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We calculate the quantum discord between two free modes of a scalar field, which start in a maximally
entangled state and then undergo a relative constant acceleration. In a regime where there is no distillable
entanglement due to the Unruh effect, we show that there is a finite amount of quantum discord, which is a
measure of purely quantum correlations in a state over and above quantum entanglement. Even in the limit of
infinite acceleration of the observer detecting one of the modes, we provide evidence for a nonzero amount of
purely quantum correlations. We discuss our result in the context of secure quantum communications involving
eavesdroppers in noninertial frames.
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I. INTRODUCTION

The theory of relativity and quantum theory, together with
information theory, may be said to form the cornerstones of
theoretical physics �1�. The last of these two are being, over
the last decade, amalgamated into the field of quantum infor-
mation science that seeks to compute and process informa-
tion limited by the laws of quantum mechanics �2�. The en-
terprise of incorporating the principles of the theory of
relativity into quantum information is, in comparison, na-
scent. Nonetheless, there have been several studies at the
intersection of relativity theory and quantum information sci-
ence, particularly, in the study of Bell’s inequalities �3–7�,
quantum entropy �8,9�, quantum entanglement �10–14�, tele-
portation �15�, and beyond �16�. There have also been studies
involving the entanglement in fermionic fields �17� and
continuous-variable systems in noninertial frames �18�.
These have shown that entanglement between some degrees
of freedom can be transferred to others and that the notion of
entanglement is observer dependant.

In addition to the investigations into fundamental nature
of quantum entanglement in a curved space time, there have
been several proposals for detecting relativistic effects in
laboratory systems like cavity QED �19�, ion traps �20�, and
atom dots in Bose-Einstein condensates �21�. These effects
of detecting acceleration radiation are a consequence of the
Unruh effect �22�. A result from quantum field theory, it
states that uniformly accelerated observers �that is, with con-
stant proper acceleration� in Minkowski space time associate
a thermal bath to the vacuum state of the inertial observers.
For the inertial observer, the Minkowski coordinates �T ,Z�
are appropriate, while for a uniformly accelerating observer,
Rindler coordinates �� ,�� are more apt. Minkowski space
time is invariant under the boosts, and this motivates the
hyperbolic coordinate transformations

T =
1

a
ea� sinh a�, Z =

1

a
ea� cosh a�, �Z� � T , �1�

T = −
1

a
ea� sinh a�, Z =

1

a
ea� cosh a�, �Z� � T . �2�

These two transformations lead to two sets of Rindler coor-
dinates called the right and left Rindler wedges, respectively,
which together form a complete set of solutions of the Klein-
Gordon equation in Minkowski space time.

The solutions of the Klein-Gordon equation in Minkowski
space time are related to those in the Rindler wedges via a
Bogoliubov transformation �22�. These transform the
vacuum of the inertial observer into a two-mode squeezed
state for the accelerating observer; the two modes residing in
the two Rindler wedges. If we probe only one of the wedges,
as we are constrained to due to causality, the other mode is
traced over, leaving us with a mixed state of free bosons at a
temperature proportional to the acceleration. Additionally, if
one starts with a pure entangled state of two free modes of a
scalar field shared between two observers Alice and Bob, and
one of them, say, Bob accelerates, the result is a mixed state,
whose entanglement, as measured by the logarithmic nega-
tivity, is degraded from the point of view of Rob �accelerat-
ing Bob� �13�, while there is no change from the point of
view of Alice.

Our endeavor in this paper will be to explore the above
phenomenon from the perspective of quantum discord
�23–25�. It is a measure of purely quantum correlations, and
we show that although the quantum discord suffers some
degradation, there is a finite amount of quantum discord be-
tween Alice and Rob at accelerations at which the distillable
entanglement has gone to zero. The use of quantum discord
is first motivated by the fact that noninertial observers inevi-
tably encounter mixed states, for which there is a lack of
universally accepted easily computable measures of en-
tanglement. Quantum discord is ideally suited for application
to mixed states. Second, quantum discord is a measure of
purely quantum correlations, over and above entanglement,
although for pure states, they coincide. Finally, the quantum
discord has been presented as a possible resource for certain
quantum advantages �26�, and the presence of nonzero
amounts of quantum discord as perceived by the nonintertial
observer might allow him to achieve nontrivial quantum ad-
vantage beyond a point where the distillable entanglement*a.datta@imperial.ac.uk

PHYSICAL REVIEW A 80, 052304 �2009�

1050-2947/2009/80�5�/052304�5� ©2009 The American Physical Society052304-1

http://dx.doi.org/10.1103/PhysRevA.80.052304


touches zero. We will also show that a “symmetrized” form
of quantum discord called the measurement induced distur-
bance �MID� measure �27,28� and defined as the difference
between the entropy of a quantum state and that obtained by
measuring both the subsystems in their reduced eigenbases
has a finite value at accelerations, at which the logarithmic
negativity is zero. This is comparatively easier to calculate
than the quantum discord and is an upper bound on it. What
both these measures however show is that starting with an
initially entangled state shared between Alice and Bob, there
will persist quantum correlations between them when Bob
accelerates, beyond accelerations at which the distillable en-
tanglement has fallen to zero.

