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We discuss the dynamics of a classical spinless quantum particle carrying electric charge and constrained to
move on a nonsingular static surface in ordinary three-dimensional space in the presence of arbitrary configu-
rations of time independent electric currents. Starting from the canonical action in the embedding space we
show that a charged particle with charge q couples to a term linear in qA3M, where A3 is the transverse
component of the electromagnetic vector potential and M is the mean curvature in the surface. This term
cancels exactly a curvature contribution to the orbital magnetic moment of the particle. It is shown that
particles, independently of the value of the charge, in addition to the known couplings to the geometry also
couple to the mean curvature in the surface when a Neumann type of constraint is applied on the transverse
fluctuations of the wave function. In contrast to a Dirichlet constraint on the transverse fluctuations a Neumann
type of constraint on these degrees of freedom will in general make the equations of motion nonseparable. The
exceptions are the equations of motion for electrically neutral particles on surfaces with constant mean curva-
ture. In the presence of electric currents the equation of motion of a charged particle is generally nonseparable
independently of the coupling to the geometry and the boundary constraints.
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I. INTRODUCTION

A proper understanding of quantum physics on surfaces in
ordinary three-dimensional space has become immediate due
to the recent construction of a range of different nanostruc-
tures such as sheets, tubes, cones, spheres, tori, and other
structures. Thin wall quantization, which was introduced in
the seminal papers �1,2�, has emerged in this context as an
important topic, albeit a challenging one. Lower dimensional
nanostructures exposed to external electric and magnetic
fields have recently been given increased attention. However,
the theoretical framework for understanding thin wall quan-
tization in the presence of externally applied electric and
magnetic fields is presently poorly understood. In this work
we seek to put this framework on a firmer footing. In the
process we also extend the general framework of thin wall
quantization.

This work is organized as follows. We next introduce
some differential geometry. We then briefly review the di-
mensional reduction in the Schrödinger equation describing
an electrically neutral particle in the embedding space onto
an arbitrary nonsingular two-dimensional static surface S. It
is shown how the well-known geometry induced effective
potential �1� emerges. In the same vein we then consider the
dimensional reduction in the Schrödinger equation mini-
mally coupled to electromagnetism �3� in the general case
when electric currents are present. We show that an anormal
orbital magnetic moment appears. We argue that the resulting
theory therefore must bee deemed unphysical. We point out

that the inclusion of electric currents makes the separation of
the Schrödinger equation minimally coupled to electromag-
netism into uncoupled surface and transverse components
problematic in general independently of the effects of the
couplings to the geometry. We then derive the quantum
theory for a charged particle on S from a canonical action.
This formulation results in a theory which is not plagued by
the unphysical features of the dimensionally reduced
Schrödinger equation.

The theory stemming from the variational principle has
some interesting features. One central property is that an
electrically charged quantum particle couples to a term linear
in qA3M, where M is the mean curvature in the surface, A3 is
the transverse component of the applied electromagnetic vec-
tor potential, and q the electric charge. However, we show
that this additional term cancels exactly the curvature correc-
tion to the orbital magnetic moment of the particle which led
to unphysical behavior in the dimensionally reduced theory
we considered initially. Another aspect which emerges from
the variational approach, and which is independent of the
value of q, is the importance of the boundary conditions
imposed on the wave function in the process of constraining
the particle to a specific surface. It follows that a Neumann
type of boundary constraint exists. This will couple any par-
ticle independently of the value of the charge to M. Further-
more, considering a neutral particle with Neumann type of
constraint in the transverse direction it follows that separa-
tion of the equation of motion can only be attained on sur-
faces with constant mean curvature. We summarize our find-
ings in the last section and comment on previous work.

