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Coin and scattering are the two major formulations for discrete quantum walks models, each believed to
have its own advantages in different applications. Although they are related in some cases, it was an open
question their equivalence in arbitrary topologies. Here we present a general construction for the two models
for any graph and also for position dependent transition amplitudes. We then prove constructively their unitary
equivalence. Defining appropriate projector operators, we moreover show how to obtain the probabilities for
one model from the evolution of the other.
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I. INTRODUCTION

In essence, there are three different possible implementa-
tions for quantum walks �QW�, all taking place in discrete
spaces �graphs�. Two are quantum analogs of Markov chains
�1,2�: generalizations of diffusionlike dynamics, where time
is continuous �CTQW� �3�, and discrete time unitary maps
�1�, known as coin QW �CQW�. Recently, it has been shown
to exist a direct relation between these two cases �4,5�. The
third �SQW�, also a discrete time formulation, is physically
appealing since it is based on the idea of scattering in mul-
tiport interferometers �6,7�.

Due to the importance of Markov chains in random algo-
rithms, CQW and CTQW are extensively used in their quan-
tum versions �8�, often being more efficient because the ex-
ponentially faster hitting times of QW �3,9,10�. Relevant is
also the finding that one can implement universal quantum
computation through scattering processes in a CTQW model
�11�. Regarding applications for SQW, they seem to be par-
ticularly suitable �12� to solve searching problems �13�.

It is generally believed that CQW, CTQW, and SQW have
distinct advantages in different contexts �7,14,15�. For in-
stance, universal port gates in quantum computation such as
Hadamard’s �16� are easier to implemented with CQW, the
most common formulation in the mathematical and computer
science literature. On the other hand, the construction of
SQW in graphs of arbitrary topologies is more direct, and
thus conceivably simpler to realize experimentally. Further-
more, since it is based on an scattering approach, analytical
techniques are far more developed for SQW than for coin
models �14�.

Hence; �i� to formulate in a constructive way both the
CQW and SQW for graphs of any topology �17� and for
position dependent quantum amplitudes �18�; �ii� to prove
their unitary equivalence in the general case �previously es-
tablished only for particular situations �6,19��; and finally
�iii� to show how to obtain the probabilities for one model
from the other; are fundamental because the following. First,
a constructive rather than an abstract formulation makes
easier concrete implementations of such systems, even for
arbitrary topologies �e.g., by means of Bose-Einstein �BE�

condensates in optical lattices �20��. Second, such results
would bridge the gap between two apparent distinct quanti-
zation schemes for a same class of systems. Finally, they also
would show that the usages for one model are equally pos-
sible for the other. The points �i�–�iii� are then the goals of
the present paper.

II. GRAPH STRUCTURES AND BASIC DEFINITIONS

We assume an undirected simple arbitrary graph �17�,
whose nodes are labeled in Z. Its topology is entirely deter-
mined by the sets V j = �j1 , j2 , . . . , jNj

�, which represent the Nj

nodes connected to the node j. Thus, if ji belongs to V j, then
there exists exactly one edge between j and ji. Also, to any
node j we associate the set of integers � j = �1,2 , . . . ,Nj�.
Each element � of � j corresponds to a different edge at-
tached to j, in a one-to-one relation. Note that if jr and js
have a common edge, then there are two integers numbers,
�r and �s, associated to such edge, one due to jr and other to
js.

A given mapping �function� on a graph is said locally
adaptable if: �i� it can be constructed for any graph node j;
�ii� for each j, it depends only on the edge structure of the
nodes in V j; and �iii� it is always well-defined regardless the
number of elements in �Vj

. This is an important concept
because if one can establish time evolution relaying only on
locally adaptable mappings, then the resulting dynamics is
valid for any graph topology.

So, consider two locally adaptable functions that direct
reflect the specific structure of a given graph. The first,
e :� j→V j, associates each � from � j to a single ji from V j,
such that e�� ; j� gives the node connected to j through the
edge labeled � with respect to j. For the particular example
schematically depicted in Fig. 1�a�, we have V j
= �j1 , j2 , j3 , j4� and � j = �1,2 ,3 ,4�, thus e��1 ; j�= j1, e��2 ; j�
= j2, e��3 ; j�= j3, and e��4 ; j�= j4, where each �i assumes one
of the values in � j. The second, � :� j→�Vj

, maps each �i

from � j to the single element � of �e��i;j�
representing the

edge joining j and e��i ; j�. Again in Fig. 1�a� we have
���1 ; j�=�k, ���2 ; j�=�l, ���3 ; j�=�m, and ���4 ; j�=�n.
Here �k belongs to � j1

= �1,2�, �l to � j2
= �1,2 ,3�, and so

forth. Note that in general �(��� ; j� ;e�� ; j�)=�.
The above mappings are strictly related to the graph spe-

cific topology. However, more general locally adaptable*luz@fisica.ufpr.br
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functions can also be defined. The next three will
be very useful. � :� j→�Vj

extends � since it associates
each � from � j to an unique arbitrary element of �e��;j�, e.g.,
in the particular case of Fig. 1�b�, we have ���1 ; j�=�h,
where �h is in � j1