Finally, we view our results in the context of a crypto-
graphic protocol called the private quantum channel proto-
col. It deals with the amount of encryption necessary to se-
curely transmit a quantum state via a channel susceptible to
an eavesdropper Eve. It is known that if parties involved in
the communication, Alice and Bob as well as Eve are in the
same inertial frame, two bits of classical resources are
needed to securely transmit a qubit state. If Eve resides in a
relatively accelerating noninertial frame, less than two bits
provide complete security, in fact just one bit in the limit of
infinite acceleration �29�. This is one of the fascinating rami-
fications of the Unruh effect in quantum cryptography, and
we will look at private quantum channel capacity from the
viewpoint of quantum discord.

II. MINKOWSKI TO RINDLER MODES

For concreteness, we start with the maximally entangled
state between Alice and Bob of two Minkowski modes s and
k

���M =
1
�2

��0s�M�0k�M + �1s�M�1k�M� . �3�

When Bob accelerates with respect to Alice with a constant
acceleration, the Minkowski vacuum can be expressed as a
two-mode squeezed state of the Rindler vacuum �22�

�0k�M =
1

cosh r
�
n=0

�

tanhn r�nk�1�nk�2, �4�

with

tanh r = e−��k�c/a 	 t , �5�

and �nk�1 and �nk�2 refer to the two modes, corresponding to
the left and right Rindler wedges. An excitation in the
Minkowski mode can be easily represented as

�1k�M =
1

cosh r
�
n=0

�

tanhn r�n + 1��n + 1�k�1�nk�2. �6�

As only one of the modes is accessible to Rob due to the
causality constraint, modes in one of the Rindler wedges �say
mode 2� need to be traced over. Using the above expressions,
the maximally entangled state in Eq. �3� is now transformed
into

	AR =
1

2 cosh2 r
�
n=0

�

tanhn r	n, �7�

where

	n = �0,n�
0,n� +
�n + 1

cosh r
�0,n�
1,n + 1� +

�n + 1

cosh r
�1,n + 1�
0,n�

+
n + 1

cosh2 r
�1,n + 1�
1,n + 1� ,

with �m ,n�	�ms�M�nk�1. The entanglement in the state �7�
shared by Alice and Rob has been calculated in Ref. �13�.
Our aim in this paper will be to calculate the quantum dis-
cord in this state.

III. QUANTUM DISCORD

Quantum discord aims at capturing all quantum correla-
tions in a state, including entanglement. The quantum mutual
information is generally taken to be the measure of total
correlations, classical and quantum, in a quantum state. For
two systems A and R, it is defined as

I�A:R� = H�A� + H�R� − H�A,R� , �8�

where H� · � stands for the von Neumann entropy
H�	�	−Tr�	 log 	�. In our paper, all logarithms are taken to
base 2. For a classical probability distribution, Bayes’ rule
leads to an equivalent definition of the mutual information as
I�A :R�=H�R�−H�R �A�, where the conditional entropy
H�R �A� is an average of the Shannon entropies of R, condi-
tioned on the alternatives of A. It captures the ignorance in R
once the state of A has been determined. For a quantum
system, this depends on the measurements that are made on
A. If we restrict to projective measurements described by a
complete set of projectors �
i�, corresponding to the mea-
surement outcome i, the state of R after the measurement is
given by

	R�i = TrA�
i	AR
i�/pi, pi = TrA,R�
i	AR
i� . �9�

A quantum analog of the conditional entropy can then be

defined as H̃�
i�
�R �A�	�ipiH�	R�i�, and an alternative ver-

sion of the quantum mutual information can now be defined
as

J�
i�
�A:R� = H�R� − H̃�
i�

�R�A� . �10�

The above quantity depends on the chosen set of
measurements �
i�. To capture all the classical
correlations present in 	AR, we maximize J�
i�

