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It is often observed in the ground state of quantum lattice systems with local interactions that the entropy of
a large region is proportional to its surface area. In some cases, this area law is corrected with a logarithmic
factor. This contrasts with the fact that in almost all states of the Hilbert space, the entropy of a region is
proportional to its volume. This paper shows that low-energy states have �at most� an area law with the
logarithmic correction, provided two conditions hold: �i� the state has sufficient decay of correlations and �ii�
the number of eigenstates with vanishing energy density is not exponential in the volume. These two conditions
are satisfied by many relevant systems. The central idea of the argument is that energy fluctuations inside a
region can be observed by measuring the exterior and a superficial shell of the region.
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I. INTRODUCTION

Entropy quantifies the uncertainty about the state of a
physical system. A bipartite system in a pure state has zero
entropy, but the reduced state of one subsystem may have
positive entropy. This is due to quantum correlations be-
tween the two subsystems, the entanglement. In fact, this
entropy quantifies the entanglement in the sense of quantum
information theory �1�.

In classical physics, the entropy of a region inside a spa-
tially extended system at finite temperature is proportional to
the volume of the region—entropy is an extensive quantity.
At zero temperature, it is small and independent of the re-
gion. In quantum physics, at finite temperature, the entropy
of a region is also proportional to the volume. But it has been
observed in several models that, at zero temperature, the en-
tropy of a region is proportional to its surface area �2–10�. In
some models of critical free fermions the entropy scales as
the area times the logarithm of the volume �11,12�. This has
been presented as a violation of the area law, although the
dimensionality of the scaling is still that of the area. A cel-
ebrated proof shows that any one-dimensional system with
finite-range interactions and an energy gap above the ground
state obeys a strict area law �13�.

The original motivation for this problem is the analogy
with black-hole physics, where the thermodynamic entropy
is proportional to the surface area of the event horizon
�2,3,14�. The second motivation is to guide the development
of efficient methods for simulating quantum systems with
classical computers. The number of parameters needed for
specifying an arbitrary pure state of an N-partite system is
exponential in N. If the state is not entangled, the number of
parameters is proportional to N. Hence, there seems to be a
correspondence between entanglement and complexity. In
one spatial dimension, the relation between entropy and the
complexity of simulating a system is well understood
�5,15,16�. The third motivation is to understand the kind of
states that arise in quantum many-body systems with strong
interactions. Almost all states in the Hilbert space obey a
volume law for the entropy �17�. Hence, area laws tell a lot
about the multipartite entanglement structure. At a finer
level, the specific form of an area law tells additional infor-

mation about the system: the logarithmic correction is a sig-
nature of criticality �4,5,8,11,12�; and the appearance of a
negative constant is a signature of topological order �18�. For
further overview of the topics around area laws see the re-
view article cited �19�.

II. RESULTS AND SUMMARY

Consider an arbitrary Hamiltonian H with finite-range in-
teractions in an s-dimensional lattice. The eigenstates have a
well-defined global energy, but inside a region X of the lat-
tice the energy may fluctuate. �The nomenclature of Fig. 1 is
followed.� In Sec. III it is proven that these fluctuations can
be observed by measuring the exterior of the region and a
superficial shell inside the region, that is, X�S. In Sec. IV a
condition is imposed to the ground state: if the operator X
has support on the region R which is separated from the
support of the operator Y by a distance l, then the connected
correlation function decays at least as

��XY� − �X��Y��� �l − � ln�R��−s, �1�

where � is a constant. This implies that energy fluctuations
inside the region X cannot be observed in its bulk, namely,
R. This provides a characterization for the approximate sup-
port of the global ground state inside the region R. In Sec. V
a condition on the density of states is assumed: if HX is the
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FIG. 1. �Color online� R is the chosen region where the entropy
is estimated; the sites belonging to its boundary �R are darker; S
and S� are two superficial shells with thickness l outside R; X
=S�S��R is the extended region; X is the exterior of X.
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sub-Hamiltonian with all terms of H whose support is fully
contained in X, then the number of eigenvalues lower than e
is bounded by

