Atom-molecule dephasing in an SU(1,1) interferometer based on the stimulated dissociation of a molecular Bose-Einstein condensate

I. Tikhonenkov¹ and A. Vardi^{1,2}

1 *Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel* 2 *ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA* (Received 14 April 2009; revised manuscript received 7 October 2009; published 25 November 2009)

We propose to implement a sub-shot-noise matter-wave interferometer via the stimulated dissociation of a molecular Bose-Einstein condensate and study the collisional loss of atom-molecule coherence during its phase-acquisition time. The obtained *n*-atom states are two-atom $[SU(1,1)]$ coherent states with number variance $\Delta n \propto n$ compared to $\Delta n \propto \sqrt{n}$ for the spin [SU(2)] coherent states formed by coherent splitting of an atomic condensate. Consequently, the Lorentzian atom-molecule phase diffusion is faster than the Gaussian phase diffusion between separated atomic condensates by a \sqrt{n} factor.

DOI: [10.1103/PhysRevA.80.051604](http://dx.doi.org/10.1103/PhysRevA.80.051604)

PACS number(s): 03.75.Dg, 03.75.Gg, 03.75.Mn, 03.75.Lm

Atom-molecule coherence in a Bose-Einstein condensate (BEC) was first demonstrated experimentally by observing coherent oscillations in a Ramsey-like interferometer $[1]$ $[1]$ $[1]$. Its existence paves the way to a wealth of novel phenomena, including large-amplitude atom-molecule Rabi oscillations [[2](#page-3-1)], atom-molecule dark states $\lceil 3 \rceil$ $\lceil 3 \rceil$ $\lceil 3 \rceil$, and "superchemistry" $\lceil 4 \rceil$ $\lceil 4 \rceil$ $\lceil 4 \rceil$ characterized by collective, Bose-enhanced, and ultraselective dynamics.

One important implication of atom-molecule coherence is the stimulated dissociation of a molecular BEC into its constituent boson atoms $\lceil 5 \rceil$ $\lceil 5 \rceil$ $\lceil 5 \rceil$. This coherent process is the matterwave equivalent of parametric down-conversion. Like its quantum-optics counterpart, when started from the atomic vacuum (molecular BEC) it involves the hyperbolic amplification of the atom-pair number $n = \langle \hat{n} \rangle$ and of its variance $\Delta n = (\langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2)^{1/2}$, where \hat{n} is the atomic number operator.

The exponential growth of Δn indicates the formation of a well defined relative phase φ between the molecular BEC and the emerging atomic condensate as the conjugate phase variance $\Delta \varphi$ is exponentially decreasing. Also like optical parametric amplification, stimulated dissociation is *phase sensitive* for atomic states different from the vacuum state. Given a nonvanishing value of *n* the relative phase φ between molecules and atoms determines whether it will be amplified or attenuated.

In this work we propose to use the phase sensitivity of the stimulated dissociation of a molecular BEC to construct a sub-shot-noise $SU(1,1)$ interferometer [[6](#page-3-5)]. The scheme involves two pulses of atom-molecule coupling, separated by a phase-acquisition period, similar to the Ramsey procedure in [1](#page-3-0) but starting from a *molecular* BEC instead of an atomic one. In the limit where the dissociation does not deplete the molecular BEC, the atomic state will be an $SU(1,1)$ or "twoatom" coherent state (TACS). The phase squeezing inherent to the TACS allows the $SU(1,1)$ interferometer to reach Heisenberg-limited accuracy without the preparation of a number-squeezed input, required to go beyond the shot-noise limit in Mach-Zendher atom interferometry $[7]$ $[7]$ $[7]$. Since experiments in optical-lattice and double-well potentials currently attain relatively moderate squeezing factors $\lceil 8-10 \rceil$ $\lceil 8-10 \rceil$ $\lceil 8-10 \rceil$, $SU(1,1)$ interferometry with phase squeezing embedded in its beam splitter offers a significant advantage.

