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Using a simple model potential, we study the effects of weak Markovian dissipation on the quantum arrival
time. The interaction with the environment is incorporated into the dynamics through a Markovian master
equation of Lindblad type, which allows us to compare time-of-arrival distributions and approximate crossing
probabilities for different dissipation strengths and temperatures. We also establish a connection to an earlier
study where quantum tunneling with dissipation was investigated, which leads us to some conclusions con-
cerning the formulation of the continuity equation in the Lindblad theory.
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I. INTRODUCTION

The problem of the quantum arrival time has been inten-
sively studied during the last years �1–15� both because it is
a fundamental issue in quantum mechanics and because it
can be of practical relevance for the particle detection pro-
cess. The main difficulties are �i� how to construct a time-of-
arrival �TOA� operator in quantum mechanics �16–23�, �ii�
how to establish a quantum mechanical TOA distribution
�24–28�, and �iii� how the corresponding observables can be
measured �29–33�. In the vast majority of the cases, these
questions were studied within the Schrödinger equation, but
also a relativistic Dirac equation approach was adopted in
some cases �34,35�. A unitary time evolution, however, can-
not be used to describe irreversible dissipative processes. In
the present work, we do not primarily aim at a further dis-
cussion of possible definitions but rather wish to address a
different question: how does a dissipative interaction with an
environment affect the quantum mechanical arrival time?
The TOA problem in the presence of an environment has
been studied earlier, e.g., using so-called decoherent histories
�36,37�, an absorbing potential �38�, or a formalism based on
quantum canonical transformations �39�. An alternative ap-
proach was demonstrated in Ref. �40�, where Aoki et al.
solved the time-dependent Schrödinger equation �TDSE� nu-
merically using the Crank-Nicholson method in order to
propagate a wave packet through a square potential barrier
and interpret the barrier-induced changes in the wave packet
shape and dispersion relation as an environmental effect.
Still, such an approach is different from the one adopted here
in the sense that the TDSE dynamics is unitary and allows us
to compare the arrival times of free and tunneling particles
rather than the arrival times for different dissipation
strengths. In the present work, instead of considering a po-
tential barrier itself as an environment, we will investigate
the arrival times of particles passing through a barrier but
being exposed to different coupling strengths and tempera-
tures. For that purpose, we solve a Markovian master equa-
tion of Lindblad type �41�, which, for the parabolic potential
barrier considered here, is possible even analytically. At this

point, one should mention that conceptually the problem at
hand is related to the well-studied topic of dissipative effects
on quantum tunneling �42–51�. This will also be discussed
later.

The paper is structured as follows. The model system
which is used as a test case for our study is introduced in
Sec. II, and the results are presented in Sec. III, where we
also establish a connection to earlier work. A brief summary
is given in Sec. IV. Atomic units are used throughout the
paper.

II. MODEL

We consider the initial wave function to be a one-
dimensional Gaussian wave packet of the form

��x,t = 0� =
1

�2��x�1/4exp� 1

4�x
�x − x0�2 +

i

�
p0x� , �1�

where p0 and x0 are the initial expectation values of position
and momentum and �x is the initial spread in position space.
We assume that the wave packet is initially centered around
x0�0 in position space and p0�0 in momentum space, ap-
proaching a parabolic potential barrier which is centered at
the origin,

Û = −
m�2x̂2

2
. �2�

Here, m is the mass of the particle and � is a parameter
describing the barrier steepness. The central questions to be
addressed are the following: what is the probability that the
particle arrives at the origin within a certain time interval,
when is this most likely to happen, and how are the arrival
probability and time affected by temperature and dissipation.
Trying to answer these questions, we will not propagate the
wave packet in time with TDSE; instead, we work with the
Lindblad master equation which is convenient if we wish to
incorporate environmental effects. This is sufficient to com-
pletely cover the dynamics in the given case since it yields
the time evolution of the Wigner function W corresponding
to the initial wave packet �Eq. �1�� from which all informa-
tion required for the present study can be extracted. In the
following, we denote by �A�t� the expectation value of an

operator Â and by �AB�t�=�BA�t� the covariance of two op-
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erators Â, B̂ �which, for Â= B̂, reduces to the variance �AA

