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We present the theory of how to achieve phase measurements with the minimum possible variance in ways
that are readily implementable with current experimental techniques. Measurements whose statistics have
high-frequency fringes, such as those obtained from maximally path-entangled (|[N,0)+[0,N))/ \2 (“NOON”)
states, have commensurately high information yield (as quantified by the Fisher information). However, this

information is also highly ambiguous because it does not distinguish between phases at the same point on
different fringes. We provide schemes to eliminate this phase ambiguity in a highly efficient way, providing
phase estimates with uncertainty that is within a small constant factor of the Heisenberg limit, the minimum
allowed by the laws of quantum mechanics. These techniques apply to NOON state and multipass interferom-
etry, as well as phase measurements in quantum computing. We have reported the experimental implementation
of some of these schemes with multipass interferometry elsewhere. Here, we present the theoretical foundation
and also present some additional experimental results. There are three key innovations to the theory in this
paper. First, we examine the intrinsic phase properties of the sequence of states (in multiple time modes) via
the equivalent two-mode state. Second, we identify the key feature of the equivalent state that enables the
optimal scaling of the intrinsic phase uncertainty to be obtained. This enables us to identify appropriate
combinations of states to use. The remaining difficulty is that the ideal phase measurements to achieve this
intrinsic phase uncertainty are often not physically realizable. The third innovation is to solve this problem by
using realizable measurements that closely approximate the optimal measurements, enabling the optimal scal-

ing to be preserved. We consider both adaptive and nonadaptive measurement schemes.
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I. INTRODUCTION

The measurement of phase is an important task in both
metrology and quantum computing. The measurement of op-
tical phase is the basis of much precision measurement,
whereas the measurement of the phase encoded in a register
of qubits is vital to a broad range of quantum algorithms
[1-3]. In optical phase measurement the precision is usually
bound by the standard quantum limit (SQL), where the phase
uncertainty is @(N~'?) in the number of resources N [4]. On
the other hand, the fundamental limit imposed by quantum
mechanics is @(N~") [5,6], often called the Heisenberg limit
(HL). There have been many proposals to approach this
limit. Reference [5] proposed using squeezed states in one
port of an interferometer, as well as homodyne measure-
ments, to beat the SQL. Measurements of this type have been
experimentally demonstrated [7-9]. Another type of nonclas-
sical state that has been proposed [10,11] and experimentally
demonstrated [12-22] is the maximally path-entangled
(|N,0)+]|0,N))/\2 (NOON) states. These provide the maxi-
mum phase resolution for a given photon number, although
they have the problem that they do not directly provide a
unique estimate of the phase.

In quantum computing, the phase, corresponding to the
eigenvalue of an operator, can be estimated using Kitaev’s
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algorithm [1], or the quantum phase estimation algorithm
(QPEA) [2,3]. The QPEA is based on applying the inverse
quantum Fourier transform (QFT) [23,24]. The inverse QFT,
followed by a computational basis measurement, can be ap-
plied using just local measurements and control, without re-
quiring entangling gates [25]. That simplification allows the
phase measurement to be achieved optically, using only lin-
ear optics, photodetectors, and electronic feedback onto
phase modulators [26]. The optical implementation could use
a succession of NOON states or a succession of multiple
passes of single photons (as was used in Ref. [26]). Using
NOON states, or multiple passes, results in high phase sen-
sitivity, but an ambiguous phase estimate. The role of the
QPEA is to resolve this ambiguity.

The minimum uncertainty for measurements of a phase
shift is @(N~!) in terms of the total number of applications of
that phase shift, N, regardless of whether those applications
are applied in series or in parallel [27]. In quantum optical
interferometry, N is the maximum total number of passes of
photons through the phase shift. In this formalism, a single
pass of an N-photon NOON state and N passes of a single
photon are regarded as the same number of resources. This is
convenient because it enables physical systems that give
mathematically identical results to be treated within a unified
mathematical formalism. We emphasize that, in practice, al-
though these resources are mathematically identical, they are
not physically identical and will be useful in different situa-
tions. In particular, the resources for NOON states are used
in parallel, which means that they are used within a short
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space of time. This is needed for measurements where there
is a stringent time limit to the measurement, for example,
due to fluctuation of the phase to be measured or decoher-
ence of the physical system. In contrast, N passes of a single
photon are using resources in series; i.e., the applications of
the phase shift are sequential. This is useful for measure-
ments of a fixed phase, where there is no intrinsic time limit,
but it is required to measure the phase with minimum energy
passing through the sample.

In this paper we examine the general problem of how to
obtain the most accurate possible phase estimates, by effi-
ciently eliminating ambiguities. This theory applies to gen-
eral phase measurements in optics (with NOON states or
multiple passes) and quantum computation, although for
clarity we will primarily present the discussion in terms of
NOON states. The problem with simply using the QPEA to
eliminate phase ambiguities is that it produces a probability
distribution with large tails, which means that the standard
deviation is @(N~"?), well short of the Heisenberg limit of
O(N~'). A method of overcoming this problem was presented
in Ref. [26], which used an adaptive scheme to achieve
O(N~') scaling. This work was further expanded in Ref.
[28], which proved analytically that scaling at the Heisen-
berg limit can be achieved without needing adaptive mea-
surements. References [26,28] demonstrated these schemes
experimentally, using multiple passes of single photons. An
alternative scheme based on adapting the size of the NOON
states was proposed in Ref. [29]. A method of eliminating
phase ambiguities in the context of quantum metrology was
provided in Ref. [30].

Here, we present the theoretical foundations for Refs.
[26,28], with further analytical and numerical results and
some additional experimental data. First, Sec. II explains the
limit to the accuracy of phase measurement in more detail.
Next, in Sec. III the theoretical background to adaptive in-
terferometric measurements and the relation to the QPEA are
presented. The equivalent two-mode states when using re-
peated measurements are presented in Sec. IV, and it is
shown that (with one exception) they have canonical phase
variance scaling as the Heisenberg limit. The adaptive mea-
surements are presented in Sec. V, where the analytical re-
sults and numerical results for large N are given. In Sec. VI
it is shown that increasing the number of repetitions leads to
a phase uncertainty that still scales as the SQL, rather than
the Heisenberg limit. In Sec. VII the theory for some simpli-
fications to the adaptive scheme is presented. These simpli-
fications include a hybrid scheme as well as a nonadaptive
scheme. The approach of adapting the size of the NOON
state [29] is given in Sec. VIIIL. Finally, we present the con-
clusions and a table summarizing the results in Sec. IX.

II. LIMITS TO PHASE MEASUREMENT

The limit to the accuracy of phase measurements can be
derived in a simple way from the uncertainty principle for

phase [31],
AdAn=1/2, (2.1)

where the uncertainties are quantified by the square root of
the variance. For a single-mode optical field, n is the photon
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number and the phase shift is given by the unitary exp(ifi¢),
with 7 as the number operator. More generally, one can con-
sider a phase shift with 72 being any operator with non-
negative integer eigenvalues. The same uncertainty relation
will hold regardless of the particular physical realization.
The uncertainty principle (2.1) is exact if the variance that
is used for the phase is V;;=u=2—1, where u= [{¢'?)|, intro-
duced by Holevo [32]. The Holevo variance coincides with
the usual variance for a narrow distribution peaked well

away from the phase cut. Here, ¢ is an unbiased estimator of
the phase, in the sense that e’?(¢'?). Note that the hat no-
tation is used to indicate a phase estimator, rather than a
phase operator. If one has a biased phase estimator, one must
use instead w={(cos(p—)).

If n is upper bounded by N, then the uncertainty in n can
never exceed N/2. This implies that the phase uncertainty is
lower bounded as

Ad=1N. (2.2)

Because this lower bound to the phase uncertainty may be
derived from the uncertainty principle for phase, it is usually
called the Heisenberg limit. This derivation was presented in
terms of the standard deviation for the phase and the mean
photon number in Refs. [33,34]. As explained in [33,34], that
argument is not rigorous because the uncertainty relation
(2.1) is not exact for the usual standard deviation, and the
uncertainty in the photon number is not upper bounded by
the mean photon number. The above derivation makes the
Heisenberg limit rigorous by using the square root of the
Holevo variance to obtain an exact uncertainty principle and
using an upper limit on 7.

The lower bound of 1/N on the phase uncertainty is not
tight. The exact achievable lower bound, with optimal mea-
surements, is

— ™
A¢HL—\VH—tan<N+2) N (2.3)
The asymptotic result was found in the single-mode case in
Ref. [35], and the exact result was found in Ref. [36]. This
bound in the case of two-mode interferometry, where N is the
total number of photons, was found in Refs. [37,38]. For
two-mode interferometry, n is the number of photons passing
through the phase shift. An alternative scenario for phase
measurement was considered in Ref. [27]. There, it was
shown that the same limit holds in a general situation involv-
ing N applications of a phase shift to qubits, interspersed
with unitaries.

A unified way of defining N that is independent of the
physical implementation is as follows. The complete mea-
surement scheme, including any feedback, may be repre-
sented by preparation of a pure quantum state that depends
on a parameter ¢, followed by measurement. Denote the
family of such states, parametrized by ¢, as |(¢)). The
Fourier transform of this family of states may be taken inde-

pendently of the basis and can be denoted as |¢(s)). Then N
can be defined as the minimum size of the interval that sup-

ports |s)). See Appendix C for detailed explanations.
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Because of the way the Heisenberg limit is derived, there
are a number of conditions on its validity:

(1) The error is quantified by the square root of the vari-
ance of the difference between the phase estimate and the
system phase.

(2) N is the total number of applications of the phase shift
(the total number of photon passes in quantum optics).

(3) There is no a priori information about the system
phase; the prior probability distribution is flat on the interval
[0,2).

(4) The variance is evaluated by averaging over all pos-
sible system phases, using this flat distribution.

Essentially these conditions require the measurement to
be a self-contained measurement of a completely unknown
phase. As these are the conditions on the Heisenberg limit,
methods to achieve the Heisenberg limit or scaling as the
Heisenberg limit, should satisfy these conditions. For the
measurement schemes that we describe here we are careful
to ensure that all of these conditions are satisfied. It is pos-
sible to derive a similar limit on the measurement accuracy
in the phase sensing regime, where it is required to measure
small phase shifts [12]. That limit is also called the Heisen-
berg limit, although that definition of the Heisenberg limit
differs from the definition used here.

The condition that the error is quantified by the square
root of the variance is the most stringent condition on the
error because the standard deviation can be used to place
bounds on all other commonly used measures of the uncer-
tainty [39]. On the other hand, it is possible for other mea-
sures of uncertainty to give unrealistically small values that
are not meaningful. In particular, the reciprocal-peak likeli-
hood can give an uncertainty scaling as 1/#” in the mean
photon number [40]. That small uncertainty is not meaning-
ful because it does not translate into a correspondingly small
standard deviation [33].

For most other measures of uncertainty, if they are small
then (even if the variance for a single measurement is large)
results from separate measurements can be combined to
yield an overall estimate with small variance. The problem is
that this does not necessarily preserve the scaling—a fact
which is often ignored in the analysis. If a single measure-
ment uses N, applications of the phase shift, and there are M
repetitions of the measurement, then the total resources are
N=MN,. The variance can then scale no better than
1/(N;vM)=VM/N. Sometimes scaling as 1/(N,; \ﬁ) has
been referred to as Heisenberg-limited scaling (for a recent
example, see Ref. [41]). However, that is not strictly correct
because if the number of repetitions M required increases
with N, then the Heisenberg limit of ®(1/N) scaling will
not be obtained, as pointed out recently in Ref. [42].