�X�e�� ���X����e−e0�+���X�, �2�

where e0 is the lowest eigenvalue and � ,� ,� some constants
independent of X. This condition is only assumed for e
���X�. This implies an upper bound on the dimension of the
above-defined support subspace. This is used to bound the
Von Newmann entropy for the reduction in the global ground
state in the region R,

S��R� = tr�− �R ln �R�� const	 ��R�ln�R� . �3�

Section VI contains a simpler proof for the area law �3�
without assuming �1�, but assuming �2� for all the range of e.
In Sec. VII the above results for the ground state are gener-
alized to other low-energy states �not necessarily eigen-
states�. Section VIII contains the conclusions.

III. LOCALITY AND ENERGY FLUCTUATIONS

A. Local interactions

Consider a system with one particle at each site x�L of a
finite s-dimensional cubic lattice L�Zs. The distance be-
tween two sites x ,y�L is defined by

D�x,y� = max
1�i�s

�xi − yi� . �4�

In the case of periodic boundary conditions or hybrids, this
distance has to be modified with the appropriate identifica-
tion of sites. Each particle x�L has associated a Hilbert
space with finite dimension q.

The Hamiltonian of the system can be written as

H = 	
x�L

Kx, �5�

where each term Kx can have nontrivial support on first
neighbors �y�L such that D�y ,x��1�. There is a constant J
which bounds the operator norm of all terms 
Kx
�J. �The
operator norm of a matrix is equal to its largest singular
value.� Translational symmetry is not assumed, so each term
Kx is arbitrary. The eigenstates and eigenvalues of H are
denoted by

H�
n� = En�
n� , �6�

where the index n=0,1 , . . . labels the eigenvalues in increas-
ing order En�En+1.

Note that any Hamiltonian with finite-range interactions
in a sufficiently regular lattice can be brought to the form of
H, by coarse graining the lattice. Quantum field theories with
local interactions can also be brought to the form of H by
lattice regularization. In the case of bosons, a truncation in
the local degrees of freedom is needed. In the case of fermi-
ons, a multidimensional Jordan-Wigner transformation �20�
is needed.

B. Lieb-Robinson bound

The Hamiltonian H satisfies the premises for the Lieb-
Robinson Bound �21,22�. Let X ,Y be two operators acting

respectively on the regions X ,Y�L, with 
X
 , 
Y
�1. The
distance between two regions is defined by

D�X,Y� = min
x�X,y�Y

D�x,y� . �7�

The time evolution of an operator in the Heisenberg picture
is X�t�=eiHtXe−iHt. The Lieb-Robinson Bound states that


�X�t�,Y�
� 2�X�
�vt��D�X,Y�/2�

�D�X,Y�/2�! , �8�

where v=2J5s. When vt�D�X ,Y� the two operators almost
commute. In other words, the dynamics generated by H does
not allow for the propagation of signals at speed much larger
than v. A simple proof of the Lieb-Robinson bound �8� is
provided in Appendix C.

C. Average for the energy fluctuations

For any region X�L and any integer l�5 define the
exterior, the boundary and the superficial shell as

X = L \ X = �x � L:x � X� , �9�

�X = �x � X:D�x,X� = 1� , �10�

S = �x � X:D�x,X�� l� , �11�

respectively �see Fig. 1�. The Hamiltonian HX is defined as
the sum of all terms Kx whose support is fully contained in
X. The eigenstates and eigenvalues of HX are denoted by

HX�n� = en�n� , �12�

where the index n=0,1 , . . . labels the eigenvalues in increas-
ing order en�en+1. The sum of all terms Kx which simulta-
neously act on X and X is H1=H−HX−HX, and has norm

H1
�J3s��X�. Without loss of generality it can be assumed
that each Kx is positive semidefinite, which implies

�HX� + �HX�� �HX + H1 + HX�

� tr��HX + H1 + HX���0��0� � trX�
0��
0���

� e0 + J3s��X� + �HX� ,

and

e0� �HX�� e0 + J3s��X� . �13�

This can be summarized as follows: The energy frustration of
the global ground state �
0� in a region X is, at most, pro-
portional to the boundary �X.