Unlike its optical counterpart, matter-wave interferometry is limited by particle interactions. Our main result in this respect is that similar to the spin-squeezed state in the phaseacquisition stage of a Mach-Zendher atom interferometer, the $\Delta n \propto n$ atom-number variance of the TACS results in the loss of atom-molecule phase coherence on a short $\tau_{pd} \propto 1/n$ time scale due to collisional phase diffusion. By contrast, two initially coherent separated atomic condensates phase diffuse on a longer $\tau_{pd} \propto 1/\sqrt{n}$ time scale [[12](#page-3-9)] since their initial state is an SU(2) or "spin" coherent state (SCS) with $\Delta n \propto \sqrt{n}$. Moreover, we find that for $n \geq 1$ the phase diffusion of the TACS is Lorentzian in time as compared to the familiar Gaussian phase diffusion of the SCS due to the difference in atom-number distributions between the two coherent states.

We consider the atom-molecule model Hamiltonian, where interacting atoms and molecules are coupled by means of either a Feshbach resonance or a resonant Raman transition,

$$
H = E_m \hat{n}_m + E_a \hat{n} + (g_{am} \hat{\psi}_m^{\dagger} \hat{\psi}_a \hat{\psi}_a + \text{H.c.}) + \frac{u_m}{2} \hat{\psi}_m^{\dagger} \hat{\psi}_m^{\dagger} \hat{\psi}_m \hat{\psi}_m
$$

$$
+ \frac{u_a}{2} \hat{\psi}_a^{\dagger} \hat{\psi}_a^{\dagger} \hat{\psi}_a \hat{\psi}_a + u_{am} \hat{n}_m \hat{n}, \tag{1}
$$

where $\hat{\psi}_{a,m}$ are boson annihilation operators for atoms and molecules, $\hat{n} = \hat{\psi}_a^{\dagger} \hat{\psi}_a$, $\hat{n}_m = \hat{\psi}_m^{\dagger} \hat{\psi}_m$ are the corresponding particle numbers, and $E_{a,m}$ are the respective mode energies. The atom-molecule coupling is $g_{am} = |g_{am}|e^{i\phi}$. The interaction strengths are $u_{\alpha} = 2\pi\hbar^2 a_{\alpha}/(\mu_{\alpha}V)$, $\alpha = a, m, am$, where a_{α}, μ_{α} are the *s*-wave scattering length and reduced mass for atomatom, molecule-molecule, and atom-molecule scatterings (i.e., $\mu_a = m/2$, $\mu_m = m$, and $\mu_{am} = 2m/3$, where *m* is the atomic mass) and *V* denotes the quantized volume.

Using total pair number conservation $\hat{n}_m + \hat{n}/2 = N$ to eliminate *c*-number terms and assuming in what follows that the molecular condensate remains large and is never significantly depleted by the conversion of a small number of molecules into atoms $n_m \approx N/2$, the molecular field operators $\hat{\psi}_m, \hat{\psi}_m^{\dagger}$ are replaced by the *c* numbers $\sqrt{n_m}e^{\pm i\phi_m}$ and Eq. ([1](#page-0-0)) becomes

FIG. 1. (Color online) Atom-molecule $SU(1,1)$ interferometer. The quadrature phase-amplitude distribution is shown at the time points marked on the upper $g(t)$ plot. Note that the polar angle in the *X*, *P* plot is $\varphi/2$, not φ . Starting from the atomic vacuum (a) the first Lorentzian boost results in the squeezing of the atom-molecule phase around $\varphi = \pi/2$ (b), which is allowed to evolve during the hold time (c). The atom number and its variance after the second pulse (d) depend on the value of φ acquired during the hold time. When φ remains $\pi/2$ (solid line) the second pulse yields further squeezing with exponentially increasing *n*, whereas if $\varphi = -\pi/2$ (dashed line) the atomic vacuum is recovered. Dotted circles correspond to the loss of coherence due to φ phase diffusion.

$$
H = \delta \hat{K}_z + g \hat{K}_x + u \hat{K}_z^2.
$$
 (2)