= �1,2�. Although such function is
locally adaptable, for an appropriate and consistent latter
construction of the quantum evolution along the whole
graph, we consider an extra restriction for �. From its very
definition, for any ��� j we have that �(��� ; j� ;e�� ; j�) is
also an element of � j. Then, we impose additionally
that �(���r ; j� ;e��r ; j�)��(���s ; j� ;e��s ; j�) if �r��s

��r ;�s in � j�, i.e., the set ��(��� ; j� ;e�� ; j�)�=� j.
Observe that this restriction can always be fullfiled
whatever the graph topology. For instance, in Fig. 1�b�
we have ����n ; j4� ,���k ; j1� ,���l ; j2� ,���m ; j3��
= ��1 ,�2 ,�3 ,�4�=� j. Naturally � induces two other locally
adaptable functions. Indeed, suppose �r running over � j, so
� j = ���i , ji��= �(���r ; j� ,e��r ; j�)� ��i�� ji

and ji�V j,
�i=1,2 , . . . ,Nj�� is a set where to each pair �i , ji corresponds
a distinct ��� j. We have thus � :� j→� j and a :� j→ j,
such that ���i ; ji�=� and a��i ; ji�= j. By construction

j = a„���; j�;e��; j�… = e„���; j�;a��; j�… ,

� = �„���; j�;e��; j�… = �„���; j�;a��; j�… . �1�

III. THE TWO DISCRETE TIME FORMULATIONS

For the coin version, the states are defined on the graph
nodes j �21�. Thus, the �’s labeling the edges attached to j
can be associated to the quantum numbers representing the
different “outgoing” directions leaving j, as schematically
shown in Fig. 2�a�. Hence, we have as the base states
��j ,��c�, where for each j, �=1,2 , . . . ,Nj and
	�� , j� � j� ,���c=� j�j������, which spans the Hilbert space
H=L2�Z�ZNZ

�.
To establish the system dynamics, we first consider the

shift operator S �and its adjoint S† �22��, such that

S�j,��c = �e��; j�,���; j��c,

S†�j,��c = �a��; j�,���; j��c. �2�

From Eq. �1�, it follows that S†S=SS†= I in H. Then, for
each j, let C�j� to be a “coin” operator, represented by
a Nj �Nj unitary matrix, whose action over a basis state �of
quantum number j� is C�j��j ,��c=
��=1

Nj c���
�j� �j ,���c. Finally,

we set the unitary one step time evolution as �23�

Uc = S

j



�=1

Nj

C�j��j,��	�, j�c, �3�

which is valid for any topology �encoded in the functions e
and �� and defines a very general time evolution for the
problem through the functions �, � and a.

For the scattering version, note first that even for a same
graph, the � labeling �24� for the scattering �6,7� can be
completely distinct than that for the coin formulation �see
Figs. 2�a� and 2�b��. Thus, in principle the functions e and �
can assume different values in the two cases �and they will
be distinguished when necessary�.
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FIG. 1. Examples of locally adaptable mappings. �a� Mappings
which are directly associated to the graph topology. �b� Arbitrary
mappings, used to define the CQW evolution.
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FIG. 2. In the coin �a� and scattering �b� QW formulations, � is
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relabeling for scattering states, Eq. �7�.
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Now, two quantum states are defined along each edge,
e.g., for the edge connecting the nodes j and jm in Fig. 2�b�,
we denote the state “incoming” to the node j �jm� by �j ,�s�s
��jm ,�i�s�, which can be written also as �e��i ; jm� ,���i ; jm��s
��e��s ; j� ,���s ; j��s�. Actually, for any edge, if one state is
�j ,��s, the other is given by �e�� ; j� ,��� ; j��s. So, the basis
set is ��j ,���s, spanning the Hilbert space H=L2�Z�ZNZ

�, as
in the coin case.

For the dynamics, we set Us=R+T �23�, where the action
of the operators R and T are given by �22�

R�j,��s = r�,�
�j� �e��; j�,���; j��s,

T�j,��s = 

	��j,	��

t	,�
�j� �e�	; j�,��	; j��s,

R†�j,��s = r���;j�,���;j�
�e��;j��� �e��; j�,���; j��s,

T†�j,��s = 

	��e��;j�,	����;j�

t���;j�,	
�e��;j����e��; j�,	�s. �4�

We also define Nj �Nj scattering matrices 
�j�, such that

��

�j� =r�,�
�j� and 
���

�j� = t��,�
�j� �for both ���� in � j�. If for all j

we impose that 
�j� is unitary, then the coefficients r and t
satisfy the usual relations in scattering theory �25,26�. So, Us
is unitary.