�A :R�
over all �
i�, arriving at a measurement-independent quan-

tity J�A :R�=max�
i�
�H�R�− H̃�
i�

�R �A��	H�R�− H̃�R �A�,
where H̃�R �A�=min�
i�

H̃�
i�
�R �A�. The quantum discord is

finally defined as

D�A:R� = I�A:R� − J�A:R�

= H�A� − H�A:R� + min
�
i�

H̃�
i�
�R�A� . �11�
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As a first step towards the calculation of quantum discord,
we begin by rewriting the state 	AR in a more conducive
form, as

	AR =
1 − t2

2
��0�
0� � M00 + �1�
1� � M11

+ �0�
1� � M01 + �1�
0� � M10� , �12�

where

M00 = �
n=0

�

t2n�n�
n� ,

M11 = �1 − t2��
n=0

�

�n + 1�t2n�n + 1�
n + 1� ,

M01 = �1 − t2�
n=0

�

�n + 1t2n�n�
n + 1� ,

M10 = M01
† . �13�

This form of the state suggests a natural bipartite split across
which to calculate the quantum discord. We have, in effect, a
2�� dimensional system, and we will make our measure-
ment on the two-dimensional subsystem, which in our case,
will be Alice’s side. It is now easy to obtain the reduced state
of the measured subsystem as

	A = TrR�	AR� =
1

2

1 0

0 1
� , �14�

whereby H�A�=1. The spectrum of the complete state 	AR is
given by

��	AR� = �1 − t2

2
t2n�1 + �n + 1��1 − t2���

n=0

�

, �15�

whereby

H�A:R� = −
1 − t2

2 �
n=0

�

t2n�1 + �n + 1��1 − t2��

�log�1 − t2

2
t2n�1 + �n + 1��1 − t2��� . �16�

The evaluation of the quantum conditional entropy requires a
minimization over all one-qubit projective measurements,
which are of the form


� =
I1 � x . �

2
�17�

with x .x=x1
2+x2

2+x3
2=1, and I1 is the one-qubit 2�2 identity

matrix. The postmeasurement state is then given by

	R�� =
1 − t2

4p�

��1 � x3�M00 + �1 
 x3�M11

� �x1 + ix2�M10 � �x1 − ix2�M01� , �18�

with outcome probabilities

p� =
1 − t2

4
��1 � x3�Tr�M00� + �1 
 x3�Tr�M11�� =

1

2
.

The density matrices 	R�� are tridiagonal, whose eigenvalues
can be obtained easily numerically, in particular, by using the
parametrization x1=sin � cos �, x2=sin � sin �, and
x3=cos �. It is immediately realized that the eigenvalues of
these states that are used to calculate the conditional quan-
tum entropy are independent of �. This is because the initial
state in Eq. �12� is azimuthally invariant, and the final state
whose spectrum is to be evaluated reduces to

	R�� =
1 − t2

2
��1 � cos ��M00

+ �1 
 cos ��M11 � sin �M10 � sin �M01� , �19�

having spectra ��. Then, following Eq. �11�, the expression
for quantum discord in the state 	AR, as a function of the
parameter �, is given by

D� = 1 +
1 − t2

2 �
n=0

�

t2n�1 + �n + 1��1 − t2��

�log�1 − t2

2
t2n�1 + �n + 1��1 − t2���

−
1

2 �
i=�

Tr��i log �i� , �20�

and is plotted in Fig. 1 as a function of � and t. Realizing that
the minimum is obtained for �=� /2, we obtained the final
value of the quantum discord for the state 	AR as
D=D�=�/2. This value is plotted in Fig. 2. This is the main
result of our paper. To put our result in perspective, we also
plot the logarithmic negativity of the same state �13�. This
shows that in the range of accelerations, where the state has
no distillable entanglement, as shown by the vanishing loga-

0.0

0.5

1.0

t

0

1

2

3Θ

0.7

0.8

0.9

1.0

DΘ

FIG. 1. �Color online� The plot of the quantum discord D� �Eq.
�20��, as a function of acceleration parameter t=tanh r and �. In
black dots are shown the minima for different values of t, which can
be seen to be attained for �=� /2. They correspond to the solid
green line in Fig. 2.
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rithmic negativity, the state indeed has finite quantum dis-
cord.