II. GEOMETRY AND DIMENSIONAL REDUCTION

We consider a smooth two-dimensional static surface S in
ordinary three dimensional space. We follow the parametri-
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zation in �1� and chart the three-dimensional embedding
space with coordinates Xi. We write the metric as �1,4�

ds2 = − dt2 + Gij�Xi�dXidXj + �dX3�2

= − dt2 + Gab�xa�dxadxb + �dx3�2, �1�

where Gab�xa� is the metric in the surface S defined by co-
ordinates xa. We assume that we can define a normal vector
field N� everywhere on S. The coordinate direction x3 is as-
sumed to be along N� in the immediate vicinity of S. Our
conventions will be such that indices at the beginning of the
alphabet will refer to the coordinates in the surface xa, while
indices in the middle of the alphabet refer to the global
coordinates Xi. It follows that �4�

Gab�Xi� = gab�xa� − 2Kab�xa�x3 + Ka
k�xa�gkm�xa�Kb

m�xa��x3�2,

�2�

G�Xi� = det Gab�Xi�

= g�xa��1 – 4M�xa�x3 + �2K�xa� + 4M�xa�2��x3�2 + ¯� ,

�3�

�G�Xi� � �g�xa���Xi� ,

��Xi� = 1 – 2M�xa�x3 + K�xa��x3�2 + ¯ , �4�

where gab�xa� is the induced metric in the surface, g�xa�
=det gab�xa� and Kj

i�xa� is the extrinsic curvature tensor as-
sociated with S. K=det Kj

i, and M�xa��Gij�Xi�Kij�Xi� is the
mean curvature in S �note that our definition of M deviates
from the one in �1� by a multiplicative factor 1

2 �.
Central to the thin wall quantization approach is the as-

sumption of the presence of forces which constrain the par-
ticle to S. It is assumed that these forces act everywhere
normal to S. We follow �1� and will assume that these forces
can be derived from a potential V��X3�. � is a parameter
which measures the strength of the potential. The
Schrödinger equation describing an electrically neutral par-
ticle in the embedding space within this framework is then
given by �we use units such that c=�=1�

i�t� = −
1

2m
Gij�i�� j�� + V��X3� . �5�

In order to derive a quantum theory in S we need to dimen-
sionally reduce the Schrödinger equation. We therefore de-
compose the covariant derivative in a coordinate gauge-
invariant manner as a sum of one part which acts along the
surface and one term which acts normal to the surface

�i = �	i + ��i. �6�

The purely kinetic term in the Schrödinger equation can then
be written

Gij�i� j� � ��	
2 + ��

2 ��

= ��a�a� + Gab�ab
c �c�� + ��3�3� + Gab�ab

3 �3�� , �7�

where in the last relation we have used the coordinate gauge
Eq. �1�. � jk

i represents the Christoffel symbols of the second

kind. We will assume that the wave function is normalizable
in three space such that the norm is given by

N =
 d3X�G���2 =
 d3x�g���2. �8�

Probability conservation requires that ��Xi�=��xi�−1/2��xi�.
We use this relation to compute the kinetic term and rewrite
the Schrödinger equation in terms of �. Clearly,

lim
x3→0

�	
2� = �	

2� . �9�

We also find that

lim
x3→0

��
2 � = lim

x3→0

1
�G

�3��G�3��

= lim
x3→0

�−1�3���3��−1/2���

� �3
2� − V0� . �10�

Using these relations we find in the limit x3→0 that the
Schrödinger equation becomes

i�t� = −
1

2m
�	

2� −
1

2m
�3

2� + V0� + V�� , �11�

where V0 is given by �1�

V0 = −
1

2m
�M

2
�2

− K� . �12�

We see that an effective potential has emerged depending on
scalars characterizing the extrinsic curvature of S. Let us
apply this approach to the case when the particle is electri-
cally charged.

The Schrödinger equation in the embedding space de-
scribing an electrically charged particle coupled to static
electric and magnetic fields in an arbitrary coordinate gauge
is given by

i��t − iqAt�� = −
1

2m
Gij��i − iqAi��� j − iqAj��

= −
1

2m
��i�i� − iqGij��iAj�� − 2iqAj� j�

− q2AiAi�� + V�� . �13�

The wave function � and the electromagnetic vector poten-
tial are functions of Xi. The scalar potential V is defined as
usual by V=−At. Equation �13� is invariant under a U�1�
gauge transformation of the vector potential combined with a
transformation of the wave function

Am�Xi� → Am� �Xi� = Am�Xi� + �mf�Xi� ,

��Xi� → ���Xi� = ��Xi�eiqf�Xi�, �14�

where f is a sufficiently well behaved scalar function. We
follow the decomposition scheme in Eq. �6� and decompose
the electromagnetic potential in one term A� 	 which is living
in the surface S, and one term which is normal to S, A� �,
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A� = A� 	 + A� � = A� 	 + �A� ��N� . �15�

We can then write

Gij��iAj� = �iA
j = �iA	

i + ��i�A� ���Nj + �A� ��Gij�iNj .