Note also that the first condition requires that the error is
measured between the actual system phase and the phase
estimates. This prevents biased phase estimates giving unre-
alistically small values of the error. This condition also
means that the uncertainty should not be based entirely on
the probability distribution for the system phase based on the
measurement results. That is, the uncertainty is the spread
obtained in the phase estimates from the measurements,
rather than the spread in the Bayesian probability distribution
obtained from a single measurement.
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The second condition is simply that the resources are
quantified in the same way as in the proof of the bound. This
means that the Heisenberg limit, as defined here, is not
beaten by schemes such as those in Refs. [43,44], where the
resources are quantified in terms of the number of interacting
systems. In these papers the number of applications of the
phase shift is equivalent to vt||H|| using their notation (see
Appendix C). The variance obtained in Refs. [43,44] is not
smaller than 7/(vi||H|)). Note also that, provided the re-
sources are quantified in this way, it is not possible to obtain
better scaling than 1/N by combining parallel and serial re-
sources. In particular, for optics, N is the number of photon
passes, so a state with n photons (the parallel resource) that
passes through a phase shift p times (the serial resource) is
using total resources N=np. This means that it is not possible
to obtain better scaling than 1/N by, for example, performing
the phase measurements we propose with multiple passes of
NOON states.

The third condition means that no pre-existing informa-
tion about the phase can be used in the measurement. The
fourth condition makes this rigorous by ruling out the possi-
bility of just considering one system phase where the mea-
surement is particularly accurate. This prevents the measure-
ment from implicitly using information about the system
phase. In contrast, work on phase measurement often consid-
ers the regime of small phase shifts, where the performance
of the measurement is considered only for a small range of
phases. This approach may be reasonable for states that are
close to classical, but breaks down if all the resources are
concentrated into a single nonclassical state in order to ap-
proach the Heisenberg limit. For example, if all resources are
concentrated into measurement with a single NOON state,
then accuracy of ®(1/N) would be obtained only if the phase
shift is smaller than 1/N; otherwise, the phase estimate
would be ambiguous. That is, for any fixed phase shift (no
matter how small), it would not be possible to maintain
Heisenberg-limited scaling for arbitrarily large N. The phase
measurement schemes that we present here show how to
eliminate phase ambiguities to achieve accuracy of @(1/N)
without needing any initial knowledge of the phase.

III. THEORETICAL BACKGROUND
A. Interferometric measurements

Interferometric measurements are typically considered via
the Mach-Zehnder interferometer, as in Fig. 1. Two input
modes are combined at a beam splitter, after which each of
the modes is subjected to a phase shift, and the two modes
are recombined at a second beam splitter. The phase shift to
be measured, ¢, is in one arm and a controllable phase shift,
@, may be added in the second arm. The first beam splitter is
not necessary for the analysis, and it is more convenient to
consider the state in the arms of the interferometer, i.e., in
modes a and b.

The optimal phase measurement, also called the canonical
measurement, can be imagined to be performed directly on
the modes in the arms, thereby also omitting the second
beam splitter. The phase statistics of such a measurement can
be regarded as the intrinsic phase-difference statistics of the
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FIG. 1. The Mach-Zehnder interferometer, with the addition of a
controllable phase ® in one arm. The unknown phase to be esti-
mated is ¢.

state of these two modes. The joint state of modes a and b
(as shown in Fig. 1) can be written as a superposition of joint
number states. We make the usual assumption that the coef-
ficients in this superposition are positive and real before ap-
plication of any phase shift. If the total photon number is
fixed at N, then the canonical positive operator-valued mea-
sure (POVM) is of the form [45,46]

N
. By =2 e mIN=-n). (3.1)

n=0

R | BN
Fean() = ;T|¢><¢

This POVM gives the probability density for the continuous

quantity ¢; that is, the probability of the measurement result
being in the interval A is

P(peA)= f THF can(P)pld . (3.2)
A

This measurement is applied to modes a and b after applica-
tion of the phase shift ¢, but without the phase shift ® (or

with @ taken to be zero). The result of the measurement, (Ab,
is then the estimator for the unknown phase ¢.

Except in special cases, it is not possible to perform ca-
nonical measurements with standard optical equipment (pho-
ton counters and linear optical elements such as beam split-
ters). To approximate canonical measurements, Refs. [38,39]
use adaptive phase measurements—an idea introduced in
Ref. [47]. The sequence of detections is used to obtain a
Bayesian probability distribution for the phase. The phase ®
is then adjusted to minimize the expected variance after de-
tection of the next photon. Note that the time between detec-
tions gives no information about the phase. In addition, for
fixed total photon number N, the measurement operator for
no detection does not alter the state. This means that the time
between detections can be ignored in the analysis.

To obtain the probability distribution for the phase, it is
convenient to keep a record of the un-normalized system
state. The un-normalized system state after m detections, and
for system phase ¢, will be denoted as |¢ii,,,$)). Here,
i,,=(u,...,u,) is the vector of m measurement results. The
measurement results are taken to be u;=0 or 1 to indicate
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that the jth photon is detected in mode ¢, or mode c;. The
annihilation operators at the output of the final beam splitter,
co and ¢y, are

c,=[e%a+ (- 1)”ei¢b]/w’5, (3.3)

where a and b are the operators for the field at the positions
shown in Fig. 1. After detection, the state is updated as

|w(ﬁm+17 d’)) = ,’cu—m—ﬂ|w(ﬁnv ¢)> . (34)
VN —-m

The probability for the sequence of measurement results is
given by P(ii,,| )=, #)|iii,. $)). (The division by
VN—m ensures that the probabilities for the different mea-
surement results sum to 1.)

Using Bayes’ theorem, the probability for the system
phase given the measurement results is

P(¢)P(ii,,|})

P(dli,) = PG

(3.5)
The initial probability distribution P(¢) is flat, and the prob-
ability P(i,,) is independent of the phase. Therefore, the
probability distribution for the system phase is

P(¢|’Zm) & P(’Zm|¢) = <'70(1’7m’ ¢)|¢(”7m’ ¢)>

Because the annihilation operators ¢, contain the exponential
¢'?, the un-normalized state and therefore the probability can
be expressed in terms of powers of this exponential. This
enables the probability distribution to be efficiently repre-
sented in terms of the coefficients of the powers of e'?.
The unbiased phase estimate with the smallest variance is
d=arg(e'®) [39]. Here, the average is taken over ¢ using the
Bayesian probability distribution. If the probability distribu-
tion P(¢|ii,,) is represented as a Fourier series in ¢, (e'?) is
simply the coefficient of the ¢~'% term. Recall that the Holevo
variance in the phase estimates is defined as Vy=u"2-1,

(3.6)

where u=[(e!?)|. In order to ensure that the measurement is
covariant, we take the initial value of ® to be random. Then
the value of the sharpness u is given by [39]

(3.7)

1 .
p=s-2 J e’¢P(ﬁml¢)d¢>‘ :
27T ﬁnl
See Appendix B for a more detailed explanation.
This expression can be rewritten as an average over the
sharpnesses of the individual Bayesian probability distribu-
tions

p=E[e)]].

Here, E indicates an expectation value over the measurement
results and the initial feedback phase, and the angular brack-
ets indicate an average over ¢. The way this expression is
interpreted is that, for any actual system phase and initial
feedback phase, we obtain some measurement results i,, and
determine a Bayesian probability distribution for the system
phase based on those measurement results.

In Refs. [38,39] an algorithm for choosing the feedback
phase was introduced, which maximizes the expected sharp-
ness of the Bayesian probability distribution after the next

(3.8)
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detection. Maximizing the average sharpness, as in Eq. (3.8),
minimizes the variance in the phase estimates. Therefore,
this feedback minimizes the variance in the phase estimates
after the next detection. It might be thought that, since the
ultimate aim is to minimize the Holevo variance Vy, the
feedback phase should be chosen to minimize the expected
Holevo variance of the Bayesian probability distribution af-
ter the next detection. However, the variance we want to
minimize is that in the phase estimates, not that in the Baye-
sian probability distributions. If we were minimizing the
variance in the Bayesian probability distributions, then we
would be minimizing

E[[(e')* - 1].

We actually want to minimize the variance in the phase es-
timates, which is given by

V= {E[[(¢')[]} - 1.

Thus, to minimize Vy, or indeed any monotonically decreas-
ing function of u, for the measurement scheme as a whole,
one should aim to maximize Eq. (3.7) as in Refs. [38,39].
Alternatively, the result that one should aim to maximize
Eq. (3.7) may be shown directly from Eq. (3.7). The feed-
back phase ®,, for detection m is a function of the prior
measurement results u,,...,u,_; and the initial feedback
phase ®,. In order to maximize u as given by Eq. (3.7), we
need to optimize each of these ®,, for each measurement
record #,,_;. We can rewrite the sum for u in Eq. (3.7) as

p=-3 S

27 iy Uy =0

(3.9)

(3.10)

. (3.11)

f e'*Pii,|$)dp

Then for each ii,_; we have a sum

1
Mg, = E

u,,=0

(3.12)

f ei¢P(ﬁ,n|¢)d¢‘

that depends only on the feedback phase ®,, for that i,,_;.
Thus, the multivariable maximization is reduced to separate
maximizations of a single variable for each i,, ;. As there
are only two terms in the sum for Mg s there is an analytical
solution for the feedback phase ®,, that maximizes this func-
tion, as detailed in Ref. [39].

In Ref. [39] it was shown that this approach can, in
theory, yield an uncertainty only slightly larger than Eq. (2.3)
with the optimal input states. The problem is that these states
have not yet been produced experimentally. The simplest
N-photon input state to realize in practice is that with all N
photons entering one port of the first beam splitter in Fig. 1
(with vacuum at the other port). In this case, with the single-

pass interferometer design of Fig. 1, the variance in ¢ can
scale no better than ®(N~!) [corresponding to an uncertainty
of @(N~?)]. This limit cannot be surpassed regardless of
how effective the adaptive measurements are, or even with
canonical phase measurements. To beat this scaling it is nec-
essary to use nonclassical multiphoton states or a variation in
the interferometer design that achieves the same end. The
nonclassical states with the highest resolution, NOON states
[10], give a Holevo variance that is formally infinite due to
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the manifold ambiguity in the phase estimate. The same is
true if one simply increases the number of passes through the
phase shift. Practical solutions to this problem [26,28] have
come from considering phase measurements in quantum
computing, which are discussed in the following subsection.

B. Phase measurements in quantum computing

In quantum computing, phase estimation is used for find-
ing an eigenvalue of a unitary operator U. If an eigenstate i)
of U is known, the task is to find the corresponding eigen-
value e¢®. A control qubit is placed in the state (|0)
+[1))/12, and target qubits are placed in the state |u). A
controlled-U? operation (i.e., an operation that applies the
operator U to a target qubit conditional on the state of the
control qubit) then transforms the control qubit into the state
(|0y+¢24|1))/\2. One approach to finding the phase is the
QPEA [2,3], in which one performs this procedure on iden-
tically prepared qubits for k=0, ...,K [2]. This yields a state

of the form
2K+I_]

> ),

y=0

(3.13)

where |y) is a state on the K+1 control qubits. Provided the
phase has an exact K-bit binary expansion of the form ¢
=2mX0.ay" - -ag (where a; are binary digits), performing the
inverse QFT yields the state |a,- - *ag), so measurement in the
computational basis yields the digits of the phase. If the
phase is not of the form ¢=27X 0.4, - -ag, then accuracy to
this number of digits (with a success probability of 1—¢) can
still be achieved by increasing K to K'=K+O0(In(1/€)) [2].

