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Atom-molecule dephasing in an SU(1,1) interferometer based on the stimulated dissociation
of a molecular Bose-Einstein condensate
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We propose to implement a sub-shot-noise matter-wave interferometer via the stimulated dissociation of a
molecular Bose-Einstein condensate and study the collisional loss of atom-molecule coherence during its
phase-acquisition time. The obtained n-atom states are two-atom [SU(1,1)] coherent states with number vari-
ance Ann compared to An o \n for the spin [SU(2)] coherent states formed by coherent splitting of an atomic
condensate. Consequently, the Lorentzian atom-molecule phase diffusion is faster than the Gaussian phase
diffusion between separated atomic condensates by a \n factor.
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Atom-molecule coherence in a Bose-Einstein condensate
(BEC) was first demonstrated experimentally by observing
coherent oscillations in a Ramsey-like interferometer [1]. Its
existence paves the way to a wealth of novel phenomena,
including large-amplitude atom-molecule Rabi oscillations
[2], atom-molecule dark states [3], and “superchemistry” [4]
characterized by collective, Bose-enhanced, and ultraselec-
tive dynamics.

One important implication of atom-molecule coherence is
the stimulated dissociation of a molecular BEC into its con-
stituent boson atoms [5]. This coherent process is the matter-
wave equivalent of parametric down-conversion. Like its
quantum-optics counterpart, when started from the atomic
vacuum (molecular BEC) it involves the hyperbolic amplifi-
cation of the atom-pair number n=() and of its variance
An=((A*)—{n)*)"?, where 7 is the atomic number operator.

The exponential growth of An indicates the formation of a
well defined relative phase ¢ between the molecular BEC
and the emerging atomic condensate as the conjugate phase
variance A¢ is exponentially decreasing. Also like optical
parametric amplification, stimulated dissociation is phase
sensitive for atomic states different from the vacuum state.
Given a nonvanishing value of n the relative phase ¢ be-
tween molecules and atoms determines whether it will be
amplified or attenuated.

In this work we propose to use the phase sensitivity of the
stimulated dissociation of a molecular BEC to construct a
sub-shot-noise SU(1,1) interferometer [6]. The scheme in-
volves two pulses of atom-molecule coupling, separated by a
phase-acquisition period, similar to the Ramsey procedure in
[1] but starting from a molecular BEC instead of an atomic
one. In the limit where the dissociation does not deplete the
molecular BEC, the atomic state will be an SU(1,1) or “two-
atom” coherent state (TACS). The phase squeezing inherent
to the TACS allows the SU(1,1) interferometer to reach
Heisenberg-limited accuracy without the preparation of a
number-squeezed input, required to go beyond the shot-noise
limit in Mach-Zendher atom interferometry [7]. Since ex-
periments in optical-lattice and double-well potentials cur-
rently attain relatively moderate squeezing factors [8-10],
SU(1,1) interferometry with phase squeezing embedded in
its beam splitter offers a significant advantage.

1050-2947/2009/80(5)/051604(4)

051604-1

PACS number(s): 03.75.Dg, 03.75.Gg, 03.75.Mn, 03.75.Lm

Unlike its optical counterpart, matter-wave interferometry
is limited by particle interactions. Our main result in this
respect is that similar to the spin-squeezed state in the phase-
acquisition stage of a Mach-Zendher atom interferometer, the
Anocn atom-number variance of the TACS results in the loss
of atom-molecule phase coherence on a short 7,, 1/n time
scale due to collisional phase diffusion. By contrast, two ini-
tially coherent separated atomic condensates phase diffuse
on a longer 7,,% 1/\n time scale [12] since their initial state
is an SU(2) or “spin” coherent state (SCS) with Anon.
Moreover, we find that for n>1 the phase diffusion of the
TACS is Lorentzian in time as compared to the familiar
Gaussian phase diffusion of the SCS due to the difference in
atom-number distributions between the two coherent states.

We consider the atom-molecule model Hamiltonian,
where interacting atoms and molecules are coupled by means
of either a Feshbach resonance or a resonant Raman transi-
tion,

A A N Uy AT
H= Emnm + Ean + (gamwmwulzba + H'C’) + lemlﬁmlpmwm
Sl + i (1)

where &a’m are boson annihilation operators for atoms and
molecules, 7= fp(; fﬂa, A= @n&m are the corresponding particle
numbers, and E,,, are the respective mode energies. The
atom-molecule coupling is g,,=|g.ml¢’®. The interaction
strengths are u,=2mh’a,/(u,V), a=a,m,am, where a,, i,
are the s-wave scattering length and reduced mass for atom-
atom, molecule-molecule, and atom-molecule scatterings
(ie., pme=m/2, w,=m, and pm,,=2m/3, where m is the
atomic mass) and V denotes the quantized volume.

