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In open quantum systems, phenomenological master equations with unknown parameters are often intro-
duced. Here we propose a time-independent procedure based on quantum tomography to reconstruct the
potentially unknown parameters of a wide class of Markovian master equations. According to our scheme, the
system under investigation is initially prepared in a Gaussian state. At an arbitrary time t, in order to retrieve
the unknown coefficients one needs to measure only a finite number �ten at maximum� of points along three
time-independent tomograms. Due to the limited amount of measurements required, we expect our proposal to
be especially suitable for experimental implementations.
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I. INTRODUCTION

Tomographic maps �1� can be considered a very useful
tool for reconstructing the physical state or some other prop-
erties of many physical systems both in a classical �e.g.,
medical physics, archeology, biology, and geophysics� and in
a quantum perspective �e.g., photonic states �2�, photon num-
ber distributions �3–5�, and longitudinal motion of neutron
wave packets �6��.

The tomographic analysis is based on a probabilistic ap-
proach toward physical system investigation. In particular, its
key ingredient is the Radon transform �7�. Given the phase
space of the system, this invertible integral transform allows
to retrieve the marginal probability densities of the system,
i.e., the probability density along straight lines. However,
while in the classical regime the state of the system can be
fully described by means of a probability distribution on its
phase space, this is no longer the case of quantum systems.
Indeed, due to the Heisenberg uncertainty relation, it is not
possible to write a probability distribution as a function of
both momentum and position. In this case, the Wigner func-
tion �8,9� can be employed as a quantum generalization of a
classical probability distribution. This function is a map be-
tween phase-space functions and density matrices. Even if
the Wigner function can take on negative values, by integrat-
ing out either the position or the momentum degrees of free-
dom, one obtains a bona fide probability distribution for the
conjugated variables. From this point of view, the Wigner
function corresponding to a quantum state can be regarded as
a quasiprobability distribution and interpreted as a joint
probability density in the phase space �10�.

In this paper we apply quantum symplectic tomography to
the investigation of open quantum systems �11,12� which,
due to the coupling to an environment �bath�, undergo a non-
unitary dynamical evolution. A complete microscopic de-
scription of system-plus-bath dynamics is a complex many-

body problem. Hence, as in general one aims at describing
the dynamics of the system, only basic information about the
bath is retained according to the so-called open system ap-
proach. The state of the system is then expressed by means
of a reduced density matrix obtained from the total density
matrix by tracing out the environmental degrees of freedom.
The system dynamics is then governed by the so-called
quantum master equation. The master equation approach can
be seen as the generalization of the Schrödinger equation to
the possibly incoherent evolution of a density matrix. In this
case, the generator of the time evolution is the Liouville
dissipative operator. The integration of a time-dependent Li-
ouvillian being a highly involved task, e.g., see �13,14�, it is
highly preferable to deal with a time-independent Liouvil-
lian, i.e., to assume a Markovian dynamics. Several approxi-
mations allow a Markovian description such as the weak
coupling limit, the singular limit, and the low density limit
�11,12,15�.

Nevertheless, a proper derivation of the master equation
still requires complete information about the bath. The lack
of this knowledge leads to the derivation of phenomenologi-
cal master equations with unknown coefficients. Indeed, re-
cent investigations �16–18� provide a more accurate approxi-
mation than the weak coupling limit due to a more refined
coarse-grained dynamics. Even in this case, the obtained
master equation has unknown coefficients, as it depends phe-
nomenologically on the system investigated.

