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We propose to implement a sub-shot-noise matter-wave interferometer via the stimulated dissociation of a
molecular Bose-Einstein condensate and study the collisional loss of atom-molecule coherence during its
phase-acquisition time. The obtained n-atom states are two-atom �SU�1,1�� coherent states with number vari-
ance �n�n compared to �n��n for the spin �SU�2�� coherent states formed by coherent splitting of an atomic
condensate. Consequently, the Lorentzian atom-molecule phase diffusion is faster than the Gaussian phase
diffusion between separated atomic condensates by a �n factor.
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Atom-molecule coherence in a Bose-Einstein condensate
�BEC� was first demonstrated experimentally by observing
coherent oscillations in a Ramsey-like interferometer �1�. Its
existence paves the way to a wealth of novel phenomena,
including large-amplitude atom-molecule Rabi oscillations
�2�, atom-molecule dark states �3�, and “superchemistry” �4�
characterized by collective, Bose-enhanced, and ultraselec-
tive dynamics.

One important implication of atom-molecule coherence is
the stimulated dissociation of a molecular BEC into its con-
stituent boson atoms �5�. This coherent process is the matter-
wave equivalent of parametric down-conversion. Like its
quantum-optics counterpart, when started from the atomic
vacuum �molecular BEC� it involves the hyperbolic amplifi-
cation of the atom-pair number n= �n̂� and of its variance
�n= ��n̂2�− �n̂�2�1/2, where n̂ is the atomic number operator.

The exponential growth of �n indicates the formation of a
well defined relative phase � between the molecular BEC
and the emerging atomic condensate as the conjugate phase
variance �� is exponentially decreasing. Also like optical
parametric amplification, stimulated dissociation is phase
sensitive for atomic states different from the vacuum state.
Given a nonvanishing value of n the relative phase � be-
tween molecules and atoms determines whether it will be
amplified or attenuated.

In this work we propose to use the phase sensitivity of the
stimulated dissociation of a molecular BEC to construct a
sub-shot-noise SU�1,1� interferometer �6�. The scheme in-
volves two pulses of atom-molecule coupling, separated by a
phase-acquisition period, similar to the Ramsey procedure in
�1� but starting from a molecular BEC instead of an atomic
one. In the limit where the dissociation does not deplete the
molecular BEC, the atomic state will be an SU�1,1� or “two-
atom” coherent state �TACS�. The phase squeezing inherent
to the TACS allows the SU�1,1� interferometer to reach
Heisenberg-limited accuracy without the preparation of a
number-squeezed input, required to go beyond the shot-noise
limit in Mach-Zendher atom interferometry �7�. Since ex-
periments in optical-lattice and double-well potentials cur-
rently attain relatively moderate squeezing factors �8–10�,
SU�1,1� interferometry with phase squeezing embedded in
its beam splitter offers a significant advantage.

Unlike its optical counterpart, matter-wave interferometry
is limited by particle interactions. Our main result in this
respect is that similar to the spin-squeezed state in the phase-
acquisition stage of a Mach-Zendher atom interferometer, the
�n�n atom-number variance of the TACS results in the loss
of atom-molecule phase coherence on a short �pd�1 /n time
scale due to collisional phase diffusion. By contrast, two ini-
tially coherent separated atomic condensates phase diffuse
on a longer �pd�1 /�n time scale �12� since their initial state
is an SU�2� or “spin” coherent state �SCS� with �n��n.
Moreover, we find that for n�1 the phase diffusion of the
TACS is Lorentzian in time as compared to the familiar
Gaussian phase diffusion of the SCS due to the difference in
atom-number distributions between the two coherent states.

We consider the atom-molecule model Hamiltonian,
where interacting atoms and molecules are coupled by means
of either a Feshbach resonance or a resonant Raman transi-
tion,

H = Emn̂m + Ean̂ + �gam�̂m
† �̂a�̂a + H.c.� +

um

2
�̂m

† �̂m
† �̂m�̂m

+
ua

2
�̂a

†�̂a
†�̂a�̂a + uamn̂mn̂ , �1�

where �̂a,m are boson annihilation operators for atoms and

molecules, n̂= �̂a
†�̂a, n̂m= �̂m

† �̂m are the corresponding particle
numbers, and Ea,m are the respective mode energies. The
atom-molecule coupling is gam= �gam�ei�. The interaction
strengths are u�=2	
2a� / ���V�, �=a ,m ,am, where a�, ��

are the s-wave scattering length and reduced mass for atom-
atom, molecule-molecule, and atom-molecule scatterings
�i.e., �a=m /2, �m=m, and �am=2m /3, where m is the
atomic mass� and V denotes the quantized volume.