Using total pair number conservation 7,,+7/2=N to
eliminate c-number terms and assuming in what follows that
the molecular condensate remains large and is never signifi-
cantly depleted by the conversion of a small number of mol-
ecules into atoms n,,~N/2, the molecular field operators
s zljn are replaced by the ¢ numbers \n,,e**» and Eq. (1)
becomes
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FIG. 1. (Color online) Atom-molecule SU(1,1) interferometer.
The quadrature phase-amplitude distribution is shown at the time
points marked on the upper g(¢) plot. Note that the polar angle in
the X, P plot is ¢/2, not ¢. Starting from the atomic vacuum (a) the
first Lorentzian boost results in the squeezing of the atom-molecule
phase around ¢=/2 (b), which is allowed to evolve during the
hold time (c). The atom number and its variance after the second
pulse (d) depend on the value of ¢ acquired during the hold time.
When ¢ remains 7r/2 (solid line) the second pulse yields further
squeezing with exponentially increasing n, whereas if
¢=—m/2 (dashed line) the atomic vacuum is recovered. Dotted
circles correspond to the loss of coherence due to ¢ phase diffusion.

H=5IA(Z+gIA(x+uIA(§. (2)

Here 6=2(E,+ugun,—u,)—(E,+u,n,), g=4|g.ml \E, and
u=2u,+u,/2-2u,,. The operators K,=(e/®%/2)yly,
K_=(e7 =D 2) ynp, IA(Z=¢+¢/2+1/4 are the generators of
an SU(1,1) Lie algebra with canonical commutation relations
[IA(+,IA(_]=—21A(Z, [IA(Z,IA(J_,]= + IAC_, and we define the usual
Hermitian operators I%xz(IA(++I%_)/2, IA(yz(I%Jr—I%_)/Zi.
Since the Casimir operator of SU(1,1) is CA‘:IA(z—IA{)ZC—IA{i, we
will use for representation the joint eigenstates of C and K,

B I'(2k) P
|k,m) = \/—mlr(2k+m)(K+) |k,0), 3)

so that Clk,my=k(k—1)|k,m) and IA(Z|k,m>=(k+m)|k,m>,
with the Bargmann index k=1/4 and non-negative integer m.
The states

The SU(1,1) interferometer [6] for probing the atom-
molecule phase coherence is illustrated in Fig. 1 by snap-

shots of the quadrature plane X= b+, 13=(¢— W) /i. Start-
ing from the coherent atomic vacuum state
the first step is the dissociation of a small fraction of the
molecular BEC into atoms by setting g= d,un. As shown
below, this condition is easily attained in current experimen-
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tal setups by magnetic control of the atom-molecule detuning
for Feshbach-resonance coupling and by switching the pho-
todissociation lasers for the optical resonant Raman cou-
pling. The atomic state following this Lorentzian boost of
duration 7, is an SU(1,1) TACS [6,11],

I'(2k +m)
m ! T'(2k)

- CIX e )
with z=¢77%6/2 and {=tanh(6/2). The obtained squeeze pa-
rameter is 6= 6¢,= gt and the atom-molecule relative phase is
o=¢— ¢, +2¢,=m/2 [corresponding to quadrature phase of

n=2k(cosh 6—1) and its variance is An=12k sinh 6 [11],
corresponding to the amplification of vacuum fluctuations in
stimulated dissociation [5].

Next, the coupling g is turned off and the atom-molecule
phase is allowed to evolve for a hold time ¢#,. In the
limit where atom-atom and atom-molecule collisions
may be neglected (#=0), coherence is maintained
and the state at the end of the hold time is
exp(—i&f(zth)| 0, m/2)=|0,,7/2+¢,) with o=ty
[Fig. 1(c)]. The accumulated atom-molecule phase ¢, may
be determined by a second strong coupling pulse of duration
t, [Fig. 1(d)] because the fraction of reassociated atoms is
phase sensitive [6]. For example, if ¢,=0 the second pulse
will further dissociate the molecular BEC, whereas if
¢, = it will reassociate all atoms into it. The final number
of atoms is obtained by noting that the combined boost-

rotation-boost sequence e~/ Kre=¢nKz~16 s preserves coher-

ence and transforms the vacuum into the final TACS |0f, gof)
with cosh 6;=[1+cos ¢, Jcosh” 6,—cos(¢,). Hence in the ab-
sence of collisions, the final number of atoms n, and its
variance An; are given by