�16�

All quantities are at this level expressed in terms of the glo-
bal coordinates, but note that we have not specified the co-
ordinate gauge. We then find that

Gij��iAj� = �iA
i

= �iA	
i + ��i�A� ���Ni + �A� ��Gij��	iNj + ��iNj� .

�17�

The last two terms in Eq. �17� can be computed explicitly
since �	iNj =Kij, and ��iNj =0 by construction. All quantities
are evaluated on S. Hence, the electromagnetic vector poten-
tial and thus the charged particle couple to the extrinsic cur-
vature tensor defined on S. We now partially gauge fix the
coordinates, and identify the normal vector field with the unit
tangent vector field of appropriately chosen coordinate lines
N� =e�3 such that �A� ��=A3. On S we then get the following
expression for the divergence term in Eq. �17�:

�iA
i = �	 · A� 	 + �3A3 + 2A3M . �18�

The deduction above can also be made using the parametri-
zation Eq. �1� from the outset. In that coordinate gauge the
divergence term can be written in the following way:

Gij�iAj = Gab��aAb + �ab
c Ac� + ��3A3 + Gab�ab

3 A3� . �19�

In the limit that the particle is constrained to the surface we
thus have

lim
x3→0

Gij�iAj = gab�	aA	b + �3A3 + 2A3M �20�

in complete agreement with the coordinate gauge-invariant
derivation. Here we have used

G33Gab3�ab
3 = −

1

2
GabGab,3

= −
1

2
Gab�− 2Kab + ¯�

= GabKab = 2M , �21�

and

�33
3 = �33

d = 0, �ab
3 = −

1

2
G33Gab,3. �22�

We have also assumed that x3→0 in the last two expressions.
We now express the Schrödinger equation in terms of �.
After performing all derivate operations and letting x3→0
the following effective potential emerges:

VEff = V0 −
q2

2m
A� 2 −

qi

2m
��	 · A� 	 + �3A3 + 2A3M� . �23�

V0 is the effective potential in Eq. �12�. In addition to the
usual second-order kinetic terms in the Schrödinger equation

in the limit x3→0 we also get the following first-order terms
when the Aj� j� term in Eq. �13� is expanded:

−
qi

m
�A� 	 · �	 + A3�M + �3��� = −

qi

m
�A� · �+ A3M�� . �24�

The linear coupling to M stems from the � factor in the
factorization of the wave function. This coupling appears as
a curvature contribution to the orbital magnetic moment of
the particle. We now make a brief detour to discuss the ex-
ternally applied field.

A natural question to pose is whether it is possible to
remove the A3 component of the gauge potential altogether
so as to remove the coupling to M completely from the
Schrödinger equation �3�. It is apparently possible to perform
a restricted gauge transformation in the Lorentz gauge such
that A�3=0 �3� �we note that the corresponding gauge choice
in �3� is not necessarily a restricted gauge transformation in
the Lorentz gauge, however�. Clearly, when doing this one
implicitly neglects the sources of the electromagnetic field.
In the stationary situation in the Lorentz gauge the equation
of motion for the electromagnetic vector potential coupled to
the sources J� reduces to

�2A�� � − J� . �25�

J� is the effective three dimensional electric current. Trivially,
setting A�3=0 will imply a vanishing source component in
the direction perpendicular to the surface. With J3=0 the
Lorentz gauge condition implies �3A�3=0 as an identity. It is
straightforward to see this. Since we always can find a func-
tion f�Xi� such that A�3→A�3+�3f =0 we immediately get
that �3A�3 transforms as �3A�3→�3A�3+�3�

3f =�3A�3−�3A�3

=0. Contrary to the reasoning in �3� there is no need to make
any assumptions on the form of A3 in order to make the
normal derivate term vanish when working consistently in
the Lorentz gauge. Setting A�3=0 makes the coupling to the
mean curvature vanish and we regain the results in �3�. In
this situation the Schrödinger equation is trivially separable
into a surface component and a component perpendicular to
the surface �3�. However, in the general situation we do have
source currents in all space directions. This implies in par-
ticular that the coupling to the mean curvature will in general
be present and none of the components of the vector poten-
tial can be set identically to zero. Since the A�3 component
depends on both the coordinates in the surface as well as on
x3 it follows trivially that the Schrödinger equation is not
separable in general due to the �3 term in Eq. �24�.