Using total pair number conservation n̂m+ n̂ /2=N to
eliminate c-number terms and assuming in what follows that
the molecular condensate remains large and is never signifi-
cantly depleted by the conversion of a small number of mol-
ecules into atoms nm	N /2, the molecular field operators

�̂m , �̂m
† are replaced by the c numbers �nme�i�m and Eq. �1�

becomes
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H = K̂z + gK̂x + uK̂z
2. �2�

Here =2�Ea+uamnm−ua�− �Em+umnm�, g=4�gam��nm, and

u=2ua+um /2−2uam. The operators K̂+= �ei��m−�� /2��†�†,

K̂−= �e−i��m−�� /2���, K̂z=�†� /2+1 /4 are the generators of
an SU�1,1� Lie algebra with canonical commutation relations

�K̂+ , K̂−�=−2K̂z, �K̂z , K̂��= � K̂� and we define the usual

Hermitian operators K̂x= �K̂++ K̂−� /2, K̂y = �K̂+− K̂−� /2i.

Since the Casimir operator of SU�1,1� is Ĉ= K̂z
2− K̂x

2− K̂y
2, we

will use for representation the joint eigenstates of Ĉ and K̂z,

�k,m� =� ��2k�
m ! ��2k + m�

�K̂+�m�k,0� , �3�

so that Ĉ�k ,m�=k�k−1��k ,m� and K̂z�k ,m�= �k+m��k ,m�,
with the Bargmann index k=1 /4 and non-negative integer m.
The states �k ,m� are atom-number states with n=2m.

The SU�1,1� interferometer �6� for probing the atom-
molecule phase coherence is illustrated in Fig. 1 by snap-

shots of the quadrature plane X̂=�+�†, P̂= ��−�†� / i. Start-
ing from the coherent atomic vacuum state �k ,0� �Fig. 1�a��,
the first step is the dissociation of a small fraction of the
molecular BEC into atoms by setting g� ,un. As shown
below, this condition is easily attained in current experimen-

tal setups by magnetic control of the atom-molecule detuning
for Feshbach-resonance coupling and by switching the pho-
todissociation lasers for the optical resonant Raman cou-
pling. The atomic state following this Lorentzian boost of
duration tp is an SU�1,1� TACS �6,11�,

��,�� = exp�zK̂+ − z�K̂−��k,0� = �1

− �2�k

m

��e−i��m���2k + m�
m ! ��2k�

�k,m� , �4�

with z=e−i�� /2 and �=tanh�� /2�. The obtained squeeze pa-
rameter is �=�p�gt and the atom-molecule relative phase is
�=�−�m+2�a=	 /2 �corresponding to quadrature phase of
	 /4; see Fig. 1�b��. The average atom number of �� ,�� is
n=2k�cosh �−1� and its variance is �n=�2k sinh � �11�,
corresponding to the amplification of vacuum fluctuations in
stimulated dissociation �5�.

Next, the coupling g is turned off and the atom-molecule
phase is allowed to evolve for a hold time th. In the
limit where atom-atom and atom-molecule collisions
may be neglected �u=0�, coherence is maintained
and the state at the end of the hold time is

exp�−iK̂zth���p ,	 /2�= ��p ,	 /2+�h� with �h�th
�Fig. 1�c��. The accumulated atom-molecule phase �h may
be determined by a second strong coupling pulse of duration
tp �Fig. 1�d�� because the fraction of reassociated atoms is
phase sensitive �6�. For example, if �h=0 the second pulse
will further dissociate the molecular BEC, whereas if
�h=	 it will reassociate all atoms into it. The final number
of atoms is obtained by noting that the combined boost-

rotation-boost sequence e−i�pK̂xe−i�hK̂ze−i�pK̂x preserves coher-
ence and transforms the vacuum into the final TACS �� f ,� f�
with cosh � f = �1+cos �h�cosh2 �p−cos��h�. Hence in the ab-
sence of collisions, the final number of atoms nf and its
variance �nf are given by

nf = 2k�cosh � f − 1� =
1 + cos �h

2
sinh2 �p,

��nf�2 = 2k sinh2 � f =
sinh2 �p

2
�sin2 �h + �1

+ cos �h�2 cosh2 �p� . �5�

Note that these expressions are slightly different from those
in Ref. �6� because the proposed scheme uses two identical
equal phase pulses as opposed to the reversed Lorentzian
boosts of the two degenerate parametric amplifiers in �6�.