An alternative approach was given by Kitaev [1]. There,
rather than using the inverse QFT, separate measurements
are used. For each k the number of qubits used is O(In(K/ €)),
which enables 2%¢ to be localized in one of eight subinter-
vals of [0,27] with an error probability of <e/l. By com-
bining measurements for different values of k, the value of ¢
is determined with precision 727%=2 and error probability of
=e. In this paper we mostly take inspiration from the QPEA,
but in Sec. VII B we also use ideas from Kitaev’s algorithm.
Note that the QPEA was, rather inaccurately, referred to as
the Kitaev algorithm in Ref. [26].

Quantum computing algorithms that require phase estima-
tion are for discrete problems, which are typically quantified
by the error probability (i.e., the probability that an incorrect
answer is given). For such problems, we usually require that
the phase error is smaller than a certain amount in order to
obtain the correct final answer. If the phase error is larger
than this, its magnitude is irrelevant. We contrast this situa-
tion to the case in optics, where phase estimation is typically
treated as a continuous problem for which the magnitude of
any error is also important. Therefore, the quality of a phase
estimation measurement is better quantified by the variance
rather than a confidence interval. Also, in quantum comput-
ing it is often possible to implement the controlled unitary
operation efficiently for arbitrary k, so the resources used
scale as K. In contrast, for optics implementing a multiple of
the phase shift requires more resources, so the total resources
used scale as 2K,
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To implement quantum computing style phase measure-
ments in quantum optics, the multiples of the phase shift can
be achieved using either NOON states or multiple passes
through a phase shift. The inverse QFT can be implemented
by using the simplification of [25], which requires only local
measurements and control.

Using a single photon as the input to a Mach-Zehnder
interferometer, the state in the arms of the interferometer is
(|0)+|1))/12, where |0) and |1) are the states corresponding
to the photon in one arm or the other. Normally the phase
shift ¢ changes the state to (|0)+¢/?|1))/V2. With v passes
through the phase shift, the state is changed to (|o)
+¢?|1))/y2. The beam splitter then acts as a Hadamard
operator, and the photodetectors give a measurement in the
computational basis. With a controllable phase of ® in the
other arm, the probabilities of the measurement results are

P(u|gp) = 3[1 + (= 1)“cos(vdp— ®)]. (3.14)

Alternatively, using a NOON state (|v,0)+|0,v))/ V2 in
the arms of the interferometer, the phase shift changes the
state to (e”?|v,0)+|0,))/\2. Until detection of all v pho-
tons, no phase information is obtained, so there is no infor-
mation on which to base a feedback phase. After detection of
all photons, the probability of the sequence of measurement
results is

P(ii,|¢) = 3{1 + (= )"+ Hcos[w(p— D)} (3.15)

This means that the probability distribution for the phase,
given the measurement results, only depends on the parity of
the measurement results, i.e., whether u;+---+u, is odd or
even. The phase information obtained is identical to that for
a single photon with multiple passes, with the single mea-
surement result u replaced with the parity and the control-
lable phase ® replaced with v®. From this point on the
parity obtained from the NOON measurement will be repre-
sented as a single measurement result u.

To apply the phase measurements from quantum comput-
ing theory to optics, it is necessary to use multiple time
modes. That is, independent single photons are used, or
NOON states that are sufficiently spaced apart in time that
the photons from the different NOON states can be unam-
biguously distinguished. The two cases are mathematically
equivalent. For brevity, for the remainder of this paper, we
present the analysis in terms of NOON states, but the analy-
sis also holds for multiple passes of single photons, as well
as phase measurements in quantum computing, because they
are mathematically equivalent. The techniques we present
can also be applied to Hamiltonian parameter estimation, as
discussed in Appendix C, although there is the complication
that the range of the parameter is not limited to [0,2).
Multiple passes of single photons were used in the experi-
mental demonstration below and in Refs. [26,28].

NOON states are often said to provide super-resolution of
phase due to the multiple peaks in the phase distribution
obtained in the interval [0,27]. If a measurement is per-
formed with just a single NOON state, there is a problem in
that it is not possible to distinguish which of these peaks
corresponds to the phase. This results in the Holevo phase

PHYSICAL REVIEW A 80, 052114 (2009)

variance being infinite. To obtain a useful phase estimate, the
phase information from a NOON state needs to be combined
with other phase information.

The QPEA, with the QFT implemented according to the
scheme of [25], provides a method to combine the phase
information from different NOON states to yield an unam-
biguous measurement of the phase. Initially the controllable
phase @ is set to be zero. The first measurement is taken with
a NOON state with v=2K. Provided the system phase has an
exact K-bit binary expression of the form ¢=27
X 0.ay - -ag, this measurement yields the value of ay as the
first measurement result u#;. Given this measurement result,
the feedback phase is adjusted by u;7/2X such that ¢p—®
=27 X0.ay --ag_;. Then the next measurement with v
=2%-1 yields the next digit ag_;, and so forth. In this way, all
digits a, are determined with certainty.

This procedure gives a measurement described by a
POVM of the form

N

X PO " 1 A

F(d) =Xl |d)y= =2 "*|n.N-n), (3.16)
VN + 1,20

where N=2K*'—1 and ¢,=l/2X, for [=0,...,N. The state

n,N—n) is labeled by the total number of photons in each
arm. That is, |n,N-n)=|n) ® [N-n), where

[n) = |ng) @ -+ @ |ng), (3.17)

and where n; are the binary digits of n, and similarly for
[N-n).

Since the QPEA gives a phase estimate with K bits of
accuracy, at the cost of 2K resources, it would seem that it
should enable phase variance near the Heisenberg limit. Sur-
prisingly, this is not the case. In fact, it gives a variance
above the SQL, as we explain in the next section.

IV. EQUIVALENT STATES FOR MULTIPLE TIME MODES

To assist in determining the phase variance yielded by
phase measurement algorithms, we introduce the concept of
equivalent states. In general, consider two different systems
with respective sets of basis states {|x,)} and {|,)}, such that
a phase shift ¢ adds a factor of ¢ to each basis state. States
in the different systems that are identical except for the basis
may be regarded as equivalent. That is, 2, ,|x,) is equiva-
lent to =,4,|&,). The canonical measurements are identical
except for the basis states used, and the distributions ob-
tained for the phase are identical.

In order to analyze a state with multiple time modes, we
determine the state with a single time mode that it is equiva-
lent to. We call this the two-mode equivalent state because it
has two spatial modes and just a single time mode. The se-
quence of K NOON states with the photon number increas-
ing from 1 to 2% by powers of 2 is

0,25 @ -+ ®(

1,0) +

1
) = S (125.0) + 0.1)).

4.1)

This state is changed under the phase shift to
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2(e’2 ?2K,0) +(0,25) @ -+ ® (€

|‘//K(¢)> 2(K+1)/

(4.2)

Expanding the product, there is a sum of orthogonal states
such as [25,0)®0,28 ) ® - ® . Each state has a co-
efficient of ¢™¢, where n is the sum of the photon numbers in
the first modes from each pair of modes. State (4.1) is there-
fore equivalent to, in terms of its phase properties, an equally
weighted superposition state with one time mode,

N

o (K+1)/2 (4.3)

n=0
with N=2K+1_1.

In terms of these equivalent two-mode states, the POVM
for the QPEA can be written as in Eq. (3.16), with the states
now being the equivalent two-mode states. This POVM is
close to a canonical measurement, except that the possible
phase measurement results are restricted to ¢,=l/2X. To
obtain a canonical measurement, the initial feedback phase
@, can be taken to be random, rather than zero. For a par-
ticular value of this initial feedback phase, the POVM is the
same as that in Eq. (3.16), except with ¢,=®, +7l/2K. Using
random &, all (Ab are included in the POVM, so the measure-
ment becomes the canonical phase measurement as in Eq.
(3.1).

Using the canonical measurement, the value of wu for this
equal superposition state is u=N/(N+1)=1-2"&+1_ There-
fore, the Holevo phase variance is

1 2
This scales as 1/N, which is the SQL rather than the ex-
pected Heisenberg limit. To see how this is compatible with
the precision of the QPEA, one must examine the probability

distribution for the phase estimate. Using |n) to denote
is distribution is given by

(3ot 5 o)

__siff[(V+ 1)($- 4)/2]
T 2a(N+ Dsinl[(d—- ¢)2]

2

P(¢)=7—

(4.5)

Clearly, this distribution has a peak (around ¢) with a width
O(N7'), as expected for scaling at the Heisenberg limit. But
its variance scales as the SQL because of its high tails. This
is most easily seen using the Collett phase variance V.
=2(1-u) [48]. The Collett variance coincides with the
Holevo variance whenever either is small [39]. Using x= ¢
— ¢ for the phase error, we have

m

Ve={(4sin’[(¢p— ¢)/2]) = sin>(Nx/2)dx. (4.6)

2
m(N+1)J_,

That is, the tails are so high that the variance integral is finite
only because of the finite range of the phase. The integral
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evaluates to 2/(N+1), the same SQL scaling as found above
for V.

We have already seen that the QPEA realizes a canonical
phase measurement. Therefore, if it fails to attain the Heisen-
berg limit, the fault must lie with state (4.3). One approach is
to replace state (4.3) with a more general state of the form

N
>,
n=0

(4.7)

Because the measurement is canonical, provided the coeffi-
cients ¢, are optimal the minimum phase uncertainty (2.3)
could be obtained.

Unfortunately the minimum phase uncertainty state
[35-38] is not separable between the different time modes
and would therefore be extremely difficult to create. How-
ever, it is not necessary for the state to be a minimum phase
uncertainty state in order to obtain a phase variance scaling
as the Heisenberg limit. For a state =) i,[n,N—n), the
phase variance V- is given by

N
21 = (D) = > (4= )

n=—1

(4.8)

where ¢_; and ¢y, are defined to be zero. Provided the state
coefficients vary relatively smoothly, the maximum value of
¢, should be of order 1/ \N and the successive differences
should be of order N~*2. This implies that (;,—/;,,,)? should
be of order N3, so the variance should scale at the Heisen-
berg limit of N~2. This reasoning shows that the restrictions
on the properties of the state are quite weak if one wishes to
obtain scaling at the Heisenberg limit.

The equally weighted state does not give phase variance
scaling at the Heisenberg limit because there is a large jump,
of order 1/\N between i_; and i, and between i, and
n,1- In order to obtain the required smoothness, one ap-
proach is to use multiple copies of the state. The resulting
equivalent two-mode state is then the repeated convolution
of the original state (in terms of the squared state coeffi-
cients). The convolution has the general property of smooth-
ing functions, and therefore can be expected to yield scaling
at the Heisenberg limit. In particular we can prove the fol-

lowing theorem.
oM
I e

Theorem 1. The state
has a canonical phase variance of ®(In Ng/N K) for M=2 and
O(1/N3) for M>2.

This theorem means that, for fixed M greater than 2, the
canonical phase variance scales as 1/N?, where N=NgM.
The quantity M is the number of copies of the state. The way
we achieve a state equivalent to Eq. (4.9) is by using M
copies of each of the individual NOON states. In applying
this theorem, we take Nx=2%+'—1, although that is not re-
quired for the theorem. A similar behavior with number of
copies was found in Ref. [49] for canonical multimode phase
estimation (modulo 7) on multiple copies of a squeezed
vacuum state, where M >4 copies were required to attain the

)= (Ee

(Ng + 1)M/2
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Heisenberg limit. There, the optimal number of copies, in
terms of minimizing the canonical Holevo variance for a
fixed mean photon number, was eight; in our case, it is three
(see Fig. 5).