D. Observation of energy fluctuations

For any value of ecut define the operator

Q = 
−�

ecut

d� dt

2�
e−��t2/2�ei�E0−��teiHXte−iHt, �14�

where �=104v2 / l. The action of Q onto the global ground
state �
0� implements an approximate projection onto the
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subspace with energy lower than ecut inside the region X,

Q�
0� = �	
n


−�

ecut−en

d�
e−��2/2��

�2��
�n��n���
0� . �15�

This integral is the error function, which is a soft step func-
tion. In the limit where the softness parameter � tends to
zero, the operator inside the square brackets becomes a pro-
jector. The operator Q has nontrivial support on the whole
lattice L, but remarkably, it can be approximated by the op-
erator

Q̃ = 
−�

ecut

d� dt

2�
e−��t2/2�ei�E0−��eiHSte−iHX�St, �16�

which has nontrivial support only in the region X�S. More
quantitatively, the bound


Q − Q̃
� �X�3e−l �17�

is proven in Lemma 1 �Appendix A�, using techniques simi-

lar to the ones in �13,22,23�. The fact that Q� Q̃ is solely a
consequence of the locality of interactions and can be under-
stood as follows. According to the Lieb-Robinson bound �8�,
if t� l /v, any operator Y with support on X \S evolves to an
operator Y�t� with approximate support on X. Then
e−iHXtY�t�eiHXt�Y, or in other words, the unitary eiHXte−iHt in
Eq. �14� approximately acts like the identity inside X \S, or
in other words eiHXte−iHt�eiHSte−iHX�St, which justifies the
definition �16�.

The right-hand side of Eq. �16� is an average of unitaries;

therefore 
Q̃
�1. Then, the operators �Q̃� and �I− �Q̃�� define
a two-outcome generalized measurement on X�S, which
tells whether the energy inside X is below or above ecut,
approximately.

Everything shown in this sec. for the ground state gener-
alizes to all eigenstates. The action of Q onto �
n� is

Q�
n� = �	
n


−�

ecut� −en
d�

e−��2/2��

�2��
�n��n���
n� , �18�

where ecut� =ecut+En−E0. Summarizing, for each eigenstate

�
n� there is an operator Q̃ which approximately projects
onto the subspace with energy en�ecut inside the region X,
by only acting on the exterior and the shell X�S. The de-
gree of approximation increases with l, the width of S. The

larger l is, the closer Q and Q̃ are, and the smaller the soft-
ness parameter � is. The energy fluctuations of an eigenstate
�
n� inside a region X can be observed by measuring the
exterior and a superficial shell inside the region, that is,
X�S �see Fig. 1�.

IV. SUPPORT OF THE GROUND STATE INSIDE A
REGION

A. Decay of correlations

It is usually the case that, when the system is in the
ground state, the correlation between two observables acting
on different sites decrease with the distance between the

sites. Let � be a function which upper-bounds the connected
correlation function of any pair of operators X ,Y acting re-
spectively on the disjoint regions X ,Y�L, with �X�� �Y�
and 
X
 , 
Y
�1,

��XY� − �X��Y��� ��D�X,Y�, �X�� . �19�

�The expectation of any operator X with the ground state is
denoted by �X�= �
0�X�
0�.� For the argument of this paper,
both, the decay with the distance D�X ,Y� and the scaling
with size of the support of the operators �X�, are relevant. It is
shown in �22� that any Hamiltonian H with an energy gap
above the ground state �=E1−E0�0 has

��l, �X�� = c1�X�e−l/�, �20�

with correlation length �=10v /�. To prove the area law for
the entropy the following condition is needed.