In this paper, we will focus on a class of Markovian mas-
ter equations with unknown coefficients modeling a one-
dimensional damped harmonic oscillator. In particular, we
choose Lindblad operators �19� linear in both momentum
and position degrees of freedom, such that the dynamical
evolution of the system preserves the Gaussian form of the
states. Our goal is to show how, by means of a tomographic
approach, it is possible to measure indirectly the unknown
coefficients by using Gaussian wave packets as a probe.
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This paper is organized as follows. In Sec. II we introduce
the class of master equations we want to investigate. In Sec.
III we derive the expressions for the coefficients of the mas-
ter equation as a function of the first and second evolved
momenta �cumulants� of a Gaussian state. In Sec. IV we
introduce the Wigner function and the Radon transform for
an arbitrary Gaussian wave packet at a generic time t. We
show that in order to measure the cumulants of a Gaussian
state, and then indirectly the unknown parameters of the
master equation, we need only a finite number �eight or ten�
of time-independent tomograms. In Sec. V we summarize
and discuss our results and outline some feasible applica-
tions. Finally, in the Appendix, we propose an alternative
procedure to obtain the cumulants of a Gaussian state by
means of time-dependent tomograms. This approach, how-
ever, appears to be less convenient for practical implementa-
tions.

II. DESCRIPTION OF THE SYSTEM

We want to investigate a class of master equations de-
scribing a Gaussian-shape-preserving �GSP� evolution of a
quantum state. In the Markovian approximation, the nonuni-
tary time evolution of a quantum system is described by the
following general master equation �19,20�:

d�̂�t�
dt

= L��̂�t�� = −
i

�
�Ĥ, �̂�t�� +

1

2�
�

j

��V̂j�̂�t�,V̂j
†�

+ �V̂j�̂�t�V̂j
†�� , �1�

where �̂�t� is the reduced density operator of the system.

Equation �1� is exactly solvable if the Lindblad operators V̂j

and the system Hamiltonian Ĥ are, respectively, at most first
and second degree polynomials in position �q̂� and momen-
tum �p̂� coordinates �21,22�.

For systems like a harmonic oscillator or a field mode in
an environment of harmonic oscillators �i.e., collective

modes or a squeezed bath�, Ĥ can be chosen of the general
quadratic form

Ĥ = Ĥ0 +
�

2
�q̂p̂ + p̂q̂�, Ĥ0 =

1

2m
p̂2 +

m�2

2
q̂2, �2�

where � is the strength of the bilinear term in q̂ and p̂, m is

the oscillator mass, and � is its frequency. The operators V̂j,
which model the environment, are linear polynomials in q̂
and p̂:

V̂j = ajp̂ + bjq̂, j = 1,2, �3�

with aj and bj as complex numbers. The sum goes from 1 to

2 as there exist only two c-linear independent operators V̂1

and V̂2 in the linear space of first degree polynomials in p̂
and q̂. We can safely omit generic constant contributions in

V̂j as they do not influence the dynamics of the system.
Given this choice of operators, the Markovian master

equation �1� can be rewritten as

d�̂�t�
dt

= −
i

�
�Ĥ0, �̂�t�� −

i�� + ��
2�

�q̂, �̂�t�p̂ + p̂�̂�t��

+
i�� − ��

2�
�p̂, �̂�t�q̂ + q̂�̂�t�� −

Dpp

�2 †q̂,�q̂, �̂�‡

−
Dqq

�2 †p̂,�p̂, �̂�t��‡ +
Dqp

�2 �†q̂,�p̂, �̂�t��‡ + †p̂,�q̂, �̂�t��‡� ,

�4�

where �=−Im � j=1,2aj
�bj is the unknown friction constant

and

Dqq =
�

2 �
j=1,2

�aj�2, Dpp =
�

2 �
j=1,2

�bj�2,

Dqp = −
�

2
Re �

j=1,2
aj

�bj �5�

are the unknown diffusion coefficients satisfying the follow-
ing constraints which ensure the complete positivity of the
time evolution �21,22�:

�i� Dqq � 0, �ii� Dpp � 0, �iii� DqqDpp − Dqp
2 � �2�2/4.