= �Â2�− �Â�2�. For the case Â= x̂, B̂= p̂ we also define the
covariance determinant ��t�=�xx�t��pp�t�−�px�t�2. With this
notation, the initial Wigner function corresponding to the
wave packet in Eq. �1� reads

W�x,p,t = 0� =
1

2�	��0�
	 exp
−

1

2��0�
��pp�0��x − �x�0��2

+ �xx�0��p − �p�0��2 − 2�px�0��x − �x�0��

	�p − �p�0���
 , �3�

where �x�0�=x0, �p�0�= p0, �xx�0�=�x, �pp�0�
=�2 / �4�xx�0��, and �px�0�=0. The advantage of choosing a
parabolic potential barrier �Eq. �2�� is that the Hamiltonian,

Ĥ =
p̂2

2m
+ Û , �4�

is quadratic both in x̂ and p̂ and hence the Wigner function
remains Gaussian for all times. Therefore, it is sufficient to
determine the time evolution of the expectation values �x�t�,
�p�t�, the variances �xx�t�, �pp�t�, and the covariance �px�t�.
The Wigner function at any time t is then given by the same
expression as in Eq. �3�, where the initial values of the first
and second moments are replaced by their value at time t.
The equations of motion can be derived from the master

equation, which, for an operator Â, in the Heisenberg picture
reads

dÂ

dt
=

i

�
�Ĥ,Â� +

1

2�
�

j

�V̂j
†�Â,V̂j� + �V̂j

†,Â�V̂j� . �5�

The so-called Lindblad operators V̂j describe the dissipative
interaction of the system with the environment. Convenient
choices of the latter are linear superpositions of the position
and momentum operators,

V̂j = ajp̂ + bjx̂, V̂j
† = aj

�p̂ + bj
�x̂, j = 1,2, �6�

where aj and bj are complex numbers. Such operators were
initially introduced to study dissipation effects in nuclear
physics �52–54� and they were also used in other general
quantum mechanical discussions �50,51,55–61�. The advan-
tages are that the number of Lindblad operators is limited by
the dimension of the system and that the resulting equations
of motion are analytically solvable for a Hamiltonian qua-
dratic in x̂ and p̂. For the studied case of a Gaussian wave
packet in an inverted parabolic potential, the latter were de-
rived and solved elsewhere �50,51�, so that we just briefly
quote the relevant results. The expectation values evolve as

�x�t� = e−
t
cosh��t�x0 +
1

m�
sinh��t�p0
 , �7�

�p�t� = e−
t�m� sinh��t�x0 + cosh��t�p0� . �8�

Here, 
 is the environmental coupling strength parameter
which is connected to the Lindblad operators �Eq. �6�� as


 = − Im�
j

aj
�bj . �9�

The time evolution of the second moments can be written in
matrix form as

��xx�t� �px�t�
�px�t� �pp�t�

� = ��t���0 − ����t�T + � , �10�

where

��t� = exp
t� − 
 1/m
m�2 − 


�
, �0 = ��xx�0� �px�0�
�xp

�0� �pp�0� �
�11�

and the elements of � are given by

�11 =
1

2m2
�
2 − �2�
�m2�2
2 − �2�Dxx + Dpp + 2m
Dpx� ,

�22 =
1

2
�
2 − �2�
��m�2�2Dxx + �2
2 − �2�Dpp + 2m�2
Dpx� ,

�12 =
1

2m
�
2 − �2�
�
�m��2Dxx + 
Dpp + 2m
2Dpx� ,

�21 = �12. �12�

The diffusion coefficients Dxx, Dpp, and Dpx that appear in
the equations above are connected to the Lindblad operators
as

Dxx =
�

2 �
j

�aj�2, Dpp =
�

2 �
j

�bj�2, Dpx = −
�

2
Re�

j

aj
�bj .