1+ cos
—(’Dhsinh2 [7)

ny=2k(cosh 6;—1) = s

sinh? @
(Anf)2 2k sinh? 0= —zﬂ[sm o+ (1

+cos ¢,)* cosh? 6,]. (5)

Note that these expressions are slightly different from those
in Ref. [6] because the proposed scheme uses two identical
equal phase pulses as opposed to the reversed Lorentzian
boosts of the two degenerate parametric amplifiers in [6].
From Egs. (5) it is clear that an accumulated phase
¢,=m may be  determined  within  (Ag,)?
—[(Anf)2/|é’nf/<9<ph|2] »=(2 sinh? 6,)7'=[8n(n+1)]" accu-
racy. Thus, unlike sub shot-noise atom interferometry which
requires the preparation of an initial number-squeezed state,
the squeezing inherent in coherent dissociation A¢, around
@,=1 goes below the 1/yn standard quantum limit (also
known as shot-noise limit) and approaches the Heisenberg
1/n uncertainty, where n is the number of atoms dissociated
by the first pulse [6].
Our goal here is to study the effect of interactions on this
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FIG. 2. (Color online) Comparison of atom-molecule phase dif-
fusion with the collisional dephasing of separated atomic conden-
sates: (a) number distribution of a TACS |6, ¢) with 6=4.8, corre-
sponding to n=30 dissociated atoms; (b) same for a SCS |7/2, @),
with €=n/2=25; (c) phase diffusion of TACS with n=100
(solid, O), 167 (dashed, (1), and 500 (dashed-dotted, A), symbols
mark numerical results with n+2n,,=5000; (d) same for SCS with
n=70 (solid, O), 156 (dashed, [J), and 626 (dashed-dotted, A),
symbols mark numerical results. Insets in (b) and (c) show the
decay half-times 7, (un)~' for TACS and 7,,% (un)~" for SCS.

scenario. Atom-atom and molecule-atom collisions will de-
grade atom-molecule coherence during the phase-acquisition
time since for nonvanishing u the pertinent |k,m) eigenstates
are not equally spaced. This collisional dephasing drives the
quadrature variances to (AX)?>=(AP)?>=2n+1 while keeping
(AX)*+(AP)*>=2(2n+1) fixed, as depicted by the dotted
circle in Fig. 1(c). Phase information is lost and the final
atom number on invoking the second pulse is ¢, independent
[dotted ellipse in Fig. 1(d)].

Atom-molecule coherence may be quantified by defining
the SU(1,1) purity K>=(K_)*~(K,)>~(K,)*. For an SU(1,1)
coherent state we have K=k whereas dephasing is character-
ized by going inside the upper sheet of the hyperboloid
K2?=k%, so that K>k. Thus, during the #, hold time

where g=0 and hence (IA(Z> is fixed, we may use

K2l E(I%x>2+<12'y>2 as a measure of coherence. The time de-
pendence of K, is related to the Fourier transform of the
initial number distribution. Starting from the TACS |6, ¢)
with the number distribution P,,=|(k,m| @, ¢)|* shown in Fig.
2(a), we find the exact result that in the presence of interac-
tions, K, is independent of ¢, § and decays as

k sinh 6
[1 + sin®(ur)sinh? g2

K, ()= (6)

Noting that sinh? =(n/2k)[(n/2k)+2]=4n(n+1) we
obtain that for a moderately large n> 1, coherence decays
on a sin(ur)~1/(2n) time scale. Thus we replace
sinh 6=2n, sin(ur)=ut to obtain Lorentzian dephasing
K, =(n/2)[1+(2nut)’]¥* which reflects the exponential
form of P,, and agrees well with numerical simulations [Fig.
2(c)]. The phase-diffusion time 7,,,=1/(2un) reciprocates the
super-Poissonian Anxn variance of the TACS.

It is instructive to compare atom-molecule collisional
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dephasing with phase diffusion between two initially coher-
ent atomic BECs [9,12,13]. The pertinent Hamiltonian is the
two-site Bose-Hubbard model (sometimes referred to as the
bosonic Josephson junction) [14] and the initial coherent
states are the SU(2) SCS [11],

0,¢), = exp(zL, — 2"L_)|¢,~ €)= [1

¢ 12
+ 52]—43 2 (ge—itp)€+m< 2¢ >
¢ f +m

m=—

&my, (7)

where E=tan(0/2). The SU(2) generators
L= +iain)/2.  L=(hdh=y3h)/(2i),  and
L.=(ii,—1,)/2 are defined in terms of the boson annihilation
and creation operators z?xi, z}j for particles in condensate
i=1,2 with the number operators 72;,= @j 1:0,-. The total particle
number A=1,;+A,=2¢ is conserved and the Fock states |€,m)
are the standard L2, i eigenstates. Experimentally, such
states are prepared either by coherently splitting an atomic
BEC or by controlling optical or magnetic double-well po-
tentials confining it [9,13]. Most common are states with
equal population of the two condensates, i.e., 8=1/2.