Assumption 1. The correlation functions for the ground
state decay at least as

��l, �X�� =
c1

�l − � ln�X���
, �21�

where c1 ,� and ��s are constants.
Note that both, Eqs. �20� and �21�, have the same relative

scaling of l and �X�, but assumption �21� is weaker than Eq.
�20�. Although the decay �21� is polynomial in l, it is not the
correlation function of a critical Hamiltonian, where one ex-
pects ����X�1/s / l��. Unfortunately, the argument of this pa-
per does not give an area law with such scaling in �X�.

B. Energy fluctuations inside a region cannot be observed in its
bulk

For any region R�L and any integer l�5 define the
extended region as

X = �x � L:D�x,R�� 2l� , �22�

which redefines Eqs. �9�–�11� �see Fig. 1�. The region R can
be considered the bulk of X.

Suppose the existence of an operator Z with support in R
such that

Z�
0� � 	
n:en�ecut

�n��n�
0� .

This operator acts onto the ground state in a similar way as Q̃
does; then the two operators are correlated,

�ZQ̃� � �Z� � �Q̃� ,

and their corresponding supports are separated by a distance
l. For the right choice of ecut and large enough l the existence
of Z is in contradiction with Assumption 1; therefore the
energy fluctuations of the global ground state inside a region
X cannot be observed in the bulk of the region, that is R.

In the following subsection, a quantitative example of this
fact is given.

C. Characterization of the support

In what follows, the assignation
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ecut = 2J3s��X� + e0 + 20v �23�

is assumed in the definitions of Q and Q̃ �Eqs. �14� and �16��.
Definition of P. For each eigenstate �n� of HX with en

�ecut+20v consider the Schmidt decomposition �1� �n�
=	i�n

i ��n
i � � ��n

i � with respect to the partition ��n
i ��HR and

��n
i ��HX\R. Define P as the projector onto the subspace of

HR generated by all vectors ��n
i � defined above, symbolically

P = suppR��n�:en� 2J3s��X� + e0 + 40v� . �24�

Let P�= I− P be the projector onto the complementary sub-
space. Lemma 3 �Appendix A� shows that the assignation
�23� implies

�Q̃��
1

2
− 2�X�3e−l, �25�

�P�Q̃�� 2�X�3e−l. �26�

Recalling that the respective supports of P� and Q̃ are sepa-
rated by a distance l, one can invoke the decay of correla-
tions �19� without specifying the function �,

�P���Q̃� − �P�Q̃�� ��l, �R�� . �27�

The combination of Eqs. �25�–�27� gives

�P�� 1 − 4��l, �R�� , �28�

for sufficiently large l, where 1 /2���l , �R���6�X�3e−l

holds. Concluding, the support of the global ground state
inside R is contained in the subspace characterized by P, up
to some small weight �28�.

D. Renormalization-group scheme

The projector P defined above allows for certifiably gen-
erating a low-energy effective theory for H: the Hamiltonian
terms Kx inside R can be renormalized as

Kx→
RG

PKxP . �29�

The whole lattice can be divided in similar regions, and the
transformation �29� performed in each of them. The fidelity
between the effective and the original ground states can be
bounded with Eq. �28�, and increased by enlarging l. As ex-
plained in Sec. VI, one can also obtain arbitrarily good fi-
delities for any low-energy state.

V. ENTANGLEMENT IN THE GROUND STATE

A. Energy spectrum

In the previous section, a subspace which approximately
contains the support of the ground state inside a region has
been characterized. In order to bound its dimension, an ad-
ditional assumption is needed: if the boundary conditions of
the Hamiltonian are left open, the number of eigenstates with
vanishing energy- density must not be exponential in the
volume.

Assumption 2. There are constants c2 ,� ,� ,� such that, for
any region X and energy

e = 2J3s��X� + e0 + 40v , �30�

the number of eigenvalues of HX lower than e satisfies

�X�e� = max�n:en� e�� c2���X����e−e0�+���X�. �31�

The area law is nontrivial when applied to regions R such
that ��R�� �R�, or equivalently ��X�� �X�. In this case, the
eigenstates with energy proportional to the boundary ��X�
�30� have vanishing energy density en / �X�. According to
�23�, Assumption 2 holds for many systems that have an
energy gap above the ground state. There are known Hamil-
tonians which violate Assumption 2 and have a gap, but
when the boundary conditions are opened there appears a
degeneracy for the ground state which is exponential in the
volume �23�. Massive free bosons and fermions satisfy As-
sumption 2. Contrary, massless free frermions violate it as
��exp��e−e0��X�1/s.

