dB + 1�
. �82�
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To get an idea on how good these bounds are, have a look
at Fig. 3. There the maximum possible global robustness of
entanglement of a Cd�Cd state is compared with our upper
bound for PPT states. We see that, although our upper bound
becomes useless for d�9, it is very powerful in the small
dimensional case. For instance, for C3�C3 systems, the
bound is equal to 1/3 as opposed to 2. This means that we
would have to apply the non-PPT version of the DPS method
up to N=6 in order to characterize likewise the set of sepa-
rable states.

IX. CONCLUSION

In this paper, we have studied the efficiency of the DPS
criterion for entanglement detection. First, we showed that it
is enough to subject the DPS states to some local noise in
order to deprive them from their entanglement properties. It
turned out that, while the minimal amount of noise necessary

to turn an arbitrary state in S̄N into a separable state decreases
as O�1 /N�, the corresponding amount of noise needed to

disentangle states in S̄p
N decreases at least as O�1 /N2�. We

used these expressions to estimate the time complexity of
both methods when applied to solve the weak membership
problem of separability, and concluded that the PPT condi-
tion is worth imposing provided that the optimal bounds on
the speed of convergence of the method based on plain BSEs
scale as O�d /N�, as our own bounds suggest. We therefore
hope to have shed some light on the question of how much
the DPS criterion owes its strength to the PPT condition.

We also derived bounds on the error we incur when we
substitute the set of separable operators by SN or Sp

N in linear
optimization problems, like the state estimation problem, the
problem of determining the maximal output purity of an ar-
bitrary quantum channel and the computation of the geomet-
ric entanglement. We performed numerical calculations of
the first of these problems to test the accuracy of our analyti-

cal bounds. In order to compare our uncertainty with the
actual solution of the problem, we developed a technique
that allows to prove in some cases the optimality of the DPS
relaxations. We observed that, although the bounds for the
non-PPT case seem to be very accurate, the bounds for the
PPT case are too big when compared with reality.

This disagreement between theory and practice may be
explained in part by the fact that our bounds do not take into
account the dimensionality of Alice’s system, a crucial fact
when dealing with the PPT constraint �54�. For all we know,
our PPT bounds could be exact in the limit dA→�. Our
intuition, nevertheless, is that better bounds could be found
by applying linear maps over the initial state �AB in order to
obtain a separable state �̃AB, as we did, but whose separable
decomposition would be given by a nonlinear map, unlike in
our examples. Actually, we already used that approach in
Sec. VIII to bound the entanglement of PPT states. That kind
of schemes, together with state estimation considerations,
may allow in the future to obtain such better bounds.
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APPENDIX A: MINIMIZATION OF EQ. (70)

Take N even. Then it can be checked that

Ãmn = �
0

1

xm+n �1 − x�d−1

�d − 1�!
dx ,

B̃mn = �
0

1

xm+n �1 − x�d−2

�d − 2�!
dx . �A1�

Combining this relation with Eq. �70�, it follows that

f�c�� =
1

d − 1

�0
1��n=0

N/2cnxn�2�1 − x��1 − x�d−2dx

�0
1��n=0

N/2cnxn�2�1 − x�d−2dx
. �A2�

That way, we can see the minimization of f�c�� as a mini-
mization over the set of all polynomials QN/2�x�=�cnxn of
degree N /2. Making the change of coordinates y=2x−1 we
find that the above minimization is equivalent to

min
QN/2

1

2�d − 1�
�−1

1 �QN/2�y��2�1 − y�d−1dy

�−1
1 �QN/2�y��2�1 − y�d−2dy

, �A3�

where QN/2�y� is an arbitrary polynomial of order N /2. This
problem can be solved by means of the Jacobi polynomials.

The Jacobi polynomials Pn
�	,
��y� are a complete set of

functions orthogonal upon integration in the interval �−1,1�
under the weight �1+y�
�1−y�	 �21�. Now, define the nor-
malized Jacobi polynomials pn�y� as

pn�y� 	
Pn

�d−2,0��y�
�Pn

�d−2,0��
, �A4�

with

3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

R

d

FIG. 3. Optimum bound on the global robustness of entangle-
ment R for generic states �dashed line�, as opposed to the upper
bound for PPT states �solid line�. In this plot, we assume that dA

=dB=d. Note that the new bound becomes trivial as soon as d�9.
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�Pn
�d−2,0�� =��

−1

1

�Pn
�d−2,0��y��2�1 − y�d−2dy . �A5�

It is clear that we can express any QN/2�y� as a linear
combination of normalized Jacobi polynomials of order less
or equal than N /2. That is,

QN/2�y� = �
n=0

N/2

enpn�y� , �A6�

for some coefficients en. Because of the orthogonality of the
pn’s, when we input this expression in the integral of the
denominator, we end up with

�
−1

1

�QN/2�y��2�1 − y�d−2dy = �
n

�en�2. �A7�

To calculate the integral on the numerator, we can make
use of the recurrence relation

�1 − y�pn�y� = 	npn�y� + 
npn+1�y� + �npn−1�y� , �A8�

that holds for some coefficients 	n, 
n, �n, with �0=0 and
�n+1=
n �21�. Invoking again the orthogonality of the Jacobi
polynomials, we have that

min
c�

f�c�� = min
�e��2=1

1

2�d − 1�
e�†C̃e� , �A9�

where C̃ is an �N /2+1�� �N /2+1� tridiagonal hermitian ma-
trix given by

C̃m,n = 	n, if m = n ,


n, if m = n + 1,

�n, if m = n − 1,

0 elsewhere. �A10�

Now we will proceed to diagonalize C̃.