The binomial or Poissonian number distribution of the
SCS |6, ¢), [Fig. 2(b)] results in the loss of relative-phase
coherence (L l)ZE(LAX)2+(LAy>2 under a collisional 6£Z+ ulAf
Hamiltonian as

L, (1) =€ sin g1 - sin*(ur)sin® ]2, (8)

approaching for n>1 the Gaussian decay L,

=(n/2)sin e 02 with  phase-diffusion  time Tod
=(u sin Oyn/2)~" [12] [Fig. 2(d)]. For equal n, the loss of
atom-molecule coherence is thus typically \n times faster
than the phase diffusion between atomic BECs. We note that
the accelerated decay of the super-Poissonian phase-
squeezed SU(1,1) coherent state is the counterpart of the
decelerated phase diffusion of a sub-Poissonian SU(2)
number-squeezed states observed experimentally in Ref. [9].

To demonstrate the effect of interactions on the SU(1,1)
interferometer, we find the final atom number n/¢,) with
phase diffusion present during the hold time,

cos @
np=2k) 1+ ) ~h2 12
sin®(ut,)sin
[1+ (ut) h0,,]+

where @, =¢,+(2k+1)arctan[cosh 6, tan(uz,)]. An exact
form is also found for An;. The Ramsey-like fringes are thus
shifted due to the collisional shift in the atomic energy and
attenuated due to the loss of atom-molecule coherence (Fig.
3). They vanish on a 7,, time scale, approaching the fixed
value ny=2k sinh? 6, [which corresponds to the state de-
picted by a dotted ellipse in Fig. 1(d)]. It is also evident from
Egs. (6) and (9) that coherence revives on a very long
7,=/u time scale, similarly to the SU(2) case [12,13].
Before closing, we evaluate the anticipated phase-
diffusion time under current experimental conditions, com-
paring it to the phase diffusion of the Poissonian molecular
field and the characteristic atom-molecule frequency.
Molecule-molecule and atom-molecule s-wave scattering

} sinh? 0,, (9)
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FIG. 3. (Color online) Final number of atoms 7, [(a) and (b)]
and its variance Any [(c) and (d)] as a function of ¢,=4r;, in an
SU(1,1) interferometer with n=2k(cosh 6,—1)=100. Time domain
fringes (fixed & and varying 1) are shown in (a) and (c) with
un/ =0 (solid), 0.1 (dashed-dotted), 1 (dashed), and 10 (dotted).
Frequency domain fringes (fixed #;, and varying ) are plotted in (b)
and (d) with unt,=0 (solid), 0.5 (dashed-dotted), 1 (dashed), and 10
(dotted).

lengths are approximated by the zero-range single-channel
scattering approximation [15] as a,,=0.6a,, a,,,=1.2a,, giv-
ing u=0.35u,. For 2000 dissociated atoms in a 100 Hz
spherical ~ trap  (n/V~10"3 cm™), the  obtained
phase-diffusion times range from 0.1 ms for 5Rb to
1.3 ms for »Na. Assuming a molecular BEC of 5 X 10* mol-

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 80, 051604(R) (2009)

ecules (2% dissociation) in the same trap, the dephasing of
the molecular field takes place on a much longer
1/(u,,\n,,) ~10—100 ms time scale. Thus, the rapid phase
diffusion of the atomic seed will be the limiting factor in
atom-molecule interferometry. By contrast, the atom-
molecule Feshbach conversion frequency |gam\s“nm7/| with
n,,/V~10" cm™ is of order 1 MHz [16], justifying the ne-
glect of phase diffusion during the coupling pulses.

To conclude, the dissociation of molecular BECs holds
great potential for the construction of Heisenberg-limited
SU(1,1) interferometers due to the inherent phase squeezing
of the TACS. However, phase squeezing comes at the price
of a super-Poissonian An~n number distribution, making
the TACS very sensitive to collisional phase diffusion. The
same observation holds true for the SU(2) phase-squeezed
states produced by rotation of number-squeezed inputs in
proposals for sub-shot-noise Mach-Zendher atom interferom-
etry [6,7]. Controlling this dephasing process will pose a
major challenge to the implementation of precise atom inter-
ferometers, as well as to the realization of coherent su-
perchemistry [4,5].
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