IV. OBTAINING THE PROBABILITIES

For QW, stochasticity—in the classical sense—comes into
play only through measurements, when one calculates the
probabilities for the walker to be found in different locations
along the graph �27�. Suppose we shall know at time n what
is the probability pj�n� to be in the position state j �which
means a node �edge� in the coin �scattering� model�, regard-
less the value of the coin �direction� quantum number �. So,
we define the scattering and coin projector operators as

Ps
�j,�� = �j,��	�, j�s + �e��; j�,���; j��	���; j�,e��; j��s,

Pc
�j� = 


�=1

Nj

�j,��	�, j�c. �5�

The desired probability is thus the expected value

p�j��n� = 	��n��P���n��, ���n�� = Un���0�� �6�

for P one of the expressions in Eq. �5�.

V. PROVING THE EQUIVALENCE OF THE TWO
FORMULATIONS

For so, three steps are necessary: �a� to establish a corre-
spondence between the different walks states; �b� to properly
associate their time evolutions; and �c� to construct projector
operators to obtain the probabilities of one in terms of the
other.

Regarding �a�, note that we always can define a locally
adaptable function � :� j→� j, which for each node j, maps

the quantum number � associated to a specific edge in the
scattering formulation to the quantum number �� labeling
the same edge, but in the coin formulation. For example, for
the situation in Fig. 2, we have ���k ; j�=�1, ���l ; j�=�2,
���r ; j�=�3, and ���s ; j�=�4. Also, the actual �’s values are
not relevant. They are just a way to label nodes and edges
states. Thus, without loss of generality, for any j we always
can rename one of the model states by �j ,��⇒ �j ,�� ; j�� for
 a bijection � j→� j. Choosing to retag the scattering case,
we consider the following particular :

��; j� = ���c„���; j�; j…;ec„���; j�; j…� , �7�

whose ”action” is pictorially represented in Fig. 2�c�.
Then, using this new notation for the scattering states, one

has the isomorphic unitary operator E :H→H �6�

E�j,��s = �j,��c �8�

associating the scattering state � incoming to j to the coin
state � outgoing from j �see Fig. 2�c��.

For point �b�, from the explicit form of Uc and Us, one
finds that by setting one of the two akin relations


�b�a

�j� = c�c„���b;j�;a��b;j�…�a

�j� ,

c�b�a

�j� = 
�„�c��b;j�;ec��b;j�…�a

�j� , �9�

then, in both models the time evolution transition probability
amplitudes are exactly the same. In this case, the resulting
dynamics are unitary equivalent since

Us = E†UcE . �10�

Finally, for �c� even if the two formulations are unitarily
related, the resulting probabilities—through projections—are
not �6�. This is so because each description assumes distinct
spatial configurations, nodes or edges, to characterize the
system, thus not leading to same probabilities. In fact, in
each edge the two scattering states are mapped by E to coin
states in different nodes. Thus, the probability, Eq. �6�, to be
in a unique node is not equal to the probability to be in a
unique edge.

However, there is a very direct way to obtain the walk
probabilities for the coin �scattering� model from the scatter-
ing �coin� model. We just define

Ps
�j��c = E†Pc

�j�E, Pc
�j��s = EPs

�j�E†. �11�

Then, suppose we construct a SQW with arbitrary r’s and t’s.
By using Ps

�j,�� of Eq. �5� into Eq. �6�, we get the scattering
walker probabilities at the step n. But now if we use Ps

�j� �c for
this system, the resulting probabilities are exactly those from
a coin model, for which the coin matrices elements are given
by such r’s and t’s values according to the correspondence in
Eqs. �9�. The other way around, to get the scattering model
results from the CQW, follows in the same fashion.

VI. REMARKS AND CONCLUSION

Although there are some few discussions in the literature
on how to formulate discrete random walks in general terms
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�14,17,19�, here we have developed a explicit procedure that
allows one to write, in a constructive way, the time evolution
operator directly from the system topology and local dynam-
ics. It also includes the case of position dependent quantum
amplitudes �through the C�j�’s and 
�j�’s�. Moreover, in the
CQW case, it is not necessary all the matrices C�j� to have
the dimensions equal to the largest coordination number of
the graph, as in certain formulations �14�.

In the present framework, a regular graph can be
defined in terms of the � j’s sizes �e.g., all equal to N�
and the features of e, � and � �e.g., independent on the j’s
and having specific patterns along the graph�. For instance,
for all nodes with the same number of edges, we know that
for the coin, H can be written as the direct product of
two subspaces, thus �j ,��→ ��� � �j�. So, we naturally find

from Eq. �3� that 
 j
�=1
Nj C�j��j ,��	� , j�=
 jC

�j� � �j�	j�, as in
�28�.

Usually, it is believed that analytical methods are easier to
implement for the SQW than for CQW �14,29�. Since in fact
they can be mapped each other, the existing methods for the
former should be extendable to the latter. Our constructive
approach may serve as a guide to implement such extensions
�30�.

Lastly, by using the cross operators in Eq. �11�, we have
been able to calculate—for different examples—the prob-
abilities for SQW and CQW from a single implementation.
This will be communicated elsewhere �30�.
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