From Eqs. �5� it is clear that an accumulated phase
�h=	 may be determined within ���h�2

= ���nf�2 / ��nf /��h�2��h=	= �2 sinh2 �p�−1= �8n�n+1��−1 accu-
racy. Thus, unlike sub-shot-noise atom interferometry which
requires the preparation of an initial number-squeezed state,
the squeezing inherent in coherent dissociation ��h around
�h=	 goes below the 1 /�n standard quantum limit �also
known as shot-noise limit� and approaches the Heisenberg
1 /n uncertainty, where n is the number of atoms dissociated
by the first pulse �6�.

Our goal here is to study the effect of interactions on this
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FIG. 1. �Color online� Atom-molecule SU�1,1� interferometer.
The quadrature phase-amplitude distribution is shown at the time
points marked on the upper g�t� plot. Note that the polar angle in
the X , P plot is � /2, not �. Starting from the atomic vacuum �a� the
first Lorentzian boost results in the squeezing of the atom-molecule
phase around �=	 /2 �b�, which is allowed to evolve during the
hold time �c�. The atom number and its variance after the second
pulse �d� depend on the value of � acquired during the hold time.
When � remains 	 /2 �solid line� the second pulse yields further
squeezing with exponentially increasing n, whereas if
�=−	 /2 �dashed line� the atomic vacuum is recovered. Dotted
circles correspond to the loss of coherence due to � phase diffusion.
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scenario. Atom-atom and molecule-atom collisions will de-
grade atom-molecule coherence during the phase-acquisition
time since for nonvanishing u the pertinent �k ,m� eigenstates
are not equally spaced. This collisional dephasing drives the
quadrature variances to ��X�2= ��P�2=2n+1 while keeping
��X�2+ ��P�2=2�2n+1� fixed, as depicted by the dotted
circle in Fig. 1�c�. Phase information is lost and the final
atom number on invoking the second pulse is �h independent
�dotted ellipse in Fig. 1�d��.

Atom-molecule coherence may be quantified by defining

the SU�1,1� purity K2��K̂z�2− �K̂x�2− �K̂y�2. For an SU�1,1�
coherent state we have K=k whereas dephasing is character-
ized by going inside the upper sheet of the hyperboloid
K2=k2, so that K�k. Thus, during the th hold time

where g=0 and hence �K̂z� is fixed, we may use

K�
2 ��K̂x�2+ �K̂y�2 as a measure of coherence. The time de-

pendence of K� is related to the Fourier transform of the
initial number distribution. Starting from the TACS �� ,��
with the number distribution Pm= ��k ,m �� ,���2 shown in Fig.
2�a�, we find the exact result that in the presence of interac-
tions, K� is independent of �,  and decays as

K��t� =
k sinh �

�1 + sin2�ut�sinh2 ��k+1/2 . �6�

Noting that sinh2 �= �n /2k���n /2k�+2�=4n�n+1� we
obtain that for a moderately large n�1, coherence decays
on a sin�ut��1 / �2n� time scale. Thus we replace
sinh �	2n, sin�ut�	ut to obtain Lorentzian dephasing
K�= �n /2��1+ �2nut�2�−3/4 which reflects the exponential
form of Pm and agrees well with numerical simulations �Fig.
2�c��. The phase-diffusion time �pd=1 / �2un� reciprocates the
super-Poissonian �n�n variance of the TACS.

It is instructive to compare atom-molecule collisional

dephasing with phase diffusion between two initially coher-
ent atomic BECs �9,12,13�. The pertinent Hamiltonian is the
two-site Bose-Hubbard model �sometimes referred to as the
bosonic Josephson junction� �14� and the initial coherent
states are the SU�2� SCS �11�,

��,��s = exp�zL̂+ − z�L̂−���,− �� = �1

+ �2�−� 

m=−�

�

��e−i���+m 2�

� + m
�1/2

��,m� , �7�

where �=tan�� /2�. The SU�2� generators

L̂x= ��̂1
†�̂2+ �̂2

†�̂1� /2, L̂y = ��̂1
†�̂2− �̂2

†�̂1� / �2i�, and

L̂z= �n̂1− n̂2� /2 are defined in terms of the boson annihilation

and creation operators �̂i, �̂i
† for particles in condensate

i=1,2 with the number operators n̂i= �̂i
†�̂i. The total particle

number n̂= n̂1+ n̂2=2� is conserved and the Fock states �� ,m�
are the standard L̂2, L̂z eigenstates. Experimentally, such
states are prepared either by coherently splitting an atomic
BEC or by controlling optical or magnetic double-well po-
tentials confining it �9,13�. Most common are states with
equal population of the two condensates, i.e., �=	 /2.