Proof. Here, we give a nonrigorous derivation of the scal-
ing using a continuous approximation. For the rigorous proof
of the theorem without using this approximation, see Appen-
dix A. State (4.9) is equivalent to the state

Nk

1
1 M/zE " N\fy(n)

ot (4.10)

where f),(n) is the number of combinations of values of
ny,n,, ...,ny that sum to n. This quantity can be regarded as
the number of points in a hyperplane perpendicular to a line
running between opposite corners of a hypercubic lattice of
dimension M.

In the continuous approximation, the value of f),(n) is the
area of the cross section of the hypercube and is equal to
nM=1/(M~-1)! for n=Ng. The contribution to the variance
V¢ for n=Ng is then, in the continuous approximation,

)
(NK+ nv

1 Nk M-3
ZWwJWL qm—-2pP"

(4.11)

There is a clear difference between the cases M=2 and M
>?2. For M > 2, the integral gives an expression proportional
to N¥~2, so overall the expression scales as ©(1/Nz). On the
other hand, for M=2, the integrand is proportional to 1/n,
rather than a positive power of n or a constant. The diver-
gence at n=0 can be ignored because the continuous ap-
proximation breaks down. However, the integral yields In Ng
from the upper bound, which means that the expression over-
all scales as O(In NK/N%().

The contribution to Vi for N—Ng=n=N is the same. For
Ng<n<N-Ng, we use the fact that f},(n) <Ny > and
Ffu(m)=N¥™'/(M-1)! to find that the integrand is upper
bounded by (M—1) 'NM 3. This means that the contribution
to V¢ for Ny<n<N- Nk is O(1/N7) for both M=2 and M
>2. Hence, the canonical phase variance, in the continuous
approximation, is ®(In NK/N%{) for M=2 and @(I/Ni) for
M>2. O

V. ADAPTIVE MEASUREMENTS FOR MULTIPLE TIME
MODES

A. Deriving the recurrence relation

The drawback to using these multiple copies of the
NOON states is that the canonical measurements can no
longer be achieved exactly using adaptive measurements. On
the other hand, it is possible to approximate the canonical
measurements for larger numbers of repetitions, M. The idea
is to use a generalization of the adaptive phase measurements
for a single time mode. As in that case, at each step the
feedback phase ® is chosen to minimize the expected vari-
ance after the next detection.

PHYSICAL REVIEW A 80, 052114 (2009)

One starts with performing M measurements, one on each
of M NOON states, each with photon number »=2X for some
integer K. Next, measurements are performed on M NOON
states with =251 and one continues this sequence on
NOON states with v=2* for k=K,K—1,..., 1. This is similar
to the optical implementation of the QPEA, except at each
stage one uses M NOON states of each size rather than 1.
There is a subtlety in using the feedback algorithm of Ref.
[38], in that when measurements have been performed with
NOON states down to size v=2%, the phase is only known
modulo 2m/2*%. To address this, rather than maximizing
(%), the quantity that is maximized is |(e?2%)|.

Using the same adaptive scheme as before, numerical
testing indicates that the phase variances scale as the Heisen-
berg limit for M >3. For small values of M the measure-
ments are a poor approximation of the canonical measure-
ments; for M=3 the variance scales as N~*/2, and for M =2
the variance scales as N~'.

The feedback can be achieved in an efficient way when
performing measurements on these states. Because the indi-
vidual NOON states are not entangled with each other, mea-
surements on one do not affect the states of the others, except
for the normalization when considering the un-normalized
state. Therefore, it is only necessary to keep track of the
evolution of the normalization. Recall that the normalization
gives the probability distribution for that sequence of detec-
tion results and is proportional to the probability distribution
for the phase.

At each stage the probability distribution for the total
measurement results is obtained by multiplying the probabil-
ity for the current measurement result by the preceding prob-
ability distribution

P(it,,| }) = P(u4,,| ) Pii,_1] P). (5.1)

The probability distribution for the current measurement re-
sult, with a NOON state with v=2%, is

P(um|¢) = %{1 + (_ l)umcos[zk(¢_ q)m)]}

Provided the measurements are made on the largest NOON
states first, the overall probability distribution can only con-

tain different powers of ¢?‘¢ The probability distribution
may therefore be stored using just the coefficients of the
different powers. That is, the values of p;-k)(zim) in the expan-
sion

(5.2)

P, ) = > pO(i, ) (5.3)
J

are stored.
The coefficients are updated as

)u = X
[P, ) ()™ Om

_ 1 R (=

- 2k
+ P (i)™ ‘PM]}. (5.4)

When examining measurements for the next lower value of
v, given by v=2%"!  the coefficients are expanded out by a
factor of 2. That is, the probability distribution is written as
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P, |¢)= 2 P, e, (5.5)

where p(2 Di,)= =p; %(i,) and pzj+1 )(ii,,) =0.

In addltlon 1t is only necessary to keep track of a limited
number of p N ). At the end of the measurements, the
quantlty of 1mportance is p 1 (uM(K +1))- This can depend only
on p] M(i,) for j in the range —2M, ...,2M, and only these
coefficients need be recorded. In fact only coefficients for
j=0,...,2M need be recorded because those for negative j
are the complex conjugate of those for positive j.

To illustrate these ideas, consider the first measurement
for v=2%, where the first few coefficients are

pO (bl ) P(k+1)(u;n),

(k)(u )=
p¥i,) = p*(,),

pPa,) =0, (5.6)

where m=M(K—-k). After the next detection, the first few
coefficients are changed to

P ) = pi 0,12,

PP, = (- 1)um+1[pk+1 e~ 2",

+p1k+1 (Izm)eiZ (Dm+l]/4’

PP ey) = p ) 2. (5.7)

The feedback phase is chosen to maximize the average of
|p\¥(i7,11)| over the two values of u,,,;. For both measure-
ment results,

PP )] = 2D, e 2 Pmer 4 p ()] (5.8)

Because p(k)(u ) is real and positive (the probability distri-
bution is real and positive), the feedback phase that maxi-
mizes this average is

@01 == 270D arg[pD(a,)]. (5.9)

We now investigate this solution for various values of M.

B. Analytical result for M=1

In the case M=1, Eq. (5.9) yields a recurrence relation
that can be solved, yielding [50]

p(()k)(ﬁK—kH) = kK=l

2K k+1 -1
PP g ) = 2=k SXP| ~

K—k+1
—im >, uy 2Kk

=1
(5.10)

The feedback phase obtained is
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K-k

Doy =272 uf2X =27 X 0.00
=1

Ouge_gttg_j_y == uy,

(5.11)

where the expression following “X” is a binary expansion.
For each measurement result u; the feedback phase is ad-
justed by the appropriate fraction of 2. This feedback is
identical to that obtained for the linear optics implementation
of the QPEA described in Sec. III. In addition, summing over
|p\P(iig_s1)| at the end of the measurement gives u
=1-2"K*D_This yields exactly the same variance as in Eq.
(4.4).

C. Analytical result for M=2

It is also possible to analytically determine the variance
for M=2. In this case, the values of p, and p,; after the
second measurement for a given k are

(=

P ea) = )4+ R ) e

+ p(zk)(ﬁm)eiz (S )] ,

— 1)%m+1 i i
By )= =3 3 L8 e Pt 4 p () O]
(_ 1)um+2 . ok . Ak
e P, ) a4 ) ],

(5.12)
Taking the absolute value of p, yields
- k=1 —
p(]k)(um+2) = é|elz ((I)m+2 (Dm+1)
+ (_ 1)”m+2_um+lei2k_l((Dm+2_q)m+l)|
X |p0 (uiﬂ) p (uﬂl)elz ((Dl11+2+(bm+l)|
(5.13)

Regardless of whether the feedback phase (5.9) is assumed
for ®&,,,,, or both ®,,.; and P,,., are maximized over, the
solution is

2k(q)m+2 - (Dm+l) =2,

2k(q)m+2 + (I)m+l) - arg[p(k)(um)] + 72 (5 14)

This means that the feedback scheme minimizes the variance
two detections in advance, rather than just one. Independent
of the detection results, the absolute value obtained is

F
|p1 (um+2)| = _V[Po (u )]2 + |p(k)(um)|2' (515)

Using this feedback also gives

P ien) = pi(i,) 4

This again yields a recurrence relation that can be solved.
The result is

(5.16)
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k) > _K—
p(() )(Mm+2) :22(k K l)’

22(k—K—1) zk—K—l .

|p(1k)(lzm+2)| = \“”1 - (5 17)

At the end of the measurement, summing over |p(10)(ﬁ2(K+1))|
gives u=11-2"%+D_This yields the Holevo variance in this
case as

1

Y=k

(5.18)

2
=y
Hence, in this case, the Holevo phase variance is exactly
2/N. This is almost identical to the result for M =1, where
the variance is approximately 2/N. This means that, despite
the intrinsic state having relatively good phase properties
[with the variance scaling as (In N)/N?], the adaptive mea-
surements are far less accurate than the canonical measure-
ment. Furthermore, because the feedback phases minimize
the variance two detections in advance, it seems unlikely that
a better feedback scheme would yield significantly more ac-
curate measurements.

D. Numerical results for M >2

For larger values of M, more accurate measurements are
obtained, but we have not found exact analytical results. It is
possible to obtain exact results for smaller values of K sim-
ply by systematically calculating the final values of p(]o) for
every possible combination of measurement results. For
larger values of K this approach is no longer feasible, but
instead the variance can be estimated by generating random
system phases, then generating measurement results accord-
ing to their probability of occurring. There are then two al-
ternative ways of estimating the phase variance. One is to
use the mean of the final values of |p(,0)| as an estimate of u.
The other is to use the variance in the final phase estimates
relative to the system phase. Numerically it is found that
using the values obtained for |p(,0)| gives a more accurate
estimate of the phase variance.

The results for M=1-6 are shown in Fig. 2. The vari-
ances are multiplied by N2, so that the Heisenberg limit ap-
pears as a horizontal line. The lines for M=1 and 2 are not
scaling as the Heisenberg limit and are indistinguishable on
this plot for N above about 10. The variances in these cases
scale as 1/N, and the numerically obtained variances agree
with the analytical predictions to within the numerical preci-
sion. The lines for M=4—6 are clearly scaling as 1/N?. The
line for M'=3 has intermediate scaling and is consistent with
an asymptotic scaling of 1/N*2,

Although the results for M=4-6 scale as the Heisenberg
limit, they have different scaling constants. The variances for
these cases, multiplied by N2, are shown on a linear scale in
Fig. 3. The smallest scaling constant of about 23 is obtained
for M=5.

VI. EFFECT OF INCREASING THE NUMBER OF
REPETITIONS

In order to obtain higher precision, there are two param-
eters that can be increased. The value of K can be increased
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FIG. 2. (Color online) The Holevo phase variance multiplied by
N? for M=1-6. The results for M=1 are shown as the solid line,
for M =2 as the diamonds, for M =3 as the circles, for M=4 as the
pluses, for M =5 as the crosses, and for M =6 as the asterisks. The
Heisenberg limit is also shown as the dashed line for comparison.

or the number of repetitions, M, can be increased. Scaling at
the Heisenberg limit can only be obtained by increasing K,
not by increasing M because the state coefficients do not
gradually increase from zero in the latter case. Instead they
are negligible for most values of n and suddenly rise to sig-
nificant values near the center (for example, see Fig. 4).