�6�

Markovian GSP master equations of the form of Eq. �4�
are used in quantum optics and nuclear physics �23–25�, and
in the limit of vanishing � can be employed for a phenom-
enological description of quantum Brownian motion
�26–28�. Also, in the case of a high-temperature Ohmic en-
vironment the time-dependent master equation derived in
�13,14� can be recast in this time-independent shape. It must
be noted, however, that in the high-temperature limit the
third constraint in Eq. �6� seems to be violated. Nevertheless,
even if Dqq=0, Dqp=0, and ��0, Dpp diverges only linearly
with temperature. Therefore, we can recover the complete
positivity by means of a suitable renormalization. This renor-
malization consists in adding a suitable subleading term Dqq
�e.g., Dqq�T−1�. Otherwise, we can consider a high-
frequency cutoff for the environment �13,14�. In this way the
master equation is not Markovian anymore. Anyway, since it
involves only regular functions, it should give a completely
positive dynamics �as the microscopic unitary group does�.

III. GAUSSIAN STATES EVOLUTION

In this section we investigate the evolution of an initial
Gaussian state according to Eq. �4�. In particular we derive
invertible expressions for the cumulants of the state at a time
t in terms of the parameters of the master equation. Due to
the Gaussian shape preservation, the evolved state at time t is
completely determined by its first- and second-order mo-
menta:

	q̂
t = Tr��̂�t�q̂� ,

	p̂
t = Tr��̂�t�p̂� ,

	qt
2 = Tr��̂�t�q̂2� − 	q̂
t

2,
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	pt
2 = Tr��̂�t�p̂2� − 	p̂
t

2,


�q,p�t = Tr��̂�t�
q̂p̂ + p̂q̂

2
� − 	q̂
t	p̂
t. �7�

Due to the linearity of the V̂j’s in phase space, the time
evolution of the first- and second-order cumulants can be
decoupled. We then obtain the following two sets of solvable
equations �21,22�:

d

dt
	q̂
t = − �� − ��	q̂
t +

1

m
	p̂
t,

d

dt
	p̂
t = − m�2	q̂
t − �� + ��	p̂
t, �8�

d

dt
	qt

2 = − 2�� − ��	qt
2 +

2

m

�q,q�t + 2Dqq,

d

dt
	pt

2 = − 2�� + ��	pt
2 − 2m�2
�q,p�t + 2Dpp,

d

dt

�q,p�t = − m�2	qt

2 +
1

m
	pt

2 − 2�
�q,p�t + 2Dqp. �9�

The above equations allow to obtain the time-dependent mo-
menta as a function of the master equation coefficients �,
Dqq, Dpp, and Dqp. We now show how to invert these rela-
tions in order to express the parameters �, Dqq, Dpp, and Dqp
as a function of the evolved cumulants at an arbitrary time.
The solution of Eq. �8� is given by �21,22�

	q̂
t = e−�t�	q̂
0cosh �t +
�

�
sinh �t� + 	p̂
0

1

m�
sinh �t� ,

	p̂
t = e−�t�− 	q̂
0
m�2

�
sinh �t + 	p̂
0cosh �t −

�

�
sinh �t�� ,

�10�

where �2=�2−�2. If �2�0 we can set �= i and the previ-
ous equations hold again with trigonometric instead of hy-
perbolic functions. The coefficient � can then be obtained by
inverting Eq. �10�.

The elements of the diffusion matrix can be retrieved
from the second set of equations �9�, whose solutions can be
expressed in a compact form as

X�t� = �TeKtT�X�0� + TK−1�eKt − 1�TD , �11�

where

X�t� =�
m�	qt

2

	pt
2

m�


�q,p�t

�, D =�
2m�Dqq

2Dpp

m�

2Dqp

� ,

T =
1

2��� + � � − � 2�

� − � � + � 2�

− � − � − 2�
� ,

K = �− 2�� − �� 0 0

0 − 2�� + �� 0

0 0 − 2�
� . �12�

From the invertibility of matrices T�T2=1� and K̃=K−1�eKt

−1� �invertible for bounded K also if some of its eigenvalues
are 0�, we can derive the expression of Dqq, Dpp, and Dqp
using Eq. �11�:

D = TK̃−1T�X�t� − �TeKtT�X�0�� , �13�

K̃ = K−1�eKt − 1� =�
1 − e−2��−��

2�� − ��
0 0

0
1 − e−2��+��

2�� + ��
0

0 0
1 − e−2�

2�

� .