The factor ���X����e−e0� in Eq. �31� can be understood with
the following example. Consider the Hamiltonian

HX = 	
x�X

�1 0

0 0
�

x
,

where the subindex x specifies in which site the matrix acts.
The energy e� �0,1 , . . . �X�� counts the number of local ex-
citations; hence the degeneracy is the binomial of �X� over e,
which can be upper bounded by �X�e. The constant factor
���X�����X� in Eq. �31� is introduced because some Hamilto-
nians with open boundary conditions have a degeneracy �or
approximate degeneracy� which is exponential in the size of
the boundary.

Consider again the Schmidt decomposition of each eigen-
state �n� with respect to the partition R and X \R �definition
of P�. The dimension of the Hilbert space HX\R is q�X\R�;
therefore the support of each �n� on R has at most dimen-
sion q�X\R�. This and Assumption 2 provide a bound for the
rank of the projector P,

rank P� q�X\R�c2���X�����X���2J3s+��+�40v�. �32�

B. Entropy of an arbitrary region

Consider a region R�L being a completely arbitrary
subset of the lattice. It need not be convex, full-dimensional,
nor connected. For any site x

��y � L:D�y,x�� 2l��� �5l�s,

��y � L:D�y,x� = 2l��� 2s�5l�s−1,

which imply

�X�� �R��5l�s,

��X�� ��R�2s�5l�s−1,
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�X/R�� ��R��5l�s. �33�

Let �R=trL\R�
0��
0� be the reduction in the ground state in
R, and �1��2�¯ its eigenvalues in decreasing order. As-
sumptions 1 and 2 imply Eqs. �21�, �28�, and �32�, which
impose the following constraints on the eigenvalues: for any
integer l�5,

	
k=1

��l�

�k� 1 − ��l� ,

��l� =
4c1

�l − � ln�R���
,

ln ��l� = ��R�2s�5l�s−1��2J3s + ��ln���R��5l�s�

+ ��R��5l�sln q + O�ln�R�� . �34�

Now one can find the probability distribution �k which maxi-
mizes the entropy �−	�k ln �k� given the above constraints.
This is done in Appendix B with the following result.

Result 1. The entropy of the reduction in the ground state
inside an arbitrary region R satisfies

S��R�� ��R��10� ln�R��s� s

�
��J3s + �� + ln q�

+ O„��R��ln�R��s−1
… . �35�

C. Entropy of a cubic region

Consider the case where the chosen region is a hypercube
R= �x�L :0�xi�L�. One can proceed as before, but the
bounds analogous to Eq. �33� are smaller, implying a smaller
bound for the entropy. All this is worked out in Appendix B.

Result 2. The entropy of the reduction in the ground state
inside a cubic region R satisfies

S��R�� ��R�ln�R���2J3s + � + 4� ln q� + O���R�� .

�36�

It is expected that the entropy of any full-dimensional con-
vex region R obeys the same scaling �36�.

VI. SIMPLER PROOF FOR THE AREA LAW

An area law can be easily proven without Assumption 1,
if Assumption 2 is extended to all values of the energy e, not
only the ones satisfying Eq. �30�. Let R be the region where
the entropy is estimated, and HR the sum of all terms of the
Hamiltonian �5� which are fully contained in R. Following
the conventions of this paper, the eigenstates and eigenvalues
are denoted by HR�n�=en�n�, where e0�e1�¯. The
strong version of Assumption 2 tells that all the eigenvalues
en satisfy

n� c2���R����en−e0�+���R�. �37�

The global ground state can be written as

�
0� = 	
k

��n�n� � ��n� , �38�

where the coefficients �n are non-negative and add up to
one. It is shown in �1� that the entanglement entropy of �
0�
is upper bounded by the entropy of the � coefficients

S��R�� − 	
n

�n ln �n. �39�

Locality implies Eq. �13�, which can be written as

	
n

�nen� e0 + J3s��R� . �40�

Maximizing the right-hand side of Eq. �39� over the prob-
ability distribution �n and the numbers en subjected to the
constrains �37� and �40� gives

S��R�� const��R�ln�R� , �41�

the area law.