Here $\delta = 2(E_a + u_{am}n_m - u_a) - (E_m + u_m n_m)$, $g = 4|g_{am}| \sqrt{n_m}$, and $u = 2u_a + u_m/2 - 2u_{am}$. The operators $\hat{K}_+ = (e^{i(\phi_m - \phi)}/2) \psi^\dagger \psi^\dagger$, $\hat{K}_- = (e^{-i(\phi_m - \phi)}/2)\psi\psi$, $\hat{K}_z = \psi^{\dagger}\psi/2 + 1/4$ are the generators of an $SU(1,1)$ Lie algebra with canonical commutation relations $[\hat{K}_+,\hat{K}_-]=-2\hat{K}_z$, $[\hat{K}_z,\hat{K}_\pm]=\pm \hat{K}_\pm$ and we define the usual Hermitian operators $\hat{K}_x = (\hat{K}_+ + \hat{K}_-) / 2$, $\hat{K}_y = (\hat{K}_+ - \hat{K}_-) / 2i$. Since the Casimir operator of SU(1,1) is $\hat{C} = \hat{K}_z^2 - \hat{K}_x^2 - \hat{K}_y^2$, we will use for representation the joint eigenstates of \hat{C} and \hat{K}_z ,

$$
|k,m\rangle = \sqrt{\frac{\Gamma(2k)}{m \cdot \Gamma(2k+m)}} (\hat{K}_+)^m |k,0\rangle, \tag{3}
$$

so that $\hat{C}|k,m\rangle = k(k-1)|k,m\rangle$ and $\hat{K}_z|k,m\rangle = (k+m)|k,m\rangle$, with the Bargmann index *k*= 1/4 and non-negative integer *m*. The states $|k,m\rangle$ are atom-number states with $n=2m$.

The SU(1,1) interferometer $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ for probing the atommolecule phase coherence is illustrated in Fig. [1](#page-1-0) by snapshots of the quadrature plane $\hat{X} = \psi + \psi^{\dagger}$, $\hat{P} = (\psi - \psi^{\dagger})/i$. Starting from the coherent atomic vacuum state $|k,0\rangle$ [Fig. [1](#page-1-0)(a)], the first step is the dissociation of a small fraction of the molecular BEC into atoms by setting $g \ge \delta$, *un*. As shown below, this condition is easily attained in current experimen-

I. TIKHONENKOV AND A. VARDI **Example 2009** PHYSICAL REVIEW A **80**, 051604(R) (2009)

tal setups by magnetic control of the atom-molecule detuning for Feshbach-resonance coupling and by switching the photodissociation lasers for the optical resonant Raman coupling. The atomic state following this Lorentzian boost of duration t_p is an SU(1,1) TACS [[6,](#page-3-5)[11](#page-3-10)],

$$
|\theta, \varphi\rangle = \exp(z\hat{K}_+ - z^*\hat{K}_-) |k, 0\rangle = [1
$$

$$
- \zeta^2]^k \sum_m \left[\zeta e^{-i\varphi} \right]^m \sqrt{\frac{\Gamma(2k+m)}{m \cdot \Gamma(2k)}} |k, m\rangle, \tag{4}
$$

with $z = e^{-i\varphi} \theta/2$ and $\zeta = \tanh(\theta/2)$. The obtained squeeze parameter is $\theta = \theta_p \equiv gt$ and the atom-molecule relative phase is $\varphi = \phi - \phi_m + 2\dot{\phi}_a = \pi/2$ [corresponding to quadrature phase of $\pi/4$; see Fig. [1](#page-1-0)(b)]. The average atom number of $\ket{\theta, \varphi}$ is $n = 2k(\cosh \theta - 1)$ and its variance is $\Delta n = \sqrt{2k} \sinh \theta$ [[11](#page-3-10)], corresponding to the amplification of vacuum fluctuations in stimulated dissociation $\lceil 5 \rceil$ $\lceil 5 \rceil$ $\lceil 5 \rceil$.