�14�

We emphasize that the time t at which we are considering
the cumulants is completely arbitrary. For instance, the ex-
pression of the coefficients Dqq, Dpp, and Dqp in terms of the
asymptotic second cumulants and the parameter � reads

Dqq = �� − ��	q�
2 −

1

m

�q,p��,

Dpp = �� + ��	p�
2 + m�2
�q,p��,

Dqp =
1

2
�m�2	q�

2 −
1

m
	p�

2 + 2�
�q,p��� . �15�

IV. CUMULANTS RECONSTRUCTION
THROUGH TOMOGRAPHY

In this section we introduce a procedure based on sym-
plectic tomography in order to measure the first and second
cumulants of a Gaussian wave packet at an arbitrary time t.
This will allow us to indirectly measure the parameters �,
Dqq, Dpp, and Dqp, them being functions of the evolved cu-
mulants at an arbitrary time �see previous section�. The to-
mographic approach is very useful when dealing with a phe-
nomenological master equation of the form of Eq. �4�, as the
dependence of the coefficients of the master equation from
the physical parameters is in principle unknown.

A. Symplectic tomography

Given a quantum state �̂�t� its Wigner function reads
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W�q,p,t� =
1

��
�

−�

+�

dy exp i2py

�
��̂�q − y,q + y,t� .

�16�

If the system dynamics is described by master equation �4�,
and the initial state is Gaussian, the Wigner function pre-
serves the Gaussian form of the state. Indeed, it can be ex-
pressed as a function of its first- and second-order momenta:

W�q,p,t� =
1

2��	qt
2	pt

2 − 
�q,p�t
2

�exp�−
	qt

2�p − 	p̂
t�2 + 	pt
2�q − 	q̂
t�2

2�	qt
2	pt

2 − 
�q,p�t
2�

−
2
�q,p�t�q − 	q̂
t��p − 	p̂
t�

2�	qt
2	pt

2 − 
�q,p�t
2� � . �17�

Let us now consider the line in phase space

X − �q − �p = 0. �18�

The tomographic map of a generic state along this line, i.e.,
its Radon transform, is given by

��X,�,�� = 	��X − �q − �p�


= �
R2

W�q,p,t���X − �q − �p�dqdp . �19�

From Eq. �17� it follows that for a Gaussian wave packet the
Radon transform can be explicitly written as

��X,�,�� =
1

�2��	qt
2�2 + 	pt

2�2 + 2
�q,p�t��

�exp�−
�X − �	q̂
t − �	p̂
t�2

2�	qt
2�2 + 	pt

2�2 + 2
�q,p�t���� ,

�20�

with the following constraint on the second cumulants:

	qt
2�2 + 	pt

2�2 + 2
�q,p�t�� � 0. �21�

This constraint is obeyed for each value of the parameters �
and � iff 	qt

2	pt
2−
�q , p�t

2�0. This inequality is always sat-
isfied as a consequence of the Robertson-Schrödinger rela-
tion.

Equation �19� also implies a homogeneity condition on
the tomographic map: �c���cX ,c� ,c��=��X ,� ,��. This
condition can be used in the choice of parameters � and �. In
fact, if one uses polar coordinates �r ,��, i.e., �=r cos � and
�=r sin �, the homogeneity condition can be used to elimi-
nate the parameter r. From Eq. �18� it emerges that the co-
ordinates of the phase space need to be properly rescaled in
order to have the same dimensions. For instance, we can set
q→�m�

� q and p→� 1
�m� p. In particular if �=0, i.e., for a

free particle interacting with the environment, we can choose
the same rescaling with a fictitious frequency defined by
��̄=	p0

2 /2m, imposing q→ �	p0 /�2��q and p
→ �1 /�2	p0�p. In general, every rescaling assigning the
same dimensions to q and p is suitable for our purpose.