When imposing a gauge condition on the electromagnetic
vector potential it is natural to impose the Lorentz gauge
condition since it is coordinate independent. Hence, we
transform to new electromagnetic gauge potentials A�i such
that

� · A�� = �	 · A�� 	 + �3A�3 + 2A�3M = 0. �26�

This condition seemingly removes the explicit coupling to
the mean curvature in the effective potential. However, now
the effective potential in the surface is implicitly coupled to
M due to the presence of the A� 2 term in the potential since
we can always in principle re-express one of the components
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of the vector potential in terms of the other two components
and the mean curvature.

When the charge is constrained to an arbitrary surface we
would intuitively expect that the momentum perpendicular to
the surface approaches zero due to the squeezing potential
��3�→0, i.e.,�, at least in the classical limit. However, we
see that the orbital angular moment nevertheless receives a
curvature correction since A3�0 on S in general. The excep-
tions are when the particle is constrained to a minimal sur-
face �M =0�. On such surfaces the orbital magnetic moment
of the charge is apparently independent of A3. These results
are surprising and has to our knowledge not been observed in
any experiment. We interpret this result as signaling a pos-
sible breakdown of the thin wall approach to quantum theory
on surfaces when dealing with electrically charged particles.
We therefore next turn to a derivation of a framework for
thin wall quantization when the particle is minimally coupled
to electromagnetism.

III. GENERAL FRAMEWORK

In this section we re-derive the quantum theory in S from
a variational principle. We assume the canonical action in the
embedding space �neglecting V�, for simplicity�,

S = 

�
�− ��iDt� +

1

2m
�Dk���Dk�� , �27�

S = 

�

− ��iDt� +
1

2m
�k�

��k� +
q2

2m
A� 2��� +

1

2m
AkCk� ,

�28�

where we have defined

Dk � �k − iqAk, Dt � �t − iqAt, Ck � iq����k� − ��k����� .

�29�

The integration measure is the canonical one and will be
suppressed in the following. � is the region of integration.
The electromagnetic vector potential will be treated as an
external classical background. The action can be rewritten so
as to exhibit the Schrödinger equation for � by utilizing



�

AkCk = iq

�
�Ak����k�� − iq


�

��k�Ak����

+ ��kA
k���� + Ak��k������

= iq

�

�− �k�Ak���� + ��kA
k���� + 2Ak��k����� ,

�30�

so that the action reads

S = 

�
�− ��iDt� −

1

2m
���k�

k� +
q2

2m
A� 2��� +

iq

m
��Ak�k�

+
iq

2m
��kA

k���� −
iq

2m
�k�Ak����� +

1

2m



��

���k� .

�31�

We have also performed a partial integration so as to isolate
the dynamical term. The fourth term in S will give rise to the
anormal orbital magnetic moment we noted previously. We
note that the last term in the � integral is absent in the
canonical Schrödinger equation which we used earlier. This
term contains a � factor such that we get

lim
x3→0



�

�k�Ak���� = 2

�

A3M��� + lim
x3→0



��

Ak��� .

�32�

Hence, this term contributes besides a surface integral, as
expected, also a volume integral which adds the term

−
iq

m
A3M��� �33�

to the volume part of the action. Interestingly, this addition to
the surface term cancels exactly the anormal orbital magnetic
moment to the particle which emerges from the A3�3�-term.
Hence, in the limit x3→0 we get

S = 

�
�− ��iDt� −

1

2m
���k�

k� + V0��� +
q2

2m
A� 2���

+
iq

2m
��Ak�k� +

iq

2m
��kA

k����� + lim
x3→0

1

2m



��

��Dk� .

�34�

Clearly, Eq. �30� treats � and �� asymmetrically. We could of
course also have written



�

AkCk = iq

�
��k�Ak���� − ��kA

k���� − Ak��k����

− iq

�

Ak����k���
= iq


�

��k�Ak���� − ��kA
k���� − 2Ak��k����� .