Next, the coupling *g* is turned off and the atom-molecule phase is allowed to evolve for a hold time t_h . In the limit where atom-atom and atom-molecule collisions may be neglected $(u=0)$, coherence is maintained and the state at the end of the hold time is $\exp(-i\delta \hat{K}_z t_h) |\theta_p, \pi/2\rangle = |\theta_p, \pi/2 + \varphi_h\rangle$ with $\varphi_h \equiv \delta t_h$ [Fig. [1](#page-1-0)(c)]. The accumulated atom-molecule phase φ_h may be determined by a second strong coupling pulse of duration t_p [Fig. [1](#page-1-0)(d)] because the fraction of reassociated atoms is phase sensitive [[6](#page-3-5)]. For example, if $\varphi_h=0$ the second pulse will further dissociate the molecular BEC, whereas if $\varphi_h = \pi$ it will reassociate all atoms into it. The final number of atoms is obtained by noting that the combined boostrotation-boost sequence $e^{-i\theta_p \hat{K}_x} e^{-i\varphi_h \hat{K}_z} e^{-i\theta_p \hat{K}_x}$ preserves coherence and transforms the vacuum into the final TACS $\ket{\theta_f, \varphi_f}$ with cosh $\theta_f = [1 + \cos \varphi_h] \cosh^2 \theta_p - \cos(\varphi_h)$. Hence in the absence of collisions, the final number of atoms n_f and its variance Δn_f are given by

$$
n_f = 2k(\cosh \theta_f - 1) = \frac{1 + \cos \varphi_h}{2} \sinh^2 \theta_p,
$$

$$
(\Delta n_f)^2 = 2k \sinh^2 \theta_f = \frac{\sinh^2 \theta_p}{2} [\sin^2 \varphi_h + (1 + \cos \varphi_h)^2 \cosh^2 \theta_p].
$$
 (5)

Note that these expressions are slightly different from those in Ref. $[6]$ $[6]$ $[6]$ because the proposed scheme uses two identical equal phase pulses as opposed to the reversed Lorentzian boosts of the two degenerate parametric amplifiers in $\lceil 6 \rceil$ $\lceil 6 \rceil$ $\lceil 6 \rceil$.

From Eqs. (5) (5) (5) it is clear that an accumulated phase $\varphi_h = \pi$ may be determined within $(\Delta \varphi_h)$ $)^2$ $= [(\Delta n_f)^2 / |\partial n_f / \partial \varphi_h|^2]_{\varphi_h = \pi} = (2 \sinh^2 \theta_p)^{-1} = [8n(n+1)]^{-1}$ accuracy. Thus, unlike sub-shot-noise atom interferometry which requires the preparation of an initial number-squeezed state, the squeezing inherent in coherent dissociation $\Delta \varphi_h$ around $\varphi_h = \pi$ goes below the $1/\sqrt{n}$ standard quantum limit (also known as shot-noise limit) and approaches the Heisenberg 1/*n* uncertainty, where *n* is the number of atoms dissociated by the first pulse $\lceil 6 \rceil$ $\lceil 6 \rceil$ $\lceil 6 \rceil$.

Our goal here is to study the effect of interactions on this

FIG. 2. (Color online) Comparison of atom-molecule phase diffusion with the collisional dephasing of separated atomic condensates: (a) number distribution of a TACS $|\theta, \varphi\rangle$ with $\theta = 4.8$, corresponding to $n=30$ dissociated atoms; (b) same for a SCS $|\pi/2, \varphi\rangle_s$ with $\ell = n/2 = 25$; (c) phase diffusion of TACS with $n = 100$ (solid, \circ), 167 (dashed, \Box), and 500 (dashed-dotted, \triangle), symbols mark numerical results with $n+2n_m=5000$; (d) same for SCS with $n=70$ (solid, O), 156 (dashed, \Box), and 626 (dashed-dotted, \triangle), symbols mark numerical results. Insets in (b) and (c) show the decay half-times $\tau_{pd} \propto (un)^{-1}$ for TACS and $\tau_{pd} \propto (u\sqrt{n})^{-1}$ for SCS.

scenario. Atom-atom and molecule-atom collisions will degrade atom-molecule coherence during the phase-acquisition time since for nonvanishing *u* the pertinent $|k,m\rangle$ eigenstates are not equally spaced. This collisional dephasing drives the quadrature variances to $(\Delta X)^2 = (\Delta P)^2 = 2n + 1$ while keeping $(\Delta X)^2 + (\Delta P)^2 = 2(2n+1)$ fixed, as depicted by the dotted circle in Fig. $1(c)$ $1(c)$. Phase information is lost and the final atom number on invoking the second pulse is φ_h independent [dotted ellipse in Fig. $1(d)$ $1(d)$].