The binomial or Poissonian number distribution of the
SCS �� ,��s �Fig. 2�b�� results in the loss of relative-phase

coherence �L��2��L̂x�2+ �L̂y�2 under a collisional L̂z+uL̂z
2

Hamiltonian as

L��t� = � sin ��1 − sin2�ut�sin2 ���−1/2, �8�

approaching for n�1 the Gaussian decay L�

= �n /2�sin �e−n�sin �ut�2/2 with phase-diffusion time �pd

= �u sin ��n /2�−1 �12� �Fig. 2�d��. For equal n, the loss of
atom-molecule coherence is thus typically �n times faster
than the phase diffusion between atomic BECs. We note that
the accelerated decay of the super-Poissonian phase-
squeezed SU�1,1� coherent state is the counterpart of the
decelerated phase diffusion of a sub-Poissonian SU�2�
number-squeezed states observed experimentally in Ref. �9�.

To demonstrate the effect of interactions on the SU�1,1�
interferometer, we find the final atom number nf��h� with
phase diffusion present during the hold time,

nf = 2k�1 +
cos �h

�1 + sin2�uth�sinh2 �p�k+1/2�sinh2 �p, �9�

where �h=�h+ �2k+1�arctan�cosh �p tan�uth��. An exact
form is also found for �nf. The Ramsey-like fringes are thus
shifted due to the collisional shift in the atomic energy and
attenuated due to the loss of atom-molecule coherence �Fig.
3�. They vanish on a �pd time scale, approaching the fixed
value nf =2k sinh2 �p �which corresponds to the state de-
picted by a dotted ellipse in Fig. 1�d��. It is also evident from
Eqs. �6� and �9� that coherence revives on a very long
�r=	 /u time scale, similarly to the SU�2� case �12,13�.

Before closing, we evaluate the anticipated phase-
diffusion time under current experimental conditions, com-
paring it to the phase diffusion of the Poissonian molecular
field and the characteristic atom-molecule frequency.
Molecule-molecule and atom-molecule s-wave scattering
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FIG. 2. �Color online� Comparison of atom-molecule phase dif-
fusion with the collisional dephasing of separated atomic conden-
sates: �a� number distribution of a TACS �� ,�� with �=4.8, corre-
sponding to n=30 dissociated atoms; �b� same for a SCS �	 /2,��s

with �=n /2=25; �c� phase diffusion of TACS with n=100
�solid, ��, 167 �dashed, ��, and 500 �dashed-dotted, ��, symbols
mark numerical results with n+2nm=5000; �d� same for SCS with
n=70 �solid, ��, 156 �dashed, ��, and 626 �dashed-dotted, ��,
symbols mark numerical results. Insets in �b� and �c� show the
decay half-times �pd� �un�−1 for TACS and �pd� �u�n�−1 for SCS.
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lengths are approximated by the zero-range single-channel
scattering approximation �15� as am=0.6aa, aam=1.2aa, giv-
ing u=0.35ua. For 2000 dissociated atoms in a 100 Hz
spherical trap �n /V�1013 cm−3�, the obtained
phase-diffusion times range from 0.1 ms for 85Rb to
1.3 ms for 23Na. Assuming a molecular BEC of 5�104 mol-

ecules �2% dissociation� in the same trap, the dephasing of
the molecular field takes place on a much longer
1 / �um

�nm��10–100 ms time scale. Thus, the rapid phase
diffusion of the atomic seed will be the limiting factor in
atom-molecule interferometry. By contrast, the atom-
molecule Feshbach conversion frequency �gam

�nm /V� with
nm /V�1015 cm−3 is of order 1 MHz �16�, justifying the ne-
glect of phase diffusion during the coupling pulses.

To conclude, the dissociation of molecular BECs holds
great potential for the construction of Heisenberg-limited
SU�1,1� interferometers due to the inherent phase squeezing
of the TACS. However, phase squeezing comes at the price
of a super-Poissonian �n�n number distribution, making
the TACS very sensitive to collisional phase diffusion. The
same observation holds true for the SU�2� phase-squeezed
states produced by rotation of number-squeezed inputs in
proposals for sub-shot-noise Mach-Zendher atom interferom-
etry �6,7�. Controlling this dephasing process will pose a
major challenge to the implementation of precise atom inter-
ferometers, as well as to the realization of coherent su-
perchemistry �4,5�.
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FIG. 3. �Color online� Final number of atoms nf ��a� and �b��
and its variance �nf ��c� and �d�� as a function of �h=th in an
SU�1,1� interferometer with n=2k�cosh �p−1�=100. Time domain
fringes �fixed  and varying th� are shown in �a� and �c� with
un /=0 �solid�, 0.1 �dashed-dotted�, 1 �dashed�, and 10 �dotted�.
Frequency domain fringes �fixed th and varying � are plotted in �b�
and �d� with unth=0 �solid�, 0.5 �dashed-dotted�, 1 �dashed�, and 10
�dotted�.
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