VII. ENTANGLEMENT IN EXCITED STATES

The entanglement properties of excited states have also
been studied. In Refs. �24–26� the motivation was to study
the robustness of the area law for the entropy of black holes.
They show that in systems of free bosons, the entropy of
some low-energy excited states scales at most like the area.
In �27� the entropy scaling in one-dimensional spin systems
is analyzed. They show that some excited states have entropy
proportional to the volume, but low-energy states obey an
area law. All this work is for integrable systems. In what
follows, we address the general case.

Sometimes, low-lying excited states �
n� have correlation
functions similar to the ones of the ground state. The single-
mode ansatz for excitations with momentum k is

�
k
sm� �	

x

eix·kZx�
0� , �42�

where Zx is an operator acting on site x such that �Zx�=0. If
X ,Y have support on finite regions and the volume of the
system �L� tends to infinite, then the correlation function �19�
for the state �42� is the same as for �
0�. The same happens
to excited states containing a small number of single-mode
excitations. Examples of single-mode excitations are: spin
waves, free bosons, and free fermions. In this section it is
shown that such excited states obey an area law similar to the
one for the ground state. Actually, this is done with a bit
more generality.

Consider an arbitrary superposition of eigenstates with
bounded energy

��� = 	
n:En�Em

�n�
n� . �43�

In this case, the correct assignation for ecut in the definitions

of Q, Q̃, and P �14, 16, 24� is

ecut = 2J3s��X� + e0 + 20v + Em − E0. �44�

Applying Assumption 1 to the state �43�, the arguments fol-
low exactly as for the ground state. Repeating the calculation
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of the entropy for a cubic region R, and keeping track of the
term proportional to �Em−E0� one obtains

S�trL\R�������� ��R�ln�R���2J3s + � + 4� ln q�

+ �Em − E0��ln ��R��1−��c12�+3

��
+ O���R�� .

�45�

VIII. CONCLUSIONS

It is shown that ground states and low-energy states obey
an area law for the entropy, provided two conditions hold: �i�
the state has a sufficient decay of correlations, and �ii� the
number of eigenstates with vanishing energy-density is not
exponential in the volume of the system.

A universal property for local Hamiltonians is also here
established. The energy fluctuations of eigenstates inside an
arbitrary region can be observed by measuring the exterior
and a superficial shell of the region. This extends to any pure
state that can be written as a superposition of eigenstates
with similar energy.

Some thermodynamic quantities at finite temperature only
depend on the density of states. Examples are: free energy,
�global� entropy, heat capacity, etc. This paper establishes a
relation between these thermodynamic quantities and
ground-state entanglement.
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APPENDIX A: PROOFS

Lemma 1. Let Q , Q̃ be the operators defined in Eqs. �14�
and �16�, then


Q − Q̃
� �X�3e−l. �A1�

Proof. First, express Q and Q̃ with a single integral, by using
the identity


−�

e

d� dt

2�
e−��t2/2�e−i�t = dt

2�

e−��t2/2�

0+ − it
e−iet.

Second, define the operators

H0 = HS�S� − HS − HS�,

H1 = H − HX − HX,

which respectively act on the regions H0 ,H1�L. Note that
D�H0 ,H1�= l−4, �H0�� �X�, �H1��5s�X�, and


eiHXte−iHt − eiHSte−iHX�St
 = 
ei�H−H1�te−iHt

− ei�H−H1−H0�te−i�H−H0�t
 .

