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Whether a spin-1/2 Fermi gas will become ferromagnetic as the strength of repulsive interaction increases is
a long-standing controversial issue. Recently this problem has been studied experimentally by Jo et al. �Sci-
ence 325, 1521 �2009�� in which the authors claim a ferromagnetic transition is observed. This work is to point
out the results of this experiment cannot distinguish whether the system is in a ferromagnetic state or in a
nonmagnetic but strongly short-range correlated state. A conclusive experimental demonstration of ferromag-
netism relies on the observation of ferromagnetic domains.
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I. INTRODUCTION

Itinerant ferromagnetism is a common phenomenon in na-
ture but not yet well understood. Rigorous examples of itin-
erant ferromagnetic ground state have only been obtained for
a few specific cases. For instance, Nagaoka showed that for
infinite strong repulsive interaction in a bipartite lattice the
ground state is ferromagnetic if one hole is doped into a
half-filled system �1�. Lieb showed for a half-filled bipartite
lattice, the ground state of repulsively interacting fermions
has nonzero spin if the number of total lattice site of each
sublattice is not equal �2�. Mielke �3� and Tasaki �4� pro-
posed a class of models whose single particle ground states
have degeneracy and showed that they become ferromag-
netic with repulsive interactions. However, there is no con-
clusive results for a generic dispersion and filling number.

Stoner considered spin-1/2 fermions with short-range in-
teractions; spin polarization can lower the interaction energy
since two spin align fermions will not interact due to the
Pauli exclusion principle, while it costs the kinetic energy.
With Hatree-Fock approximation, one can conclude that
when UN�EF��1 there exists a second-order ferromagnetic
phase transition �5,6�, where U is the interaction strength and
N�EF� is the density-of-state nearby the Fermi surface. This
is known as Stoner criteria. For s-wave scattering, this con-
dition corresponds to kFas�� /2, where kF is the Fermi mo-
mentum and as is the s-wave scattering length. Higher-order
perturbation of interactions will lower the critical value of
kFas and may change the transition to first order �7�.

Many authors have proposed to study itinerant ferromag-
netism transition using two-component Fermi gases where as
can be tuned by Feshbach resonance �8�. Based on the physi-
cal picture above, in a trapped system one should observe
nonmonotonic dependence of the kinetic energy with the in-
crease in as, namely, the kinetic energy shall first decrease
before ferromagnetic transition due to the expansion of the
cloud and then increase after the transition. The inelastic
collision rate shall first increase and then decrease as differ-
ent components begin to separate spatially �9�. Recently, a
beautiful experiment by Jo et al. �10� observed all these non-
monotonic features, and the agreement between experiment
and ferromagnetic theory �9,11� leads to the claim that this
has shown experimentally a ferromagnetic transition in con-
tinuum without particular requirement of lattice and band
structure �10�.

However, the itinerant ferromagnetic issue is in fact more
complicated than this. The question is whether spin polariza-
tion is the only way to reduce interaction energy. The answer
is no. In the content of Hubbard model, Gutzwiller
constructed his famous projected wave function as
�i�1−�ni↑ni↓���0�, where ��0� is free-fermion Fermi sea and
i is the index of the lattice site. The projection operator
�i�1−�ni↑ni↓� ���0� suppresses the probability of having
two fermions at the same lattice site and consequently re-
duces on-site interaction energy �12�. This state is nonmag-
netic if ��0� is chosen as nonmagnetic state. Hereafter we
shall call this state “correlated state” to distinguish it from
“ferromagnetic state.” Nevertheless, we shall note this state
is not an exotic state but still a Fermi-liquid state, we use the
term “correlated state” in the sense that the projection opera-
tor introduces strong short-range correlation into this state. In
continuum, a Jastrow factor can play the role of the projec-
tion operator.

In the Hubbard model, using the projected wave function
as a variational wave function, Gutzwiller showed that at low
density, the correlated state has lower energy than a ferro-
magnetic state �12�. An alternative view is that the short-
range correlation, which has been ignored in the Hatree-Fock
and perturbation treatment, will significantly renormalize
down the interaction. Kanamori argued that the up bound of
the effective interaction should correspond to the kinetic cost
to put a node in the wave function where two fermions over-
lap, which should always be finite even when bare interac-
tion goes to infinite, and he also argued that the renormalized
interaction is not sufficient for ferromagnetic transition at
low density �13�, which is supported by some later calcula-
tions �14�.

In short, the key of the itinerant ferromagnetism problem
is whether the system will choose spin polarization or build-
ing up short-range correlation to reduce interaction energy as
the strength of interaction increases. The advantage of cold
atom is to provide an opportunity for a direct quantum simu-
lation of the Stoner model and hopefully can settle the issue
of itinerant ferromagnetism experimentally. So the question
comes to whether the experiment of Ref. �10� has conclu-
sively settled the issue. The answer is no. The purpose of this
Rapid Communication is to point out a nonmagnetic “corre-
lated” state can explain the main observation of Ref. �10�
equally well as a ferromagnetic state, in another word, from
the existing experimental results, it is very hard to distin-
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guish whether the system is in a correlated state or in a
ferromagnetic state. Further experimental efforts are required
to distinguish them.