�13�

A common choice is �50–52,54,57�

Dxx =
�


2m�
coth� ��

2kBT
�, Dpp =

�
m�

2
coth� ��

2kBT
�,

Dpx = 0 �14�

since it allows us to incorporate temperature dependence �kB
denotes the Boltzmann constant� and to satisfy the funda-
mental constraints �62�

Dxx � 0, Dpp � 0, DxxDpp − Dpx
2 
 
2�2/4. �15�

Thus, from Eqs. �7�, �8�, and �10� the Wigner function of the
system is known for all times,

W�x,p,t� =
1

2�	��t�
	 exp
−

1

2��t�
��pp�t��x − �x�t��2

+ �xx�t��p − �p�t��2 − 2�px�t��x − �x�t��

	�p − �p�t���
 . �16�

In Sec. III, we use this result to study the effects of dissipa-
tion and temperature on the arrival time.
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III. EFFECTS OF THE ENVIRONMENT ON THE
ARRIVAL TIME AND CONNECTION TO TUNNELING

PROBABILITY

As already mentioned in Sec. I, choosing an appropriate
measure of the TOA is far from trivial. One possible ap-
proach is to use the probability density current j�x , t�. Here,
we follow the derivation given in Appendix A in Ref. �37�
and consider a wave packet which is approaching the origin
from the right �i.e., x0�0, p0�0�. We define the approxi-
mate probability for the particle to cross the origin during the
interval �0, t� as

P�0,t� = �
0

t

j�0,t��dt�. �17�

Although, as extensively discussed in the references listed in
Sec. I, this definition still contains some ambiguities, e.g.,
due to possible backflow, it is nevertheless sufficient for our
study. First of all, since we are not primarily interested in
tunneling, we will consider a situation where the initial en-
ergy of the wave packet is well above the barrier, thus reduc-
ing the backflow. Second, since the potential has a maximum
at the origin, the backflow at this point should be particularly
small. The current at x=0 can be obtained from the Wigner
function in the following way:

j�0,t� = − �
−�

+�

dp
p

m
W�0,p,t� . �18�

Here we just quoted Eq. �A2� from Ref. �37�. A formal dis-
cussion concerning the use of Wigner functions to study the
TOA problem can be found in, e.g., Ref. �63�. For the
Wigner function derived in Sec. II �Eq. �16��, the above in-
tegral can be carried out analytically. The result is

j�0,t� =
�x�t��px�t� − �p�t��xx�t�

	2�m2�xx�t�3
exp
−

�x�t�2

2�xx�t�

 . �19�

It is interesting to note that while the Wigner function de-
pends also on the spread in momentum �pp�t�, the current at
the origin does not. The probability density current and the
approximate crossing probability are plotted in Fig. 1 for
different environmental coupling strengths and temperatures
�for convenience, we introduced dimensionless parameters
�=
 /� and �=�� / �kBT��.

We observe that for low temperatures, the coupling to the
environment hardly influences the TOA distribution and the
approximate crossing probability. At this point, it should be
stated that this does not necessarily need to hold for the case
of strong dissipation where 
��, but such a case cannot be
analyzed within the model adopted here since it violates the
Markovian condition and is beyond the validity region of the
master equation used here �Eq. �5��. However, in the case
���kBT both quantities become more sensitive even to
weak Markovian dissipation, and one clearly observes a shift
in the TOA distribution. This emphasizes the crucial role of
diffusion processes for particles propagating through inter-
acting environments. Qualitatively, our result for high tem-
peratures agrees with the conclusion obtained in Ref. �40�
where it was found that environmental effects, in fact, can

lead to an earlier TOA. For the case studied therein, namely,
a wave packet either propagating freely or crossing a poten-
tial barrier, this behavior was explained by the fact that the
barrier filters out slow components while the fast compo-
nents tunnel through the barrier. In our case, however, it is
very important to stress that while the maximum of the TOA
distribution is shifted to earlier times, the total asymptotic
crossing probability is decreasing with increasing environ-
mental coupling. In other words, the probability of the par-
ticle to arrive at the origin decreases, but, in the case it ar-
rives, the arrival is more likely to occur earlier than in the
noninteracting case.