These, the triangular inequality, Lemma 2, and the Lieb-
Robinson bound �8�, give


Q − Q̃
� 2
0

t0

dt
1

2�t

eiHXte−iHt − eiHSte−iHX�St


+ 2
t0

�

dt
e−��t2/2�

2�t
2

�
2�X�3J25s

�


0

t0

dt
1

t


0

t

dt2
0

t2

dt1
�vt1��l/2−2�

�l/2 − 2�!

+
4

t0
��

e−��t0
2/2�

�
�X�3

�5s�l − 1�
�vt0��l/2�

�l/2�! +
4

t0
��

e−��t0
2/2�.

Putting t0= �l /2� / �e3v� and using Stirling’s approximation

�vt0��l/2�

�l/2�! � e�l/2�ln�evt0/�l/2��� e1−l.

Putting �=104v2 / l�2lt0
−2 one obtains Eq. �A1�. �

Lemma 2. Let H ,X ,Y be Hermitian matrices and t�0,
then


ei�H−X�te−iHt − ei�H−X−Y�te−i�H−Y�t
� 
0

t

dt2
0

t2

dt1
�X�t1�,Y�
 ,

�A2�

where X�t�=eiHtXe−iHt.
Proof. If f�t� is a differentiable function with f�0�=0 then

f�t�=�0
t dt1f��t1�. This implies the following two equalities.

The following two inequalities are a consequence of the tri-
angular inequality for the operator norm,


ei�H−X−Y�te−i�H−Y�teiHte−i�H−X�t − I


= �
0

t

dt2ei�H−X−Y�t2�− iXe−i�H−Y�t2eiHt2

+ e−i�H−Y�t2eiHt2iX�e−i�H−X�t2�
� 

0

t

dt2
− X + e−i�H−Y�t2eiHt2Xe−iHt2ei�H−Y�t2


= 
0

t

dt2�
0

t2

dt1e−i�H−Y�t1�Y,X�t1��ei�H−Y�t1�
� 

0

t

dt2
0

t2

dt1
�X�t1�,Y�


�

Lemma 3. The operator Q̃ defined in Eq. �16� with ecut
=2J3s��X�+e0+20v and the projector P� defined by Eq. �24�
satisfy
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�Q̃��
1

2
− 2�X�3e−l, �A3�

�P�Q̃�� 2�X�3e−l. �A4�

Proof . The positive operator

M = 	
n


−�

ecut−en

d��2���−1/2e−��2/2���n��n� �A5�

allows for writing equality �15� as

Q�
0� = M�
0� . �A6�

The two projectors

M = 	
n:en�ecut !

�n��n� , �A7�

with !=20v, satisfy

M− − e−lI�M �M+ + e−lI , �A8�

where we have used that e−!2/2��e−l. The positivity of M
and the second inequality in Eq. �A8� imply

M2� �1 + 2e−l�M+ + e−2l. �A9�

A worst-case estimation gives

�HX�� �M−�e0 + �I − M−��ecut − !� . �A10�

Performing the assignation ecut=2J3s��X�+e0+! in Eq.
�A10� and using bound �13� one obtains �M−��1 /2. The
combinations of Eqs. �17�, �A6�, and �A8� gives Eq. �A3�.

Using Lemma 1 and Eq. �A6�, the Cauchy-Schwarz in-
equality, bound �A9�, and the definition of M+ and P�, one
obtains respectively the following chain of inequalities:

�P�Q̃�� �P�M� + �X�3e−l� �P��1/2�P�M2P��1/2 + �X�3e−l

� ��1 + 2e−l��P�M+P�� + e−2l�1/2 + �X�3e−l

� 2�X�3e−l, �A11�

which is Eq. �A4�. �

APPENDIX B: CALCULATION OF THE ENTROPY

1. Entropy of an arbitrary region

Consider the probability distribution defined by

pk =
1 − ��l0�
��l0�

for 1� k���l0� ,

pk =
��l − 1� − ��l�
��l� −��l − 1�

for ��l − 1� + 1� k���l� ,

�B1�

for every integer l� l0=2� ln�R�, and

��l� =
4c1

�l − � ln�R���
,

ln ��l� = ��R�2s�5l�s−1��2J3s + ��ln���R��5l�s� + ��R�

	�5l�sln q + O�ln�R�� . �B2�

This distribution is uniform in blocks of the maximum size
that constraints �34� allow. Then, it is the distribution satis-
fying �34� with maximum entropy. The upper bound on the
entropy of pk gets simplified by using the substitutions
��l�−��l−1����l� and