Let � be an eigenvalue of C̃. This means that there exists
a vector 
vi�i=0

N/2+1 such that

�	n − ��vn + 
nvn+1 + �nvn−1 = 0, �A11�

with vN/2+1=0.
Choose a real number y0 and try the ansatz vn= pn�y0�.

From Eq. �A8�, it is clear that vn will satisfy Eq. �A11�,
provided that

� = 1 − y0,

pN/2+1�y0� = 0. �A12�

That is, any root of the polynomial pN/2+1�y� corresponds to

an eigenvalue of C̃.
But pN/2+1�y� has N /2+1 simple roots �21�, so all the

eigenvalues of C̃ are obtained using this strategy. It follows
that

min
c�

fN�c�� =
1

2�d − 1�
min
1 − x:PN/2+1

�d−2,0��x� = 0� .

�A13�

Let us remark that this is not the first time the zeros of the
Jacobi polynomials naturally appear in state estimation prob-
lems �55�.

The expression for the case of odd N can be derived in an
analogous way taking into account that, this time,

Ãmn = �
0

1

xm+nx�1 − x�d−1

�d − 1�!
dx ,

B̃mn = �
0

1

xm+nx�1 − x�d−2

�d − 2�!
dx . �A14�

APPENDIX B: OPTIMALITY CRITERION (RANK
LOOPS)

For some problems involving linear optimizations over
the set S, it may happen �see �43�� that a particular relaxation
of the problem FN turns out to coincide with F. In this ap-
pendix we will show how this optimality can sometimes be
detected.

We will take inspiration from optimality detection in other
hierarchies of semidefinite programs that appear in scientific
literature. Consider the hierarchy of semidefinite programs
used in �56� for the calculation of the maximal violation of
linear Bell inequalities. There the optimality of a relaxation
is detected when the rank of the matrix generated by the
computer is equal to that of some of its submatrices. Re-
markably, we can find similar results in the hierarchies of
semidefinite programs defined by Henrion and Lasserre to
minimize real polynomials in a bounded region of Rn �57�.

The corresponding result in this scenario is the following:
Lemma 11. Let �ABN be a BSE of �AB, PPT with respect

to the partition ABK �BN−K. If

rank��ABN� � max
rank��ABK�, rank��BN−K�� �B1�

then �AB is a separable operator.
Following �56�, we will say that �ABN presents a rank

loop when it fulfills condition �B1�.
The proof of Lemma 11 follows trivially from an old re-

sult by Horodecky et al. �58�:
Theorem 12. Let �AB be a PPT bipartite quantum state. If

rank��AB� � rank��A� , �B2�

then �AB is a separable state.
See �58� for proof.
The possibility of finding a rank loop in practice in cases

where the optimization over the set Sp
N coincides with the

optimization over S should not be surprising. Note that any
�finite-dimensional� separable state �AB can be expressed as
a finite convex combination of product states; i.e.,
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�AB = �
i=1

K

pi�i � ��i���i�, with pi � 0, ∀ i , �B3�

with ��i���i�� �� j��� j�, for i� j. Now, consider the PPT
Bose-symmetric extension of �AB given by

�ABN = �
i=1

K

pi�i � ��i���i��N, �B4�

Clearly, as N tends to infinity, the vectors 
��i��N�i be-
come orthogonal. It follows that K�	 limN→� rank��ABN� ex-
ists and is equal to �irank��i�. Being the rank a natural num-
ber, this implies that there is an M such that, for any N
�M, rank��ABM�=rank��ABN�=K�. That is, for any finite-

dimensional separable state there exists a PPT Bose-
symmetric extension with a rank loop.

Of course, the fact that for any separable state �AB there
exists a PPT BSE with a rank loop does not mean that our
computer is going to return such an extension. Note, though,
that, if at the same time we set our computer to the task of
finding PPT BSEs of �AB we also demand a rank minimiza-
tion of these matrices �i.e., we look for PPT BSEs with mini-
mal rank�, at some point we will find a rank loop.

Unfortunately, rank minimization of positive semidefinite
matrices with linear constraints is in general an NP problem
�14,59�. There are, however, heuristics �60� that have proven
to be very efficient for solving small-scale problems �that is,
for small d�.
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