The result can be shown rigorously using the uncertainty
relation (in terms of the variance) Vy(p)V(n)=1/4 [32],
where V(n) is the variance for the photon number. To deter-
mine the number variance, take p,,(n)=f,,(n)/(Nx+1) and
use the recurrence relation (see Appendix A)

Nk
Fu) =2 fu(n=k). (6.1)
k=0

This yields the recurrence relation (n),=(n)y_,+Ng/2
[where (n),;=2,npy(n)]. This gives (n),=MN/2. The

25r + ot okt ot %t ;Mf‘i+ *t *:
e k=g
eV M=5
201 > i
*
K
« 157 * B
2 x
¥ +
101 e 4
. -7 Heisenberg limit
+//
5r - i
10° 10’ 10° 10° 10* 10° 10°

FIG. 3. (Color online) The Holevo phase variance multiplied by
N? for M=4-6. The results for M=4 are shown as the pluses, for
M =5 as the crosses, and for M =6 as the asterisks. The Heisenberg
limit is also shown as the dashed line for comparison.
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FIG. 4. The squares of the state coefficients for the equivalent
two-mode state for K=4 and M=100.

same approach for (n%),, gives the recurrence relation

<”2>M = <”2>M—1 +Ng(2Ng+1)/6 + N(n)y_y . (6.2)

Solving this gives (n2)y,;=MNg(Ng+2)/12+M>N%/4, so
V(n)=MNg(Ng+2)/12. Using the uncertainty relation, we
obtain the lower bound on the phase variance,

3

MN(Ng+2) 63)

Vu(¢) =

Thus, with fixed K, the variance can only scale as 1/M, not
as 1/M?. On the other hand, because the number variance
scales as the square of Nk, the Heisenberg limit can be
achieved when increasing K, as we have already seen.

The predicted phase variance obtained using the adaptive
measurement scheme with K=4 is plotted as a function of M
in Fig. 5. Experimental results using multiple passes are also
shown in this figure and agree with the theoretical predic-
tions. These experimental results were obtained using an ap-

M=2
10°; -
N M=1
= \
>m \
\
\\
\
\
100 -
10° 10°
N

FIG. 5. The theoretical predictions and experimental results for
adaptive measurements with K=4 and a range of values of M
(given by M=N/31). The solid line is the predictions for the adap-
tive scheme, the dashed-dotted line is the intrinsic variance, and the
crosses and error bars are for the experimental data. The SQL for
single passes is shown as the dotted line, and the dashed line is the
Heisenberg limit.
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paratus and methodology identical to that described in Ref.
[26]. When increasing M, the variance at first decreases rap-
idly and approaches the Heisenberg limit. Then, as M is in-
creased further, the variance no longer decreases at the same
rate as the Heisenberg limit and instead scales as the SQL for
single passes.

VII. SIMPLIFICATIONS OF THE ADAPTIVE
MEASUREMENTS

The adaptive scheme described above is complicated to
implement in practice due to the calculation required to de-
termine the feedback phase. This calculation is non-
Markovian, in the sense that it depends in a nontrivial way
on all the prior measurement results. For this reason it is
useful to develop schemes using simplified (Markovian)
feedback, or no feedback. Two alternative schemes were pro-
posed and experimentally demonstrated in Ref. [28]. Here,
we provide further motivation and theoretical analysis of
these alternative measurement schemes.

A. Hybrid scheme

One scheme is based on a simple modification of the
QPEA. The QPEA is Markovian because the increment in
the feedback phase depends only on the immediately preced-
ing result. As discussed above, the QPEA gives a canonical
measurement, but the state is equivalent to an equal super-
position and thus has poor phase properties. It yields a prob-
ability distribution for the phase with tails that drop off
slowly and give the dominant contribution to the phase vari-
ance. The idea behind hybrid measurements is to use addi-
tional “standard” measurements (single passes of single pho-
tons) to reduce the size of the tails of the distribution. The
hybrid measurements are still Markovian, because they do
not use any feedback beyond what is used in the QPEA.
However, these measurements do not scale at the Heisenberg
limit, and instead the variance scales at best as close to
1/N*2. In particular, the result is given by the following
theorem.

Theorem 2. The canonical phase variance of the state

Nk
1 )
>=——(zem¢n,w -n>) & (0.1
|l/lNK,M 2M/2\‘"NK+1 = | K |

+e/?1,0))%M,

scales as (U(N'?), where N=Ng+M.

Here, () is the standard notation for a lower bound on the
scaling. In applying this theorem, we take Ng=25"1-1 to be
the number of photons used in the QPEA and M to be the
number of photons used in the standard interferometry.

Proof. To obtain the equivalent two-mode state for M rep-
etitions of measurements with single photons we apply the
recurrence relation (6.1). Repeatedly applying this recurrence

relation gives
M
fu(n) = .
n

This result can also be obtained from the fact that this num-
ber is the number of ways of choosing n ones from M bits.

(7.1)

(7.2)
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FIG. 6. The squares of the state coefficients for the equivalent
two-mode state for hybrid measurements with Ng=127 and M
=64. The pluses show the positions of n_ and n,.

Then applying the recurrence relation again with the flat dis-

tribution gives
Nk
M
fln)=2 ( )

(7.3)
k=0 \I0—
This gives the probability distribution for n,
Nk
1 M
= . 7.4
p(n) 2M(NK+1),§0(11— ) (7.4)

Evaluating the moments for this probability distribution
gives

(n)=(Ng+M)/2,

NeM

M N
()= (M+ 1)+ +?K(1 +2Ng). (7.5
This gives the variance in n as (3M+2Ng+N2)/12. As
above, using the uncertainty relation for the Holevo variance
yields

V() = (7.6)

3M +2Ng + N%’
This relation implies that, if Ny=O(N'?), then the SQL is
obtained. To obtain better scaling than the SQL, it g neces-
sary for N to increase with N more rapidly than VN.

This result on its own does not show that the intrinsic
variance cannot scale better than N~¥2, and it is necessary to
also examine other features of the equivalent two-mode state.
The problem with the equivalent two-mode state is that the
state coefficients rapidly increase, then there is a wide flat
region (for example, see Fig. 6), rather than the gradual in-
crease to a maximum, which is required.

To put a bound on the phase variance, consider the value
of p(n) for n=n_=|M/2—JM] and n=n,=|M/2+\M]. These
values are chosen as points between which p(n) varies rap-
idly (see Fig. 6). Because M <N, and Ny increases more
rapidly than N, asymptotically we must have Ng>2\M.
Using this, and Hoeffding’s inequality [51], we obtain

PHYSICAL REVIEW A 80, 052114 (2009)

= (M 1 = (M
Pl = ENK(k)EZM(NK+1)k§n_(k)

2M(Ng + 1) e

>(1-2¢2)/(Ng+1), (7.7)

n

[T JRp—_——

M -2
T OM(N, + Dy & =e7/(Ng+1). (7.8)

In addition, it is easily verified that n,—n_=4yM/3, so

”i‘ [\p(n+ 1) = \p(n) P = [p(n,) = \p(n)F

_ (V1 =2e2=¢1)?
© A(Ng+ DVM/3
1

= —!'_7 (7'9)
2k(Ng + )M

where k=4.9. The points n_ and n, are those between which
the state coefficients rapidly increase. There is also a second
region for large n where the state coefficients rapidly de-
crease. The symmetry of the distribution implies that the sum
over that region has the same lower bound. Using Eq. (4.8),
and the fact that V=V, the variance for sufficiently large
N is lower bounded by

1

D E— (7.10)
K(NK+ 1)\’M

V() =
The smallest possible value for this lower bound is obtained
for both Nx and M of order N, which gives

V(@) = QN7?). (7.11)

]

In Ref. [28] it was proven that measurements could yield
a variance scaling as 0(\"mVN‘3/ %). The lower-bound scal-
ing here is the same, except for a small yIn N factor. The
method used for the proof in [28] was to consider an analysis
of the data where, if the phase estimates from the single-
photon measurements and the QPEA differed by too large an
amount, the phase estimate from the single-photon measure-
ments was used, and otherwise the phase estimate from the
QPEA was used.

The general idea behind the proof of [28] is that the phase
estimate from single-photon measurements has a negligible
probability of having error larger than O(1/vVM). Therefore,
if the phase estimates from the single-photon measurements
and the QPEA differ by more than O(1/VM), it is almost
certainly the QPEA phase estimate that is wrong, so the
phase estimate from the single-photon measurements should
be used. The variance thg is of order 1/M, but because it
occurs with probability VM /N, the total contribution to the
variance is O(1/(Ng\VM)). If the phase estimates do agree to
within O(1/M), then the contribution to the variance is again
of order 1/(NgVM). o

The additional factor of \In N comes about because it is
not quite true that the probability of the single-photon mea-
surements having error larger than O(1/yM) can be ignored.
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FIG. 7. The variance for hybrid measurements. The solid line is
the canonical phase variance for the equivalent two-mode state. The
crosses and pluses are for M =2K and increments in ® of 7/ M and
/2, respectively. The diamonds and circles are for values of M
that give the minimum value of VN2, and increments in ® of 7/ M
and 7/2, respectively.

This probability must scale down with M to prevent it giving
a contribution to the variance larger than O(1/(NgVM)). To
ensure that this probability is sufficiently small, the size of
the error should be O(\(In M)/M). This leads to the addi-
tional VIn N factor in the final result.

The analytical results show that there is a lower bound on
the variance for hy@ measurements of Q(N~Y?) and an
upper bound of O(vIn NN=*?). The scaling must be close to
N7, but these bounds leave open the question of whether
there is an additional logarithmic factor. The hybrid measure-
ments have been simulated for values of K up to 8, and the
results are shown in Fig. 7. The variances shown are multi-
plied by N*? to make the scaling clearer. For the results
shown the value of VN2 increases with N, suggesting that
the variance is slightly larger than O(N=/2).

In Fig. 7, results are shown for increments in ® of /M
and 7/2. The variance for the single-photon measurements
on their own is slightly smaller with the 7/M increments
than with the 77/2 increments. However, for the hybrid mea-
surements, using increments of 77/2 yields significantly bet-
ter results. Results are also shown for M=2X, as well as for
where the value of M has been adjusted to minimize ViN>'2.
The motivation for using M=2X is that the analytical results
suggest that M ~N/3 is optimal. Numerically it was found
that slightly higher values of M gave slightly better results,
particularly for @ increments of 7/ M.

B. Nonadaptive scheme

It might be expected that approaching the Heisenberg
limit requires an adaptive measurement. Normally the vari-
ance would be approximately the sum of the canonical phase
variance and an additional variance due to the measurement
technique [36], and nonadaptive measurements would intro-
duce a variance scaling as the SQL [39]. Despite this, it is
still possible to achieve the same scaling as the Heisenberg
limit with a nonadaptive technique [28]. The reason why this
is possible is that the nonadaptive measurement with mul-
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FIG. 8. The variance for nonadaptive measurements with M
optimized as a function of K, but independent of k. The crosses are
for 220 samples and the pluses are for 225 samples.

tiple time modes has a different POVM from the nonadaptive
measurement on a single time mode.

A new feature of the nonadaptive technique of [28] is that
the number of repetitions, M, is now a function of the values
of K and k. The largest value of M is for a single-photon
NOON state, and the number of repetitions is decreased as
the size of the NOON state (or number of passes in Ref.
[28]) is increased. The reason for changing the number of
repetitions is essentially that the role of the measurements for
smaller values of k is to distinguish between the multiple
phase estimates provided by larger values of k. If the mea-
surements for smaller values of k do not distinguish between
these phase estimates accurately, then the resulting error is
large. On the other hand, because the resource cost for the
smaller values of k is small, the cost of repeating these mea-
surements is low. It is therefore better to repeat these mea-
surements more often, in order to prevent these large errors.