II. EQUATION OF STATE FOR A CORRELATED STATE

Let us first consider two-component fermions in free
space �without optical lattice and harmonic trap�, the Hamil-
tonian is given by

H = �
ri

�,�=↑,↓
−

�2�i
2

2m
+ �

ri
↑,rj

↓
v�ri

↑ − rj
↓� , �1�

where v�ri
↑−rj

↓� is a short-range pairwise interacting
potential. For a nonpolarized free-Fermi sea

��0�=Det�eikiri
↑
�Det�eikjrj

↓
�, the kinetic energy of each com-

ponent is given by Ekin
0 =3EFn /5, where EF=�2kF

2 / �2m�, n is
the density of each component, and n=kF

3 / �6�2�. For a Fermi
sea, the interaction energy is proportional to the k=0 Fourier
component of v�r� �denoted by v0�, i.e.,

Eint
0 = 	�0� �

ri
↑,rj

↓
v�ri

↑ − rj
↓���0� = v0n2. �2�

Away from a Feshbach resonance, Eint
0 =4��2asn

2 /m.
Now we consider Gutzwiller’s projected wave function in

continuum ���=P��0� as a class of variational states. With
the projection operator, the probability of having two spin-
opposite fermions closely changes from n2 to �1−g�n2, and
the interaction energy decreases if g�0 and increases
if g�0, thus the interaction energy shall linearly depend on
the “projection strength” g as

Eint =
4��2as

m
n2�1 − g� . �3�

By dimension analysis the kinetic energy shall be of the form

Ekin = 	�� �
ri

�,�

−
�2�i

2

2m
��� =

3

5
EFnw�g� , �4�

where w�g� is a dimensionless function of g. There are some
simple properties of w�g� one can make use of. For g=0,
there is no projection and the free-Fermi sea is the state that
minimizes the kinetic energy, thus w�0�=2. If g�0, both
positive and negative g will lead to the increase in the kinetic
energy, thus g=0 is the minimum of w�g�, namely,
�w�g� /�g �g=0=0. Hence, up to the second order of g, one has
the form

Ekin =
3

5
EFn�2 + �g2� =

4��2

m
a0n5/3�2 + �g2� , �5�

where ��0 and a0=3�6�2�2/3 / �40��=0.36. We shall now
stress that the purpose of this work is neither to rigorously
derive this equation of state and calculate the number of �
nor to prove theoretically that this state can energetically do
better than a ferromagnetic state. Instead, we shall take Eqs.
�3� and �5� together as a simple “phenomenological ” equa-
tion of state for this class correlated state, and the key of

work is to point out the general behavior of this correlated
state in trap, which does not depend on the specific value of
�, and hereafter we shall use � as an unspecified parameter.

For a given density n and as, one shall first minimize the
free energy with respect to g. For asn

1/3	2�a0,
g=asn

1/3 / �2�a0�. In this regime,

Ekin =
4��2

m

a0n5/3�2 +

as
2n2/3

4a0
2�

�
 , �6�

Eint =
4��2

m

asn

2�1 −
asn

1/3

2a0�
�
 , �7�

the total energy

Etot =
4��2

m

2a0n5/3 + asn

2 −
as

2n7/3

4a0�

 , �8�

and the chemical potential


 =
4��2

m

5a0n2/3

3
+ asn −

7as
2n4/3

24a0�

 . �9�

For asn
1/3�2�a0, g=1. In this regime,

Ekin =
4��2

m
�a0n5/3�2 + ��� , �10�

and Eint=0, the total energy

Etot =
4��2

m
�a0n5/3�2 + ��� , �11�

and the chemical potential


 =
4��2

m

5a0n2/3

6
�2 + ��
 . �12�

The kinetic, interaction and total energy �in unit of Ekin
0 � as a

function of askF are illustrated in Fig. 1. When g=1 at very
large kFas, the energy of a correlated state is lower than a
fully polarized ferromagnetic state if ��25/3−2�1.17.

1 2 3 4 5
askF

0.5
1.0
1.5
2.0
2.5
3.0
E�Ekin

0
�

FIG. 1. �Color online� The total energy �blue solid line�, the
kinetic energy �red dashed line�, and the interaction energy �black
dotted line� of the correlated state as a function of askF. For this plot
we set �=1. Ekin

0 is the kinetic energy of a free-Fermi sea
�2kF

2 / �2m�.
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III. TRAPPED SYSTEM

From the discussion above, we have obtained the relation

�n ,as�. For a given as, one can invert this relation to obtain
n�
 ,as�. Considering the harmonic trapping potential
Vtrap�r�= �m���x2+y2�+m�zz

2� /2, we shall use local-density
approximation to replace 
 with 
0−Vtrap�r� and by solving
the total number of particle constraint �d3rn�
0−V�r� ,as�
=N, one can obtain 
0�N ,as�. Then the local fermion density
is given by n�r�=n�
0�N ,as�−V�r� ,as�. Using the expres-
sions for kinetic and interaction energy density discussed
above, one can compute the total kinetic and interaction en-
ergy as Ekin/int=�d3rEkin/int(n�r� ,as), and the potential energy
is given by Epot=�d3rVtrap�r�n�r� and the total energy is
Etot=Ekin+Eint+Epot. The loss rate is computed in a very phe-
nomenological way as �=2�0�ask0�6�d3rn3�r��1−g�n�r���
�15�.