��l − 1� − ��l��
c12�+3

�l − � ln�R���+1 . �B3�

Using this, one obtains

− 	
k

pk ln pk� ��R��10� ln�R��s� s

�
��J3s + �� + ln q�

+ O„��R��ln�R��s−1
… . �B4�

2. Entropy of a cubic region

Consider the case where the chosen region is an hyper-
cube R= �x�L :0�xi�L�. It is easy to calculate

�R� = Ls,

��R� = 2sLs−1.

Following definitions �22� and �10� one obtains

�X� = �R��1 + 4l/L�s,

��X� = ��R��1 + 4l/L�s−1,

�X \ R�� ��X�2l .

Consider the probability distribution �B1� with ��l� given in
Eq. �B2� but ��l� defined as

ln ��l� = ��R��1 + 4l/L�s−1��2J3s + ��ln���R��1 + 4l/L�s�

+ ��R��1 + 4l/L�s−12l ln q + O�ln�R�� .

Using the same tricks as above one obtains the following
upper bound for the entropy of pk,

− 	 pk ln pk� ��R�ln�R���2J3s + � + 4� ln q� + O���R�� .

APPENDIX C: THE LIEB-ROBINSON BOUND

Let X ,Y be two operators with support on the regions
X ,Y, respectively, and L=D�X ,Y�. Let Z be an arbitrary
operator and F�t�= �X�t� ,Z�, where X�t�=eiHtXe−iHt and H is
the Hamiltonian �5�. Using the Jacobi identity [�X ,Y� ,Z]
+ [�Y ,Z� ,X]+ [�Z ,X� ,Y]=0 twice one obtains

�tF�t� = i†�H,X�t��,Z‡ = − i�F�t�,H� − i
†�Z,	x�Z Kx�,X�t�

‡

= i�A,F�t�� + i	x�Z †Z,�X�t�,Kx�‡ ,

�C1�

where Z= �x : �Kx ,Z��0� and A=	x�L\ZKx. The above is
equivalent to
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�t�e−iAtF�t�eiAt� = i 	
x�Z

e−iAt
†Z,�X�t�,Kx�‡eiAt,

which can be integrated

e−iAtF�t�eiAt = F�0� + i 	
x�Z


0

t

dt1e−iAt1
†Z,�X�t1�,Kx�‡eiAt1.

�C2�

The triangular inequality for the operator norm gives


�X�t�,Z�
� 
�X�0�,Z�
 + 2
Z
 	
x�Z


0

t

dt1
†�X�t1�,Kx�‡
 .

�C3�

Define gx�t�= 
�X�t� ,Kx�
 and use Eq. �C3� with Z=Kx to
obtain

gx�t�� gx�0� + 2J 	
x�:D�x,x���2


0

t

dt1gx��t1� .

If r=D�x ,X��2 then gx�0�=0. The above can be iterated
n= ��r−1� /2� times

gx�t�� vn max
x�:D�x,x���2n


0

t

dtn
0

tn

dtn−1 ¯ 
0

t2

dt1gx��t1� ,

where v=2J5s and ��x� :D�x ,x���2��=5s. For any x� the
bound gx��0��2J
X
 holds, then

gx�t�� 2J
X

�vt���r−1�/2�

��r − 1�/2�! . �C4�

Note that ��x : �Kx ,X��0���5s�X�. This and the bound �C4�
can be substituted in Eq. �C3� with Z=Y, giving


�X�t�,Y�
� 2�X�
X

Y

�vt��L/2�

�L/2�! .

This is the Lieb-Robinson bound.
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