If the number of repetitions is not changed with k, then
the numerical results indicate that the scaling of the variance
is not as good as 1/N%. The numerical results are shown in
Fig. 8. The value of V;N? increases approximately linearly in
In N, indicating that the scaling is as (In N)/N?. For these
results the value of M was increased with K, even though it
was independent of k. It was found that the best value of M
increased nearly linearly in K, from about 10 for K=2 to 24
for K=9. The primary contribution to the variance was from
low-probability results with large error. This meant that ex-
tremely large numbers of samples need to be used to obtain
accurate estimates of the variance. Calculations with 2%0
samples yielded lower estimates of the variance than those
for 225 samples because they did not sufficiently sample the
low-probability results.

The reason why M needs to be increased with K in the
nonadaptive case can be understood in the following way.
For simplicity, consider just the measurements with k=0 (a
single-photon NOON state), and assume that the measure-
ments with larger values of k are sufficient to narrow down
the estimates of the phase to ¢ and ¢+ 7. The measurements
with k>0 measure the phase modulo 7, so they cannot dis-
tinguish between these alternatives. They do not give the
phase exactly modulo 7, but assuming that they do can only
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decrease the phase variance. The measurements with k=0
could distinguish between the two alternatives if they were
known.

In the adaptive case, the phase is known accurately (al-
though not perfectly) modulo 7 at the stage the measure-
ments with k=0 are performed. The feedback phase ® can
therefore be chosen so as to efficiently distinguish between
the two alternatives. However, in the nonadaptive case, the
values of ® used are completely independent of the actual
phase. In the case where there is a fixed value of M, there is
a nonzero probability that the measurement results will be
more consistent with ¢+ 7r rather than ¢, so there is a 7 error
in the phase estimate.

In particular, the probability that all the measurement re-
sults with k=0 are consistent with ¢+ 7 rather than ¢ is

M

1
Perror= H 5[1 - |COS(¢_ (Dm)|]~

m=1

(7.12)

There will be other combinations of measurement results that
are also more consistent with ¢+, but the probability for
this combination on its own provides a lower bound on the
overall probability that the final phase estimate is ¢+ 7. For
some particular values of the system phase this probability
will be zero, but averaging over all system phases gives a
nonzero error probability.

This lower bound on the probability of a measurement
result that gives a 7 error in the phase estimate means that, if
nonadaptive measurements are performed with a fixed value
of M, the phase variance cannot decrease below some mini-
mum value. More generally, if the value of M is allowed to
depend on K (but still be independent of k), then there need
not be a fixed lower bound on the variance, but because of
Eq. (6.3) the variance can scale no better than M(N)/N?. As
M must increase with K (and therefore N) in order to remove
the lower bound on the variance, the variance does not scale
at the Heisenberg limit.

For the nonadaptive scheme given in Ref. [28] the varia-
tion of M used was M(K,k)=2+3(K—k). Numerically it was
found that this variation of M gave the smallest asymptotic
variance that could be reliably calculated. The value of VyN?
was approximately 40.5 for values of N up to more than 10’
(see Fig. 9). This corresponds to an uncertainty of approxi-
mately 2.03 times the Heisenberg limit.

Alternative values of M given by M(K,k)=4+2(K-k)
did give slightly smaller values of VN for large N. How-
ever, calculations in this case were not reliable because the
variance depends heavily on results with large error and
small probability. Using 22° samples gave significantly
smaller values of VyN? in most cases, except for one value
which was much larger. When the number of samples was
increased to 2% the value of VyN? increased to approxi-
mately the same as for M(K,k)=2+3(K—-k) for N up to
about 10°. For larger values of N the variance was still
smaller, but it is likely that the number of samples is still too
small to obtain a reliable result.

Using other functions for M(K,k) did give slightly better
results for small values of K. For K=1, the functional depen-
dence that gave the smallest value of VyN? was M(K,k)=1

PHYSICAL REVIEW A 80, 052114 (2009)

50
45+ * ]

6 070 0,000 0 0 0 0 0 o]

40+ v oo Y
x o x X * x x k K % * ¥ * ¥

35¢ *o 1
* 0o

30r Lo .
25¢ 9 1
201 * 1
15 © 1
10¢ 1

Vi N2

O L L L
10° 10" 10°

N

FIG. 9. The variance for nonadaptive measurements with M as a
function of both K and k. The results for M(K,k)=2+3(K-k) are
shown as diamonds and the results for M(K,k)=4+2(K—k) are
shown as both the pluses and crosses. The crosses are for 220
samples and the pluses are for 2% samples. The circles are
M(K,k)=1+K—k for K=1 and M(K ,k)=1+4(K-k) for K=2.

+K—-k. For K=2, the best values of M were given by
M(K,k)=1+4(K—k). The results for these cases are also
shown in Fig. 9.

VIII. ADAPTING THE SIZE OF THE NOON STATE

Up to this point we have considered a fixed sequence of
NOON states, and the only parameter which was varied
adaptively was the feedback phase. It is also possible to con-
sider adjusting the size of the NOON states used according to
the measurement results. The most obvious way of doing this
is to select the NOON state that minimizes the expected vari-
ance after the next detection. The problem with this approach
is that it will select large NOON states that give small vari-
ance but result in a greater use of resources. As the aim is to
obtain the smallest possible scaling constant for Vi;N?, a bet-
ter approach is to choose the NOON state that minimizes this
quantity.

To determine results for a specific value of N, the sizes of
the NOON states were restricted such that the total resources
did not exceed N. The resulting variances obtained are
shown as the crossed circles in Fig. 10. For the larger values
of N (2!''=2048 and above), it was only feasible to use 2'°
samples, so these results have low accuracy. Nevertheless, it
is clear that using this approach yields a significantly higher
variance than simply using adaptive measurements with a
fixed sequence of NOON states. In addition, the scaling of
the variance appears to have increased to (In N)/N>.

It is possible to improve on this adaptive scheme by using
a radically different approach [29]. There are three main fea-
tures of this approach:

(1) The phase estimation begins with 100 measurements
with single photons and no feedback (similar to the hybrid
technique introduced in Sec. VIT A).

(2) After the first step, the feedback phase is chosen such
that the expected probabilities for the two measurement re-
sults are equal.
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FIG. 10. (Color online) The variance for measurements where
the size of the NOON states are adapted. The crossed circles are
where the size is chosen to minimize the expected value of ViN?
after the next detection, and the sizes are chosen such that a par-
ticular value of N is obtained. The continuous lines are where all
intermediate values of N are sampled. The dotted green line is
where VyN? is minimized, the solid red line is where [(S)
—In(27)]/In N is minimized, and the dashed blue line is where
ViN? is minimized, but the feedback of [29] is used for the phase.

(3) After the first step, the size of the NOON state is
chosen to minimize the expected entropy of the phase distri-
bution after the next measurement.

More specifically, the size of the NOON states is chosen
to minimize (S)/In N, where N is the number of resources
after the next detection. The motivation for dividing by In N
can be understood in the following way. For a probability
distribution, the negative of the entropy approximately cor-
responds to the information that may be communicated using
a distribution of that form. As the distribution narrows by a
factor of 2, the phase is effectively known to an additional
bit, and the entropy decreases by 1. Therefore, the entropy is
approximately proportional to the logarithm of the phase un-
certainty. The phase uncertainty varies as a power of N, so
the entropy should be approximately proportional to the
logarithm of N. The best phase information for a given
amount of resources can therefore be obtained by minimiz-
ing (S)/In N.

The calculations given in Ref. [29] also used some addi-
tional simplifications to increase the speed. Rather than
searching all possible values of the size of the next NOON
state (which could be many thousands), only about 30 were
searched. Denoting the number of resources used so far by
N, only sizes up to [N/3] were searched, and in step sizes of
[N/100]. In addition, each run was used to obtain phase es-
timates for each intermediate number of resources. There is a
complication in doing this because many of the NOON states
have v> 1, so there are not phase estimates for all values of
N. To obtain phase estimates for all N, the estimates for these
skipped values were approximated by taking the phase esti-
mate from the next lower value of N that was not skipped.
This gives samples for all intermediate values of N and can-
not underestimate the variance. Even with these simplifica-
tions, the phase variance scaled approximately as 40/N>.

On further investigation, we have found that the feedback
scheme of Ref. [29] can be further simplified and provide
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more accurate phase estimates. One simplification is in the
approximation used for the entropy. It is not practical to cal-
culate the entropy exactly, but it can be accurately approxi-
mated from the moments of the distribution. Reference [29]
used a higher-order approximation involving the third- and
fourth-order moments [the approximation given in Eq. (10)
of [29] is for the negative of the entropy]. The calculation
can be simplified by using the simpler approximation

§=3[1+In(2m) +1n V], (8.1)

Numerically it is found that this simpler approximation gives
accuracy of the phase measurements similar to that using the
higher-order approximation.

It was also found that the variance could be reduced if the
quantity that was minimized was of the form [(S)+C]/In N,
where C is some constant. One value that gave particularly
good results was C=-In(27r) [which just corresponds to
changing the sign on In(27) in Eq. (8.1) before dividing by
In N]. In Ref. [29] the measurement scheme was started with
100 single-photon measurements, in order to obtain a nar-
rowly peaked distribution. The drawback to this approach is
that it increases the variance for total photon numbers of a
similar order. The majority of the resources need to be used
in NOON states with high photon numbers in order to obtain
results near the Heisenberg limit. To reduce this problem, the
number of single-photon measurements was reduced to ten.

In Fig. 10 the results from three different approaches are
shown. The first scheme described in this section, except
with the sampling scheme of Ref. [29], is shown as the dot-
ted line. This sampling appears to give slightly worse results
in this case as compared to the results where a fixed maxi-
mum value was used. For larger values of N, VyN? is typi-
cally above 60. The results where [(S)—In(27)]/In N was
minimized are also shown in this figure. This seemed to give
the best results out of the alternative variations of the scheme
of Ref. [29] that were tested, with variances significantly
below those where V;N? was minimized.

The third alternative that is shown in Fig. 10 is that where
VuN? is minimized when choosing the size of the NOON
state, but the feedback phase is chosen to ensure that the
probabilities of the two detection results are equal (as in Ref.
[29]). This can be achieved simply by replacing [{S)
+C]/In N with (S§)+2 In N. This scheme also gives better
results than the first scheme and gives variances close to
those for the scheme minimizing [(S)—In(2)]/In N.

Even though the schemes where the sizes of the NOON
states are adapted are far more flexible than the schemes with
a fixed sequence of NOON states, they do not appear to give
any better results. For most methods tested the variance ob-
tained is far greater than that for a fixed sequence of NOON
states. Even for the best method tested, the variances ob-
tained were simply comparable to those for the fixed se-
quence of NOON states and did not give any improvement.
Because the fixed sequence of NOON states is far simpler to
implement, it would be preferable to use for most applica-
tions.
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TABLE 1. Scalings of the phase variance for the various phase estimation schemes considered in this paper. The column “NOON
sequence” shows the number of photons in each state in the sequence, in temporal order (which is important for adaptive measurements). In
all but the last scheme, these photon numbers are powers of 2 between 1 (a single-photon state) and 2X. Two variances are shown: the
intrinsic variance (i.e., for a canonical phase measurement) and the variance for the actual measurement scheme. The former is undefined for
the final scheme because the sequence of states there is not predetermined. Rather than exact variances, only the scaling of the variance with
N, the total number of photons, is shown. 0, O, and () are standard Bachmann-Landau notation; ® means the asymptotic scaling, while O
and () mean upper and lower bounds, respectively, on the asymptotic scaling. The symbol O indicates that multiplying factors scaling as
powers of log(N) are ignored. We use an asterisk, such as in ®, to indicate that the scaling is only proven numerically. For each result we
give the section where the result is discussed, as well as a citation to previous work (if it exists). Finally, the “Rating” column gives an easy
guide to the performance of the various phase estimation schemes. The stars have the following interpretation: s*—variance equal to, or a
constant multiplier greater than, the SQL of 1/N asymptotically; *:*—variance scaling as the SQL, but smaller by a constant multiplier;
* % sk—variance scaling roughly as the geometric mean of the SQL, and the HL of 7>/N? asymptotically; s * s s—variance scaling almost

as well as the HL; and #* = * * *k—variance equal to, or a constant multiplier times greater than, the HL.