Next, we would like to point out a connection between the
present study and earlier work where the same model was
used to study quantum tunneling with dissipation �50,51�. In
Ref. �51�, Isar et al. considered the same kind of wave packet
and potential barrier, with the initial energy expectation
value being below the barrier maximum. The tunneling prob-
ability was then defined in terms of the probability density �
as the asymptotic probability of finding the particle beyond
the barrier,

PT = lim
t→�
�

−�

0

dx��x,t� , �20�

for which the following analytical expression was derived:

�
−�

0

dx��x,t� =
1

2�1 + erf
−
�x�t�

	2�xx�t�

� . �21�

In both equations, the original notation is modified according
to the chosen convention �in Ref. �51� a wave packet with
x0�0 and p0�0 was considered, while we considered x0
�0 and p0�0�. The error function is defined as
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FIG. 1. �Color online� Upper panels: TOA distribution defined
in terms of the probability density current for low �left� and high
�right� temperatures ��=�� / �kBT��, shown for three different envi-
ronmental coupling strengths ��=
 /��. Lower panels: approximate
crossing probabilities in the case of low �left� and high �right� tem-
peratures. The following values were used in the calculations: �
=3.0, m=1.0, x0=4.0, p0=−15.0, and �x=1.0. All quantities are
given in atomic units.
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erf�u� =
2

	�
�

0

u

e−s2
ds . �22�

A natural question to ask is whether the definitions in Eqs.
�17� and �21� are related. In fact, in case of unitary dynamics
they are the same, which directly follows from the integra-
tion of the one-dimensional continuity equation

���x,t��
�t�

+
� j�x,t��

�x
= 0 �23�

in space and time, provided the initial condition

�
−�

0

���x,t = 0��2dx � 0 �24�

is satisfied and bearing in mind that the current always van-
ishes at x→−�. Although both conditions hold for the set of
parameters we used in our calculations, we found that the
two quantities �Eqs. �17� and �21�� are equal only in the limit
of weak dissipation and/or low temperatures, while for
higher temperatures and increasing dissipation they differ, as
demonstrated in Fig. 2.

This may seem unphysical, but the behavior can be un-
derstood if one recalls that the probability density in the
continuity equation �Eq. �23�� can be expressed as the posi-
tion representation of the density operator ���x , t�
= �x��̂�t��x��, which in the case of unitary time evolution sat-
isfies the von-Neumann equation

� �̂

�t
= −

i

�
�Ĥ, �̂� . �25�

The master equation we used in the present work, on the
other hand, contains an additional term that accounts for the
environmental effects,

� �̂

�t
= −

i

�
�Ĥ, �̂� +

1

2�
�

j

��V̂j�̂,V̂j
†� + �V̂j, �̂V̂j

†�� , �26�

and as a direct consequence of that the continuity equation
acquires an additional term as well. This term is negligible if
the magnitude of the coefficients aj, bj in the Lindblad op-
erators �Eq. �6�� is small, i.e., in the case of weak dissipation,

but it grows as the dissipation increases, which explains the
behavior displayed in Fig. 2. As a conclusion, we may, in
fact, say that in order for the probability density current de-
fined in terms of the Wigner function as in Eq. �18� and the
probability density, which is connected to the Wigner func-
tion via

��x,t� = �
−�

+�

dpW�x,p,t� , �27�

to satisfy the continuity equation in the framework of the
Lindblad theory, the additional term arising from the Lind-
blad operators needs to be incorporated into Eq. �23�. This
result is not obvious since one may expect that the effects of
the environment are already accounted for in the time evo-
lution of the Wigner function from which both the probabil-
ity density and the current are derived; the considered ex-
ample, however, clearly demonstrates that this alone is not
sufficient and the additional term in the continuity equation
is indeed necessary. At the same time, we emphasize that the
reformulation of the latter does not imply a violation of the
norm conservation since the total probability remains con-
stant, i.e., the relation

�
−�

+�

dx��x,t� = 1 �28�

is still valid for all times. This is a consequence of the crucial
property of the Lindblad equation to preserve the trace of the
density matrix, which is well known.