�35�

This form is suitable to use in the action for ��, S�. Using
this S� can �in the limit x3→0� be written as
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S� = 

�
�+ �iDt�

� −
1

2m
��k�

k�� + V0��� +
q2

2m
A� 2���

−
iq

2m
��Ak�k� −

iq

2m
��kA

k����� + lim
x3→0

1

2m



��

��Dk���.

�36�

Varying S gives the following dynamical equation for � in an
arbitrary electromagnetic gauge

− iDt� −
1

2m
�k�

k� + V0� +
q2

2m
A� 2� +

iq

2m
Ak�k�

+
iq

2m
��kA

k�� = 0. �37�

A similar equation for �� follows from S�. These equations
are free from the pathology found in the previous section.
The last term in Eq. �37� �and similarly for the corresponding
conjugate equation� vanishes in the Lorentz gauge, of course.

It is a priori not completely clear how one should treat the
surface integrals. Let us for simplicity first consider closed
surfaces. Since the scheme is to squeeze the particle such
that it skims S it is natural to consider regions of integration
� which are symmetrical about S. It is now at least two
ways to treat variations in �, 	� �and likewise for the con-
jugate theory� in the limit x3→0 normal to the surface. One
can either demand that 	�=0 in the transverse direction �a
Dirichlet condition, i.e.,�, or one can allow for certain varia-
tions along the normal direction of the surface. If one as-
sumes 	�=0 it would correspond to a complete freezing out
of any dynamics perpendicular to the surface in the limit
x3→0. In that case the surface integral will vanish by con-
struction. In �1� it was assumed that V� has the form of an
infinite potential well such that � is forced to zero a certain
distance from S. This corresponds to our Dirichlet condition.
However, physically such a constraint is probably severe and
breaks with natural limits set by the uncertainty principle,
e.g., since it is assumed that x3→0. Hence, on physical
grounds one can argue that it is more physically consistent to
assume certain variations 	� on ��. In this case the surface
integral vanishes provided

lim
x3→0

D3� = 0. �38�

A similar expression holds for the conjugate field. It is inter-
esting that this last constraint is not identical to the vanishing
of the generalized momentum in the direction perpendicular
to the surface since the action of the gradient operator on �
will generate a term proportional to the mean curvature.
Hence, on S, and including the corresponding expression for
��, we get

��3 − 2iqA3 + 2M�� = 0,

��3 + 2iqA3 + 2M��� = 0. �39�

These constraints are valid for all surfaces S, and they cor-
respond to Neumann type of boundary conditions. They have
to our knowledge not been addressed previously in the ex-

tensive literature on the dynamics of constrained quantum
particles. On surfaces which are not closed we will get fur-
ther constraints which depend on the boundary conditions in
the directions defined by S.

We saw earlier that the Lorentz condition couples the
electromagnetic vector potential to the mean curvature in S.
Interestingly, the surface constraints Eq. �39� induce a cou-
pling between the mean curvature, the external field and the
wave function independently of the gauge choice on the elec-
tromagnetic vector potential. Furthermore, note that the Neu-
mann type of surface constraints also hold in the limit q
→0, when D3→�3. It follows immediately that the
Schrödinger equation is separable in the neutral case only
when the mean curvature is constant. Hence, these con-
straints make the separation of the wave equation into sur-
face and perpendicular components highly problematic in the
general situation independently of whether the particle car-
ries an electric charge or not.

IV. DISCUSSION

In this paper we briefly review, explore, and extend pre-
vious work on the quantum theory of particles constrained to
surfaces in ordinary three-dimensional space. Much previous
work have relied on adapting the Schrödinger equation di-
rectly to curved spaces. We explored this approach in the first
part of this paper. We found that the resulting quantum me-
chanics of electrically charged particles on surfaces exhibits
unexpected features. We then rederived the quantum theory
on surfaces starting from the canonical Schrödinger action.
In this formulation the special features in the “straightfor-
ward” dimensional reduction approach are absent.