IV. MID MEASURE

In the calculation of quantum discord, as per Eq. �11�, one
maximizes over one-dimensional projective measurements
on one of the subsystems, in our case Alice. For the MID
measure, one performs measurements on both the sub-
systems, with the measurements being given by projectors
onto the eigenvectors of the reduced subsystems. This can be
thought of as a bidirectional form of discord, which actually
depends on the party making the measurement �30�. The
MID measure of quantum correlations for a quantum state
	AR is given by �27�

M�	AR� ª I�	AR� − I„P�	AR�… , �21�

where

P�	AR� ª �
i=1

M

�
j=1

N

�
i
A

� 
 j
R�	AR�
i

A
� 
 j

R� . �22�

Here �
i
A� , �
 j

R� denote rank one projections onto the eigen-
bases of 	A and 	R, respectively. I��� is the quantum mutual
information, which is considered to the measure of total,
classical and quantum, correlations in the quantum state �.
Since no optimizations are involved in this measure, it is
much easier to calculate in practice than the quantum dis-
cord. The measurement induced by the spectral resolution
leaves the entropy of the reduced states invariant and is, in a
certain sense, the least disturbing. Actually, this choice of
measurement even leaves the reduced states invariant �27�.
For pure states, both the quantum discord and the MID mea-
sure reduce to the von Neumann entropy of the reduced den-
sity matrix, which is a measure of bipartite entanglement.

Starting from the expression of 	AR in Eq. �12�, we have

	R = TrA�	AR� =
1 − t2

2
�M00 + M11� , �23�

which, being diagonal, leads to

�
 j
R� = �Ej� where �Ej�kl = �kj�lj, j,k,l = 1, . . . ,� .

From Eq. �14�,

�
 j
A� = �Ej� where �Ej�kl = �kj�lj, j,k,l = 1,2.

Given these, P�	AR�=diag�	AR� and,

H„P�	AR�… = −
1 − t2

2 �
n=0

�

t2n log
1 − t2

2
t2n� −

�1 − t2�2

2

� �
n=0

�

�n + 1�t2n log��n + 1�
�1 − t2�2

2
t2n�

= 1 −
3t2

1 − t2 log�t� −
3

2
log�1 − t2� −

�1 − t2�2

2
S ,

�24�

where S=�n=0
� t2n�n+1�log�n+1�. The MID measure can

now be calculated as

M�	AR� = H„P�	AR�… − H�	AR� , �25�

the latter of which can be obtained from Eq. �15�. A plot of
this measure is shown in Fig. 2, as the blue dotted line.

V. CONCLUDING DISCUSSIONS

We have shown the existence of purely quantum correla-
tions between two initially entangled free modes of a scalar
field, when the party detecting one of the modes undergoes a
constant acceleration, while the other is inertial. In this re-
gime, there is no distillable entanglement between them as a
consequence of the Unruh effect. The Unruh effect has inter-
esting consequences in quantum information processing and
cryptography. For instance, it is known that as a consequence
of this effect, asymptotically half the shared amount of clas-
sical resources are necessary to securely transmit a quantum
state from Alice to Bob when Eve lives in a uniformly ac-
celerating frame, as opposed to an inertial one �29�. The
primary reason is that states appear more mixed to the accel-
erating Eve, making them less distinguishable, which is the
intent of secure transmission. Here we show that there is a
finite amount of quantum discord in a bipartite state, where
one of the parties undergoes uniform acceleration, in the
limit of infinite acceleration. As quantum discord captures
nonclassical correlations beyond entanglement, it might be
possible to use these correlations to attain nontrivial quantum
advantage. One such scenario might be the capacity of a
private quantum channel, where the eavesdropper Eve is uni-
formly accelerated with respect to Alice and Bob. It is known
that the capacity of the so-called Unruh channel is equal to
the entanglement-assisted quantum capacity for the channel
to Eve’s environment, which can be presented in terms of
polylogarithmic functions and their derivatives �31�. This is
valid for all accelerations, including at the limit of infinite

0.0 0.5 1.0 1.5 2.0 2.5
r

0.2

0.4

0.6

0.8

1.0
N,D,M

FIG. 2. �Color online� The solid green line is the quantum dis-
cord in the state 	AR for a measurement made on Alice’s side. The
red dashed line is the logarithmic negativity in the same state, as in
Ref. �13�. The blue dotted line is the MID measure for the same
state 	AR.
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acceleration. By that point, however, there is no distillable
entanglement left, as shown in Fig. 2. We have here the
evidence for the presence of purely quantum correlations in
the form of quantum discord that might explain the resource
behind this advantage provided by the Unruh channel.

Finally, it is intriguing to note that this study about quan-
tum discord can raise interesting questions about the en-
tanglement of these states. We mention one in brief. The
entanglement of formation can, in principle, be larger than
the quantum discord for quantum states �32�. As the en-
tanglement cost is the regularized version of the entangle-
ment of formation in the limit of a large number of copies,

this could imply that although the accelerated state may as-
ymptotically have no distillable entanglement, it might still
have a nonzero entanglement cost, by virtue of it having a
nonzero quantum discord. Further investigations are neces-
sary to answer these questions in a more complete manner.
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