Atom-molecule coherence may be quantified by defining the SU(1,1) purity $K^2 = \langle \hat{K}_z \rangle^2 - \langle \hat{K}_x \rangle^2 - \langle \hat{K}_y \rangle^2$. For an SU(1,1) coherent state we have $K = k$ whereas dephasing is characterized by going inside the upper sheet of the hyperboloid $K^2 = k^2$, so that $K > k$. Thus, during the t_h hold time where $g=0$ and hence $\langle \hat{K}_z \rangle$ is fixed, we may use $K_{\perp}^2 = \langle \hat{K}_x \rangle^2 + \langle \hat{K}_y \rangle^2$ as a measure of coherence. The time dependence of K_{\perp} is related to the Fourier transform of the initial number distribution. Starting from the TACS $|\theta, \varphi\rangle$ with the number distribution $P_m = |\langle k,m | \theta, \varphi \rangle|^2$ shown in Fig. $2(a)$ $2(a)$, we find the exact result that in the presence of interactions, K_{\perp} is independent of φ , δ and decays as

$$
K_{\perp}(t) = \frac{k \sinh \theta}{[1 + \sin^2(ut)\sinh^2 \theta]^{k+1/2}}.
$$
 (6)

Noting that $\sinh^2 \theta = (n/2k)[(n/2k)+2] = 4n(n+1)$ we obtain that for a moderately large $n \geq 1$, coherence decays on a $\sin(ut) \sim 1/(2n)$ time scale. Thus we replace $\sinh \theta \approx 2n$, $\sin(ut) \approx ut$ to obtain Lorentzian dephasing $K_{\perp} = (n/2)[1 + (2nut)^2]^{-3/4}$ which reflects the exponential form of P_m and agrees well with numerical simulations [Fig. [2](#page-2-0)(c)]. The phase-diffusion time $\tau_{pd} = 1/(2 \mu n)$ reciprocates the super-Poissonian $\Delta n \propto n$ variance of the TACS.

It is instructive to compare atom-molecule collisional

... **PHYSICAL REVIEW A 80**, 051604(R) (2009)

dephasing with phase diffusion between two initially coherent atomic BECs $[9,12,13]$ $[9,12,13]$ $[9,12,13]$ $[9,12,13]$ $[9,12,13]$. The pertinent Hamiltonian is the two-site Bose-Hubbard model (sometimes referred to as the bosonic Josephson junction) $[14]$ $[14]$ $[14]$ and the initial coherent states are the $SU(2)$ SCS $[11]$ $[11]$ $[11]$,

$$
|\theta, \varphi\rangle_{s} = \exp(z\hat{L}_{+} - z^{*}\hat{L}_{-})|\ell, -\ell\rangle = [1
$$

+ $\xi^{2}]^{-\ell} \sum_{m=-\ell}^{\ell} (\xi e^{-i\varphi})^{\ell+m} \left(\frac{2\ell}{\ell+m}\right)^{1/2} |\ell, m\rangle,$ (7)

where $\xi = \tan(\theta/2)$. The $SU(2)$ generators $\hat{L}_x = (\hat{\psi}_1^{\dagger} \hat{\psi}_2 + \hat{\psi}_2^{\dagger} \hat{\psi}_1)/2,$ \hat{L} $\hat{L}_y = (\hat{\psi}_1^{\dagger} \hat{\psi}_2 - \hat{\psi}_2^{\dagger} \hat{\psi}_1) / (2i)$, and $\hat{L}_z = (\hat{n}_1 - \hat{n}_2)/2$ are defined in terms of the boson annihilation and creation operators $\hat{\psi}_i$, $\hat{\psi}_i^{\dagger}$ for particles in condensate *i*=1,2 with the number operators $\hat{n}_i = \hat{\psi}_i^{\dagger} \hat{\psi}_i$. The total particle number $\hat{n} = \hat{n}_1 + \hat{n}_2 = 2\ell$ is conserved and the Fock states $|\ell, m\rangle$ are the standard $\hat{\mathbf{L}}^2$, \hat{L}_z eigenstates. Experimentally, such states are prepared either by coherently splitting an atomic BEC or by controlling optical or magnetic double-well potentials confining it $[9,13]$ $[9,13]$ $[9,13]$ $[9,13]$. Most common are states with equal population of the two condensates, i.e., $\theta = \pi/2$.