As the last topic to be addressed here, we investigate how
the previously discussed environmental effects on the TOA
vary at different energies. In Table I, we present the
asymptotic crossing probability P�0, t→��= P� �Eq. �17��
and the asymptotic tunneling probability PT �Eq. �20�� for
different dissipation strengths and initial energy expectation
values. The latter can be tuned via the initial momentum
expectation value p0 and is given by

E0 =
1

2m
�p0

2 +
�2

4�x
� −

m�2

2
�x0

2 + �x� . �29�

Essentially, we observe the following behavior: at energies
well below the barrier, the asymptotic tunneling probability
increases with increasing dissipation, in accordance with the
conclusion obtained in Ref. �51�, while at high energies in-
creasing dissipation has a suppressing effect. The asymptotic
crossing probability shows qualitatively the same behavior at
high energies. However, the enhancement through growing
dissipation emerges only at very low energies and is much
weaker than it is the case for the tunneling probability. This
illustrates, once again, the non-negligibility of the additional
Lindbladian term in the continuity equation which is respon-
sible for the observed deviation.

IV. SUMMARY

We studied the effects of weak Markovian dissipation on
the quantum arrival time using a parabolic potential barrier
as a test case. In the framework of the Lindblad master equa-
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FIG. 2. �Color online� Comparison of the probabilities from
Eqs. �17� and �21� for the case of low temperatures with a weak
dissipation �left panel� and high temperatures with a stronger dissi-
pation �right panel�. Note that the two curves overlap in the former
case. The values used in the calculations are as stated in the caption
of Fig. 1, with �=�� / �kBT� and �=
 /�. All quantities are given in
atomic units.
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tion, we derived an analytical expression for the probability
density current in terms of the Wigner function from which a
time-dependent expression for the approximate crossing
probability was obtained. We also compared the results to
earlier work devoted to quantum tunneling with dissipation,
in particular the approximate crossing probability derived
here in terms of the current with the tunneling probability
defined in terms of the probability density. Also the influence
of dissipation and initial energy on both these quantities was
examined. We found the following:

�a� While for energies well above the barrier the total
approximate crossing probability decreases, the peak of the
TOA distribution is shifted to earlier times with increasing
dissipation. This effect becomes more and more negligible as
the temperature decreases.

�b� In the limit of vanishing dissipation and temperature,
the approximate crossing probability and the tunneling prob-
ability approach the same value, which is reasonable since
both should be identical in the case of unitary dynamics as a
direct consequence of the continuity equation. However, for
sufficiently large coefficients in front of the Lindblad opera-
tors, the additional term in the continuity equation that is
emerging from the latter causes a noticeable deviation be-
tween the two probabilities.

�c� In the latter case, the probabilities differ not only in
the absolute value but also in their dependence on the initial
energy and dissipation. While the tunneling probability is

suppressed by dissipation at high energies and enhanced at
low energies, the latter aspect for the approximate crossing
probability is much less pronounced and emerges only at
very low energies.

We would like to conclude by pointing out some limits of
the model adopted here, which should be considered when
interpreting the results. The Markovian condition limits the
range of dissipation strengths that can be chosen. Thus, we
cannot draw a conclusion whether the results listed above
also apply in case of strong dissipation. Furthermore, the
choice of Lindblad operators and diffusion coefficients
adopted here is mostly used to describe a damped harmonic
oscillator, while in the present work the potential is not
bounded from below. Still, in the vicinity of the origin one
may hope that the physical effects of the environment are
still represented sufficiently well, although, to the best of our
knowledge, no rigorous proof of the validity of such an ap-
proach is known so far. Finally, it should be stressed that for
more complicated potentials also the qualitative dependence
of the TOA on the environment can be far more complex; the
simple case studied here, however, should at least roughly
reflect the main physical aspects.
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