Part of any variational approach is the appearance of
boundary terms. In the seminal papers �1,2� these were not
explicitly discussed, nor �to our knowledge� in the by now
extensive literature on thin wall quantization. The form of
the constraining potential V� employed in �1� corresponds to
imposing the Dirichlet condition on the transverse fluctua-
tions of the wave function. In the case of a neutral particle
our variational approach and the one in �1� both imply that
the wave function is always separable when the Dirichlet
condition is applied. However, we have shown that imposing
the Neumann type of constraint on the transverse fluctuations
of the wave function of a neutral particle implies separability
only when S has constant mean curvature. This means in
particular that basic geometric shapes such as spheres, cones,
and cylinders as well as all minimal surfaces such as the
catenoid and the helicoidal surface allow separation into sur-
face and transverse degrees of freedom independently of the
particular applied boundary constraint when the particle is
chargeless.

In �3� it was argued that �with reference to electromag-
netic fields� there is no coupling between the fields and the
surface curvature and that with a proper choice of the gauge,
the surface and transverse dynamics are exactly separable.
In view of our more general treatment we have shown that
both of these claims are generally incorrect. The reasons for
the differences between our approach and the one in �3� is
partially their use of the Schrödinger equation in the embed-
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ding space, partially the way we decompose the covariant
derivative and the vector potential into surface and perpen-
dicular operators and partly due to our inclusion of currents.
In �3� none of these aspects was discussed. We have shown
that besides the couplings to M2 and K the equation of mo-
tion of an electrically charged quantum particle also couples
to the mean curvature M through the qA3M term.

The coupling to M in the Schrödinger equation appeared
when it was written in an arbitrary gauge through the dimen-
sional reduction in the � ·A� term. Even though this term can
be removed entirely from the equation by choosing the Lor-
entz gauge it will reappear in the form of a subsidiary con-
dition and thus be implicitly present in the final form of the
Schrödinger equation through the A� 2 term. Consequently, the
Schrödinger equation minimally coupled to electromagne-
tism will couple to M in addition to the other two geometric
scalars independently of the choice of the gauge on the elec-
tromagnetic vector potential. We note that this coupling to M
comes in the form of a product qA3M. When q→0 the cou-
pling disappears. We interpret this as it is the particle that
interacts through the electric charge with an effective trans-
verse component of the vector potential which equals A3M.
Hence, it is probably most consistent to interpret this as A�
interacting with the geometry through M since the particle
couples to A� through q. Interestingly, in �5� a similar cou-
pling term was also found. The derivation of the coupling
term in that work was based on the A3�3� term in our Eq.
�1� when a number of further conditions and approximations
were assumed on both the wave function and the vector po-
tential. We have uncovered that this type of coupling appears
generically and as exact results in thin wall quantum theory.

The discussion of the boundary term in connection with a
neutral particle in the previous paragraphs carry over to the

theory of electrically charged particles only to a certain ex-
tent. The Dirichlet condition does not by itself couple surface
and transverse degrees of freedom of a charged particle, but
the Schrödinger equation does in general when the sources of
the external field is included through a A3�3 term. It is only
when the sources are neglected it becomes possible to gauge
away this coupling �3�, and the coupling to the geometry
through the qA3M term. However, this conclusion does not
hold if we apply the Neumann constraint. If we then also
apply the Lorentz gauge, have no sources and if we further
perform a restricted gauge transformation such that A3=0 in
the Lorentz gauge the electrically charged particle will still
couple explicitly to the mean curvature through the con-
straints Eq. �39� in exactly the same way as an uncharged
particle. This implies that with the Neumann constraint ap-
plied the equation of motion of a charged particle is sepa-
rable only on surfaces with constant mean curvature when
no sources are present.

Our work opens up some interesting avenues for further
work. Most, if not all, previous work in the field of thin wall
quantization have assumed either neutral particles effectively
constrained by the Dirichlet constraint, or electrically
charged particles with the same constraint and no sources.
Our work has thus uncovered that the picture provided thus
far by the thin wall quantization approach of the quantum
physics in surfaces may only represent a small glimpse of the
actual quantum physics on surfaces. Including sources for
the vector potential will by itself give rise to a number of
configurations which may contain new features. So will the
study of the Neumann constraint applied to concrete struc-
tures. One starting point for further work is to reconsider the
quantum dynamics on basic nanostructures such as the
sphere and the cylinder.
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