Scheme NOON sequence Intrinsic var. Reference Estimate var. Rating Reference
Single photons 1,1,...,1 BO(1/N) O(1/N) *

QPEA: M=1 2K k=1 1 O(1/N) [26]; Sec. IV O(1/N) * [26]; Sec. V
Generalized QPEA M =2 2K twice, ...,1 twice O(In N/N?) Sec. IV O(1/N) * [26]; Sec. V
Generalized QPEA M =3 2K thrice, ..., 1 thrice O(1/N?) Sec. IV O*(1/N*?) sk ok Sec. V
Generalized QPEA M =4 2K M-fold, ...,1 M-fold O(1/N?) Sec. IV O*(1/N?) k%% %% [26]; Sec. V
Generalized QPEA K fixed 2K M-fold, ...,1 M-fold O272K/N) Sec. VI O*(272K/N) oS Sec. VI
Nonadaptive, best M(K) 2K, ....1, each M(K)-fold O(M(K)/N?) Sec. VII O*(In N/N?) %% %k Sec. VII
Nonadaptive, best M(K k) {2}, each M(K ,k)-fold O(1/N?) [28]; Sec. VII O(1/N?) %% %% [28]; Sec. VII
Hybrid QPEA +singles 2K 2K=1 1,1, .., Q(1/N*?) Sec. VII O0(\In N/N3?) %ok % [28]; Sec. VII
Nonbinary adaptive Adaptively chosen N/A O*(1/N?) sk kx  [29]; Sec. VIII

IX. CONCLUSIONS

NOON states achieve the highest phase resolution pos-
sible for a given photon number but do not provide an un-
ambiguous phase estimate. By combining measurements
with a range of NOON states with different photon numbers,
it is possible to achieve a phase resolution at the Heisenberg
limit and eliminate the ambiguity in the phase estimate. As
well as being applicable to NOON states, these schemes can
also be performed using single photons, by passing them
through the phase shift multiple times, as experimentally
demonstrated in Refs. [26,28].

In this paper we have considered many different measure-
ment schemes involving sequences of NOON states, some of
which give a variance scaling at the Heisenberg limit, and
some of which do not. Below, we discuss these results, but
for the benefit of the reader we present a summary of all the
key results in this paper in Table I.

Using a sequence of NOON states with photon numbers
that are decreasing powers of 2, an elegant adaptive optical
phase measurement can be performed by implementing the
quantum phase estimation algorithm from quantum comput-
ing theory [2,3]. This provides a canonical measurement of
the phase, which is a remarkable result because normally it is
impossible to perform a canonical phase measurement using
linear optics. The canonical measurement is possible because
the photons are separated into distinct time modes.

This approach does not provide variance scaling as the
Heisenberg limit because the underlying state has poor phase
properties and gives a significant probability for large phase
errors. Reduced phase variance could be achieved using

states that are entangled between the different time modes. A
more practical alternative is to use multiple copies of the
state, which also provides reduced canonical phase variance.
The canonical measurements can no longer be performed,
but for four or more copies it is possible to accurately ap-
proximate the canonical phase measurement using adaptive
measurements. The minimum variance is then obtained using
five copies.

Perhaps surprisingly, it is also possible to achieve the
Heisenberg limit using nonadaptive measurements. If the
same number of copies of each size of NOON state is used,
then the phase uncertainty scales as \In N/N. In order to
achieve the Heisenberg limit, the number of copies must be a
function of the size of the NOON state. In particular, the
number of copies must be of order unity (e.g., 2) for the
largest NOON state and should increase by a constant num-
ber (e.g., 3) at each step as one halves the size of the NOON
state.

An alternative to fixing the number of copies of a given
NOON state is to consider schemes which choose the size of
the next NOON state to be used adaptively. This approach
can yield a variance close to the Heisenberg limit. The obvi-
ous approach, which is to choose a NOON state which mini-
mizes the variance multiplied by N?, provides scaling
slightly worse than the Heisenberg limit. However, it is pos-
sible to obtain scaling much closer to the Heisenberg limit
using an alternative scheme where the entropy of the phase
distribution is minimized instead. This approach was first
presented in Ref. [29]. Here, we have simplified and im-
proved that scheme in a number of ways.
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Some other alternatives that might be expected to provide
phase measurements at the Heisenberg limit do not. This can
be conveniently proven by examining canonical measure-
ments for the equivalent two-mode state. One such alterna-
tive is hybrid measurements, where the QPEA is supple-
mented with single-photon detections, to reduce the
probability of large phase errors. This approach yields a ca-
nonical phase uncertainty scaling as 1/N*4, and the uncer-
tainty in the phase estimate from the hybrid measurements
scales slightly worse. Another alternative that does not yield
the Heisenberg limit is simply increasing the number of rep-
etitions, rather than the maximum size of the NOON state
(or, equivalently, the number of passes). While this gives
resuﬁs which remain below the standard quantum limit of
1/+N for phase precision, they scale in exactly the same way
as the SQL.

In this paper we have demonstrated this latter result ex-
perimentally by keeping the maximum number of passes
fixed while increasing the number of photons used. This
demonstration helps us to illustrate why gravitational wave
interferometers do not approach the limit of 1/N for phase
precision even though they use multiple passes: in such in-
terferometers the number of passes is fixed at its maximum
value (which is typically very large), while the number of
“repetitions” (the number of photons in the coherent state
which is used) is also made very large. This contrasts with all
of the schemes that do scale as 1/N, in which the number of
repetitions is of order unity for the largest pass number (or
the largest NOON state), and in which the number of passes
(or the size of the NOON state) must be varied across a large
range of values from one to its maximum value.
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APPENDIX A: PROOF OF THEOREM 1

Here, we give the full proof of Theorem 1, which gives
the scaling of the canonical phase variance for repetitions of
the measurements. In general f,,(n) can be obtained by the
recurrence relation

Nk
fM(n)=EfM—1(n_k)- (A1)
k=0

Note that this is a discrete convolution of f},_; with the uni-
form distribution. This recurrence relation comes about be-
cause the number of combinations of the values of
ny,n,,...,ny may be obtained, for each value of n;, by de-
termining the number of combinations of n,, ... ,n,, that sum
to n—n;. The simplest example is M =1, where f;(n)=1 for
0=n=Ng and f,(n)=0, otherwise. For M =2, evaluating the
sum yields

PHYSICAL REVIEW A 80, 052114 (2009)

n+1, 0=n=Ng
f2(l’l)= 2NK—n+l, NKSnSZNK (AZ)
0, otherwise.

A crucial point is that the increment between successive val-
ues of f, is bounded. The recurrence relation implies

Vaaln+ 1) = fru(w)| = N+ Dmaxlfog 1k +1) = fara (K)]-
(A3)

Because |f5(n+1)—f,(n)| =1, this means that
[far(n+ 1) = fyy(m)] = (Ng + Y2,

The function is symmetric, so f;,(n)=f3,(N-n). It is possible
to determine the general value of f),(n) for n=Ng. The so-
lution is

(A4)

n+M—1>_(n+M—1)! (A3)

fM(")=< M-1 )" mim-nr

To prove this, first note that it is correct for M =2. Next, use
the recurrence relation to give

Nk Nk

fM(”) _fM(n_ 1) =EfM—1(”—k) _EfM—l(n_k_ 1)
k=0 k=0

Ng+1

Ng
= fua(n=k) = 2 fuy(n—k)
%=0 k=1

=fu=1(n) = fyo1(n = Ng=1).
For n= Ny, the argument of f,,(n—Ng—1) is negative, so this
term is zero. If the solution is correct for M—1 and for n
—1, then
Fu(m) = fr(n=1) + fy_1(n)
(n+M-2)! (n+M-2)!
T-D) M- nt(M=-2)!
(n+M-2)!
n!(M-1)!
(n+M-1)!

(A6)

=(n+M-1)

(A7)

Using the formula gives, for n <Nk,

S+ 1) = fiy(n) = (n+2)"2, (AB)

(n+2)M!

EE (A9)

fun+1)+ fy(n) =

For M >2, this gives

[fu(n+1) _fM(n)]2
[fu(n+1) + fu(n)]

Due to symmetry, the same result holds for n>N—N. This
part of the derivation also holds for n=—1 or N. For M=2 or
1, a decreasing function of n is obtained, so n cannot be
replaced with Ny for the upper bound.

=M-1)! (Ng+ DM3. (A10)
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The distribution for f,,(n) cannot have a nontrivial mini-
mum (the trivial minimum is zero at the bounds). That is, it
cannot decrease with n, then increase. This can be shown by
induction in the following way. If and only if f),(n) has a
nontrivial minimum, then there exist n, n’, on>0, and n’
>0 such that n'<n, fy(n)>fy(n-=n), and f(n')
<fu(n'=6n"). That would imply fy,_(n)>fy_(n—Ng
—o6n) and fy_;(n")<fy_(n'"=Ng-35n"). However, that
would imply that f,_,(n) has a nontrivial minimum. As we
know that is not the case for M=1 and 2, using induction
shows that f,,(n) cannot have a nontrivial minimum for any
M.

This result implies that f,(n) increases to a maximum at
the center, then decreases. In particular, for Ny =n=N-N,
fu(m)=fy(Ng). Now we have f,(Ng)=(Ng+ 1)1/ (M
-1)!, so

[fu(n+1) = f(n)]?

=M-1)! (Ng+ Y3, (A1l
U(n s Dt fy(m] — M~ D Ned DE (AT
for Ny <n=N-Ng. Therefore, overall
Nk _ 2
Lfaslr+ D) = fou ()] =M (Ng+ D2, (A12)

nt1 fu(n+1) + fy(n)]

The variance V- for the state is given by

E [N+ 1) = \fy () P

n=—1

_ L Due D= P

N (Ng+ I)Mn:—l [fu(n+ 1) + fi(n)]
M! M ! M?

T (Ng+ 12 (N+ M)

2(1_|<el¢>|)— I)M

(A13)

Hence, for M >2, the variance scales as the Heisenberg limit
of 1/N>.
In the case M =2, the bound for n <Nk is

[fM(”+1)—fM(”)]2< 1

Uuln+ D+ fum)] ~ n+ 17 (A14)
Taking the sum from n=0 to Ng—1 gives
N
[+ 1) = fuu(m) P = fNK dn
2+ D) +fin)] ~ )y n+1 =In(Ng+1). (A15)

This approach therefore yields an upper bound on the vari-
ance that scales as (In N)/N?, rather than the Heisenberg
limit of 1/N?. In fact, this is the actual scaling for these
states. Evaluating the exact value of V- gives

231 -|<ei<?>>|):2< 2 Vn(n + 1))

21nN c 3
=——+5+0N").
N? N?