As shown in Fig. 1, for a uniform system the kinetic en-
ergy for a correlated state monotonically increases for any
as�0. To show whether for small as the kinetic energy will
first decrease with the increase in as in a trapped system, we
shall note

�Ekin

�as
=� d3r� �Ekin

�n

�n

�


�
0

�as
+

�Ekin

�as
� . �13�

The first term is negative and the second is positive. It is
important to note that when as→0 the first term does not
vanish while the second term does, since 
0 linearly depends
on as while Ekin quadratically depends on as, therefore the
first term is always dominative in small as, which gives
�Ekin /�as�0 and leads to a nonmonotonic behavior of ki-
netic energy.

We consider the experimental condition as Ref. �10�, i.e.,
N=6.5
105 and �z /��=7 /30. The results are shown in
Fig. 2. Comparing them with the prediction of a ferromag-
netic state, for instance, Figs. 1 and 2 of Ref. �9� and Fig. 2
of Ref. �11�, they display similar nonmonotonic behavior and
also qualitatively agree with the observation of Ref. �10�.
This leads to the main point of this work, that is, the non-
monotonic behavior observed in Ref. �10� is not sufficient to
distinguish a ferromagnetic state from a nonmagnetic corre-
lated state and thus not conclusive for making the claim of
ferromagnetic transition. We emphasize that despite of the
similar nonmonotonic behavior, there is no phase transition
in this scenario. In fact, the suppression of interaction energy
and the inelastic collision rate due to correlation is not sur-
prising in strongly interacting systems. Quantum Hall effect
and the Tonk gas of one-dimensional bosons are two of the
examples. Suppression of the three-body recombination rate
has been observed in one-dimensional Bose gas as it ap-
proaches the Tonk gas regime �16�.

IV. DISCUSSIONS

There are a few points we would like to comment on
before ending. First, there are some quantitative differences
between the results of Fig. 2 and that from a ferromagnetic
theory �for instance, Fig. 1 of Ref. �9��. In Fig. 2, the extreme
of kinetic energy, potential energy, and the loss rate are not

very close, while they are very close in the ferromagnetic
theory prediction. And there is no maximum in the chemical
potential �i.e., cloud size� plot of Fig. 2�e�. However, both
calculation above and the theoretical work of Refs. �8,9,11�
are not quantitatively correct. The important effect of Fesh-
bach resonance and unitary limit of the repulsive interaction
is not taken into account. For instance, the Hatree-Fock en-
ergy of a free-Fermi gas is taken as linearly increasing with
as, while the accurate Hatree-Fock energy should be smaller
and saturates at large as. The resonance physics has to be
taken into account seriously for making a quantitative com-
parison between theory and experiments, for instance, the
value kFas of kinetic energy turning point, and for construct-
ing a correct microscopic Fermi-liquid theory. And for the
correlated state, the correction should be treated more seri-
ously rather than the phenomenological way presented
above, for instance, by quantum Monte Carlo simulation. It
remains to be seen whether these quantitative difference be-
tween the prediction of two scenarios can be used to distin-
guish these two states when a more careful analysis in the
theory is done. We leave this for follow up works.

Second, a conclusive experimental evidence of ferromag-
netism is the observation of ferromagnetic domains. Refer-
ence �10� fails to observe the ferromagnetic domains. They
attribute this reason to short lifetime that prevents the system
to reach equilibrium. However, one should notice that this
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FIG. 2. �Color online� From �a�–�e� is the kinetic energy per
particle Ek=Ekin / �2N�, the interaction energy per particle
Ei=Eint / �2N�, the potential energy per particle Ep=Epot / �2N�, the
total energy per particle Et=Etot / �2N�, and the chemical potential

0 as a function of ask0. k0 is the Fermi momentum for free-Fermi
gas at the center of the trap, and the energy unit is taken as
Ek

0=�2k0
2 / �2m�. �f� The three-body loss rate as a function of ask0.

�=1 for blue solid line, �=0.75 for red dashed line, and �=0.5 for
black dotted line.
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system is the same as what has been used to study BEC-BCS
crossover before. Maybe there is some particular physics rea-
son to believe the relaxation time is particularly long in this
case than in the case of BEC-BCS time. If it is the case, the
dynamics remains to be explored.
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