B. From tomograms to cumulants

Let us now consider the tomograms corresponding to two
different directions in phase space, i.e., to two different
couples of parameters �� ,��, e.g., X=q and X= p. These
lines in phase space are associated, respectively, to the posi-
tion and momentum probability distribution functions:

��X,1,0� =
1

	qt
�2�

exp�−
�X − 	q̂
t�2

2	qt
2 � , �22�

��X,0,1� =
1

	pt
�2�

exp�−
�X − 	p̂
t�2

2	pt
2 � . �23�

From Eqs. �22� and �23� we see that the tomographic map
depends only on a single parameter X. This reduces the di-
mensionality of the problem with respect to the Wigner func-
tion, which is a function of both p and q. The lines individu-
ated by the choices �� ,��= �1,0� and �� ,��= �0,1�
correspond to tomograms depending on the time average and
variance, respectively, of position and momentum. In order
to determine the latter quantities we have to invert Eqs. �22�
and �23� for different values of X, i.e., for a given number of
points to measure along a tomogram. Thus, our first goal is
to determine the number of tomograms required to measure
the cumulants of our Gaussian state.

To answer this question, we first focus on the direction
�=1, �=0. In Fig. 1 we plot the Wigner function of our
system at a generic time t and some straight lines along the
considered direction. In Fig. 2 we plot the GSP tomogram
defined by Eq. �22�. Inverting Eq. �22�, we obtain

�X − 	q̂
t�2 = 2	qt
2 ln

1

��X,1,0�	qt
�2�

. �24�

Using the value of the tomogram ��0,1 ,0� we can get 	q̂
t
as a function of 	qt:

FIG. 1. �Color online� Wigner function, W�q , p , t�, of
Eq. �17� and some straight lines along the direction �=1 and �
=0 on the plane qp. 	qt

2	pt
2−
�q , p�t

2=0.64	qt
2	pt

2. WM

=1 /2��	qt
2	pt

2−
�q , p�t
2.
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	q̂
t = � 	qt�2 ln
1

��0,1,0�	qt
�2�

. �25�

If we know the sign of 	q̂
t then we need only the value of
the tomogram ��0,1 ,0� to get 	q̂
t; otherwise, we need an-
other point. Using Eq. �25�, Eq. �22� becomes an equation
for 	qt only, and it can be rewritten as

2	qt
2 ln

1

��X,1,0�	qt
�2�

= X � 	qt�2 ln
1

��0,1,0�	qt
�2�

�2

. �26�

This equation is transcendental; therefore, we will solve it
numerically. We can graphically note in Fig. 3 that for each X
and corresponding ��X ,1 ,0� there may be two values of 	qt
satisfying the previous equation. In order to identify one of
the two solutions, it is enough to consider two points,
�(X1 ,��X1 ,1 ,0�)� and �(X2 ,��X2 ,1 ,0�)�, and to choose the
common solution for the variance. This is made clear by Fig.
3, where the ratio between the right and left sides of Eq. �26�
for two different values of X is plotted. The common solution
�i.e., when both ratios are equal to 1� is labeled 	qt.

As a consequence, whether we know or not the sign of the
average 	q
t, we need three or four points to determine 	q̂
t
and 	qt in Eq. �22�. Analogously, we need other three or four
points for 	p̂
t and 	pt in Eq. �23�.

Let us now compute the covariance 
�q , p�t. To this pur-
pose, we consider the tomogram:

�X,
1
�2

,
1
�2

� =
1

���	qt
2 + 	pt

2 + 2
�q,p�t

�exp�−

X −
	q̂
t + 	p̂
t

�2
�2

	qt
2 + 	pt

2 + 2
�q,p�t
� .

�27�

This is a Gaussian whose average value is already deter-
mined. Indeed, according to the previous steps, we need two
more points of this tomogram to determine the spread �	qt

2

+	pt
2� /2+
�q , p�t from which we can retrieve 
�q , p�t.