(N + 1)2
(A16)

where ¢=6.5949.
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APPENDIX B: DETAILS OF SHARPNESS FORMULA

Here, we give further details of the meaning of Eq. (3.7)
and its interpretation as an average over the sharpnesses of
the individual Bayesian probability distributions obtained. A
subtlety that has been omitted in the discussion in the main
text is that the probability distribution for the measurement
results is now a function of both the system phase and the
initial feedback phase and should therefore be written as
P(ii,,| ¢, ®,). The other feedback phases are all chosen de-
terministically based on the measurement results and ®; and
can be omitted here. We use the notation ®; to indicate the
feedback phase before the jth detection. The Value of u may
then be written explicitly as

1)€i¢ .

m= (B1)

1
—f d®, >, P(i,,

2

Because the phases are relative, the probability of the
measurement results depends only on the difference between
the system phase and the first feedback phase. That is,

P(it,, (B2)

(ZS’(I)I) = P(’Zm|¢_ q)1»0)~

Similarly the probability distribution for the system phase
will depend on ®; but will depend only on the difference
between the two; that is,

P(¢|’Zm’(pl)=P(¢_q)l|”7m’0)' (B3)

In the remainder of this appendix we use the probabilities in
this form and omit the argument of 0.

The later feedback phases, as well as the phase estimate
(2), depend on the measurement results and the value of ®;.
Because the phases are relative, these phases should only
depend in a linear way on the initial feedback phase. That is,

i, D)) = Plii,,0) + D). (B4)

Using this, and changing variables to X=¢—®, we find that
M becomes

. (BS)

1 IV
— J dNY, P(ii,|N,0)e T #am0-NT |
e

Uy

In the following analysis we need to consider a set of
measurement results given an actual system phase ¢ and an
initial feedback phase @, as well as the Bayesian probability
distribution for the system phase given those measurement
results. Since we effectively have two system phases, the
actual system phase and the dummy variable for the system
phase in the Bayesian probability distribution, we use the
symbol ¢g for the variable in the Bayesian probability dis-
tribution. We also use Xg= ¢pg—P,. Then the optimal value

of ¢ is
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&(ﬁm’q)l) = cI')l + argJ eixBP(NB|ﬁm)dNB
= argJ "8+ (N, ) dNg

=arg f e8P (¢ — @i, )d b = arg(e' ),
(BO)

where the angular brackets indicate that the average is taken
for that value of i,, and ®,. The integral for u then becomes

1 N
L3 |[on,
2’77,;

In this expression the integral over X can be an integral over
the actual system phase for fixed @, or an integral over the
feedback phase @, for fixed ¢. For Eq. (3.7) in the main text,
we have taken ® ;=0 so N=¢.

This expression can be rewritten as

N)dN ‘ .

(B7)

f e"**‘P(xwm)dx‘ .

(B8)

1
p= f 4D, Pliiy |y - D))
2 i,

The interpretation of the variables in this expression now
changes. We now interpret this expression as the sharpness
of the Bayesian probability distribution for the system phase
given measurement results i,, averaged over the initial feed-
back phase @, and measurement results i, for a specific
system phase. To make this clearer, we can relabel the vari-
ables as below,

1 N A
M= ;Tf dxz p(”—im|x) ‘ f emBP(mem)de

1 :
-5 f aN3 plit, N) f eP( ey - @i, )d by

=E[[(e"s)[].

E indicates an expectation value over the measurement re-
sults and N=¢—®,. This is independent of the actual system
phase and may therefore be regarded as an average over the
measurement results and @,. As above the angular brackets
indicate an average over the system phase in the Bayesian
probability distribution ¢y. In the main text we simply call
this ¢, as we do not have the actual system phase and system
phase for the Bayesian probability distribution in the same
expression.

(B9)

APPENDIX C: GENERAL MEASURE OF RESOURCES

As explained in Sec. II, we adopt the general definition of
N in a system-independent way as the size of the smallest
interval supporting the Fourier transform of the family of
states |()). Here, |¢{¢)) is interpreted as follows. The en-
tire measurement scheme may be regarded as the preparation
of a pure quantum state, followed by a unitary operation that
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depends on ¢, and finally a measurement. The preparation of
the state and the ¢-dependent unitary operation may be
grouped together into preparation of the ¢-dependent state
|¢()). In general there will be restrictions on both the input
state (for example, a limited photon number) and the unitary
operation (for example, a limited number of passes through
the phase shift) that will limit the possible states |¢(¢)).
Taking the Fourier transform of the family of states

l¥(¢)) yields

©

Y p))d .

—o0

~ 1
|¢(S)>=T (C1)

The states |1Zf(s)> are not (necessarily) normalized. We con-
sider the case where restrictions on the measurement scheme

imply that the family |¢/(s)) has support on a finite interval
[Nmin’Nmax], and so

1 Nmax . -
U P) == f e yfs))ds. (C2)
\”277- Nmnin
We define N as the smallest value of N ,c—Npip-
There are two main cases that we can consider:

(1) |J,Z(s)> has support on a discrete set {s;} € [Nyin» Nimax]»
with every s;—s; being integer valued, and

(2) |¢As)) may be nonzero for any s € [Nyin» Nyax -

In the first case, |¢(¢)) is periodic in ¢ with period 2.
Then ¢ is a phase, and the variance may be measured via the
Holevo variance. In the second case there is no periodicity
imposed on |¢(¢)). The appropriate measure of the variance
of ¢ is then the usual variance.

The first thing to notice is that the states |¢(s)) may be
taken to be orthogonal without affecting the minimum vari-
ance that may be obtained. This can be proven as follows.
Writing these states in some basis of orthogonal states |{),

1 Nmax_ *
W $))=—— J e f Ws,0)0deds.  (C3)
\277 Nmin —%

Now we can construct the modified state |¢/'(¢)) by adding
an additional subspace with orthogonal states |s),

N,

max

sy | y(s.0)|Ddlds.  (C4)

—00

) =
W=

mTIN

min

This modified state is not necessarily normalized. Perform-
ing a measurement of this additional subspace via projec-
tions |6)( 6], with

e}

1 .
O)=—=] e*ls)ds, (C5)
V2

—oo

yields

1 Nmax . *®
(el (=75 f eis(=0 f s, 0|)dids. (C6)
Nmin -

This state is unchanged from that in Eq. (C3), except for a
shift in ¢ of 6. Thus, the state |4/ (¢)) cannot give any less
information about ¢ than |¢(¢)). In addition, the state
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|/ (¢)) is of the form (C2), except |#A(s)) has been replaced
with the orthogonal states

B f s 010z, )

Hence, the states |1Z(s)) may be replaced with orthogonal
states with no loss of phase information. Thus, in examining

the limits to estimation of ¢, we can assume the states |l,~b(s)>
are mutually orthogonal with no loss of generality.
In the case where the frequencies {sj} are restricted to

differ by integer values, then |gZ(s)> becomes a series of delta
functions in s. The integral (C2) becomes a sum

N
[W(p)) = eNmin? D] e 4h(s)]s), (C8)
5s=0
where
_ 1 ste
s)|s) = —— lfs"))ds’, (C9)
V2 e

for 1>¢e>0. Assuming the states |¢(s)) are mutually or-
thogonal, the states |s) are mutually orthogonal as well. This
state is then identical to that for a phase shift on a single
mode with a maximum of N photons, and it has a phase
uncertainty lower bounded by Eq. (2.3), which we repeat
here,

— T

A =\VVy=t ( >~—. C10

¢ = \Vy=tan N+2 N ( )

In the case where |<Z(s)) is nonzero for any value of the

frequency s € [Npin» Nmax)» We may find the bound on the

variance as follows. Without loss of generality, the family of
states can be given by

N
| () = f eSPY(s)|s), (C11)
0

where here we have normalized {|s)} as (s|s')=8(s—s"). In
this continuous case the system is equivalent to position and
momentum, with the frequency s equivalent to position and
¢ equivalent to momentum (provided we use units where
A=1). It is therefore clear that the optimal measurement for
¢ is a projection in the basis

(=] ).

—00

(C12)
This yields a phase variance of

© 0 2
v ¢2|¢<¢>|2d¢—( | ¢|¢<¢>|2d¢), 13)

where () is the inverse Fourier transform of #(s). This
result is for ¢ initially completely unknown, with a flat prior
distribution over the whole real line.

If we apply a phase shift of A¢ to the state, then this
simply changes the mean value of ¢ but leaves the variance
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unchanged. Therefore, in considering the problem of mini-
mizing the variance, we may consider states with mean ¢
equal to zero without loss of generality. The minimum un-
certainty state then follows from the analogy of position and
momentum. The bounds of 0 and N on s are equivalent to an
infinite square well potential of size N. The minimum energy
of a state in this infinite square well is E=7/(2N?), where
we have taken =1 and the mass equal to 1. Because ¢ is
equivalent to the momentum, and we are taking the mean ¢
to be equal to zero, V=2F, so the minimum variance is V
=2/ N?. This gives the lower bound on the uncertainty of

Ay = V= (C14)

=13

This result may also be found by taking the limit of the
discrete case.

The case where the power of e/® can only take integer
values is relevant to interferometry and to the gate formalism
of Ref. [27]. For photons, each pass of a single photon
through the phase shift gives a multiplication by a factor of
e'?, 50 N, corresponds to an upper limit on the number of
photon passes for the measurement scheme. It is not possible
to have a negative number of photon passes, and normally
there is no lower bound on the number of photon passes, so
Npin=0 and N is the maximum number of photon passes. In
cases where there is a minimum number of photon passes,
then N can also be taken to be the difference between the
minimum and the maximum numbers of photon passes and
yield a tighter bound on the phase uncertainty.

In the gate formalism of Ref. [27] each application of the
phases shift is a gate of the form

0 ¢

applied to a qubit. Each application gives multiplication by a
factor of ¢'? for the |l) basis state, and no multiplication for
the |0) basis state. Therefore, an upper bound on the power
of €'®, Ny is given by the number of applications of the
phase shift. The lower bound is zero, so N is simply the
number of applications of the phase shift. In particular cases
the details of the measurement scheme may mean that there
are tighter bounds on the power. For example, for some gates
the qubit may be initialized to |1), in which case N,y could
be taken to be greater than zero. As in the case of photons,
this would yield a tighter bound on the phase uncertainty.

The third application we discuss is that of metrology of a
Hamiltonian with an unknown parameter ¢, describable as
H,=¢H. We consider the estimation of ¢ by probing the
Hamiltonian for a total time 7. This is the total time that
systems evolve under the Hamiltonian, which can include
parallel or serial evolution of systems. The maximum power
of ¢/# that can be obtained is —\,;, 7, where \,,;, is the mini-
mum eigenvalue of H. The minimum power that can be ob-
tained is —N T, where A, is the maximum eigenvalue of
H. The difference between the upper and the lower bounds
on the power of e'? is therefore N=||H||T, where ||H]|| is the
difference between the maximum and the minimum eigen-
values of H.

(C15)
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In the case of metrology of a Hamiltonian, the time inter-
vals can be any real numbers, so the powers of ¢'# can take
any real values within the bounds. Therefore, ¢» may be mea-
sured as any real number, rather than modulo 27, and the
bound on the phase uncertainty is exactly /N=/(||H|T)
and is measured by the standard deviation. In Ref. [44] the

PHYSICAL REVIEW A 80, 052114 (2009)

total probe time is vt because there are v independent probes
of time ¢. The limit to the phase measurement precision there
is again /N, with N=wvi||H||. Note that Ref. [44] uses the
terminology “fundamental limit” for the minimum possible
phase uncertainty and uses the terminology “Heisenberg
limit” in a different sense.
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