Hence, we have shown that by means of eight or at most
ten points belonging to three tomograms, the first- and
second-order momenta of a Gaussian state can be measured
at an arbitrary time t. One can then use these measured cu-
mulants in order to infer the master equation parameters de-
scribing the system under investigation. We note also that we
can reasonably infer that the number of tomograms needed to
reconstruct the system density operator is minimized by em-
ploying Gaussian wave packets as a probe. Indeed these
states have minimum uncertainty and are the only states hav-
ing positive Wigner function �29�.

V. CONCLUSIONS

In this paper we have proposed an approach to the study
of open quantum systems based on quantum symplectic to-
mography. In many contexts the reduced dynamics of a sys-
tem coupled with its environment is modeled by phenomeno-
logical master equations with some general features, but with
unknown parameters. Hence, it would be highly appealing to
find a way to assign some values to these parameters. We
have tackled this problem for a wide class of Markovian
master equations, which are the Gaussian-shape-preserving
ones. We have proved that it is possible to retrieve their
unknown parameters by performing a limited number �ten at
maximum� of time-independent measurements using Gauss-
ian wave packets as a probe.

This result leads to some interesting applications. Once
the unknown master equation coefficients are retrieved, it is
possible to compute the dynamical evolution of any physical
quantity whose analytical expression is known. The indirect-
measurement scheme we propose could be then employed to
make predictions on system loss of coherence due to the
external environment. In order to perform this kind of analy-
sis one can consider some quantities such as the spread and
the coherence length in both position and momentum �30�,
provided their analytical expressions are available for an ar-
bitrary time t �e.g., see Ref. �28��. Working in the coherent
state representation, the evolution of the system of interest
from an arbitrary initial state can be in principle predicted.

FIG. 2. Tomogram, ��X ,1 ,0�, of Eq. �22� for the direction �
=1 and �=0.

FIG. 3. �Color online� The ratio between the right and left sides
of Eq. �26� for two different values of X with �=1 and �=0 is
plotted as a function of 	qt /	qt. Values used are as follows: 	q̂
t

=3 and X1=4.5 �continuous line� and X2=2.5 �dashed line�. The
values of ��X ,1 ,0� are computed using 	qt=1 to simulate what
one would get experimentally. The continuous line shows how Eq.
�26� with X1=4.5 and ��4.5,1 ,0� can be satisfied �ratio=1� by two
values of 	qt. The comparison with a second case with X2=2.5
allows to determine which value of 	qt is the right one.
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Therefore, it is possible to perform the proposed indirect
analysis of the decoherence processes. For example, if we
consider an initial Schrödinger-cat state, highly interesting
due to its potentially long-range coherence properties and its
extreme sensitivity to environmental decoherence �31�, we
can rewrite it as a combination of four Gaussian functions.
Therefore, due to the linearity of the master equation, it can
be possible to derive analytically the state evolution and to
analyze its loss of coherence by means of the procedure we
propose.
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APPENDIX: ALTERNATIVE PROCEDURE

Here we propose an alternative time-dependent procedure
to compute the second cumulants of a Gaussian state, by
means of tomograms, given the knowledge of the first cumu-

lants time evolution. To this purpose we need to consider the
following three tomograms:

�1 = ��	p̂
t,0,1� =
1

�2�	pt

,

�2 = ��	q̂
t,1,0� =
1

�2�	qt

,

�3 = � 	p̂
t + 	q̂
t

�2
,

1
�2

,
1
�2
�

=
1

�2��	qt
2/2 + 	pt

2/2 + 
�q,p�t

. �A1�

Inverting the previous equations one can infer 	qt, 	pt, and

�q , p�t from the knowledge of �1, �2, and �3. However,
this procedure presents two drawbacks. In fact, the evolved
averaged values 	q̂
t and 	p̂
t are required and we need to-
mograms evaluated on time-dependent variables. These
problems do not arise in the time-independent procedure
based only on tomograms for which no a priori knowledge
on the Gaussian state is required. Nevertheless, in this alter-
native time-dependent scheme only three tomograms are re-
quired.
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