The binomial or Poissonian number distribution of the SCS (θ, φ) _s [Fig. [2](#page-2-0)(b)] results in the loss of relative-phase coherence $(L_{\perp})^2 = \langle \hat{L}_x \rangle^2 + \langle \hat{L}_y \rangle^2$ under a collisional $\delta \hat{L}_z + u \hat{L}_z^2$ Hamiltonian as

$$
L_{\perp}(t) = \ell \sin \theta [1 - \sin^2(\mu t) \sin^2 \theta]^{(\ell - 1/2)},
$$
 (8)

approaching for $n \ge 1$ the Gaussian decay L_{\perp} $=(n/2)\sin{\frac{\theta e^{-n}(\sin{\theta ut})^2}{2}}$ with phase-diffusion time τ_{pa} $=(u \sin \theta \sqrt{n/2})^{-1}$ $=(u \sin \theta \sqrt{n/2})^{-1}$ $=(u \sin \theta \sqrt{n/2})^{-1}$ [[12](#page-3-9)] [Fig. 2(d)]. For equal *n*, the loss of atom-molecule coherence is thus typically \sqrt{n} times faster than the phase diffusion between atomic BECs. We note that the accelerated decay of the super-Poissonian phasesqueezed $SU(1,1)$ coherent state is the counterpart of the decelerated phase diffusion of a sub-Poissonian $SU(2)$ *number*-squeezed states observed experimentally in Ref. [[9](#page-3-11)].

To demonstrate the effect of interactions on the $SU(1,1)$ interferometer, we find the final atom number $n_f(\varphi_h)$ with phase diffusion present during the hold time,

$$
n_f = 2k \left\{ 1 + \frac{\cos \Phi_h}{\left[1 + \sin^2(u t_h) \sinh^2 \theta_p\right]^{k+1/2}} \right\} \sinh^2 \theta_p, \quad (9)
$$

where $\Phi_h = \varphi_h + (2k+1) \arctan[\cosh \theta_p \tan(u t_h)].$ An exact form is also found for Δn_f . The Ramsey-like fringes are thus shifted due to the collisional shift in the atomic energy and attenuated due to the loss of atom-molecule coherence (Fig. [3](#page-3-14)). They vanish on a τ_{pd} time scale, approaching the fixed value $n_f = 2k \sinh^2 \theta_p$ which corresponds to the state depicted by a dotted ellipse in Fig. $1(d)$ $1(d)$]. It is also evident from Eqs. (6) (6) (6) and (9) (9) (9) that coherence revives on a very long $\tau_r = \pi/u$ time scale, similarly to the SU(2) case [[12](#page-3-9)[,13](#page-3-12)].

Before closing, we evaluate the anticipated phasediffusion time under current experimental conditions, comparing it to the phase diffusion of the Poissonian molecular field and the characteristic atom-molecule frequency. Molecule-molecule and atom-molecule *s*-wave scattering

FIG. 3. (Color online) Final number of atoms n_f [(a) and (b)] and its variance Δn_f [(c) and (d)] as a function of $\varphi_h = \delta t_h$ in an SU(1,1) interferometer with $n = 2k(\cosh \theta_p - 1) = 100$. Time domain fringes (fixed δ and varying t_h) are shown in (a) and (c) with $u_n/\delta = 0$ (solid), 0.1 (dashed-dotted), 1 (dashed), and 10 (dotted). Frequency domain fringes (fixed t_h and varying δ) are plotted in (b) and (d) with $unt_h=0$ (solid), 0.5 (dashed-dotted), 1 (dashed), and 10 (dotted).

lengths are approximated by the zero-range single-channel scattering approximation [[15](#page-3-15)] as $a_m = 0.6a_a$, $a_{am} = 1.2a_a$, giving $u=0.35u_a$. For 2000 dissociated atoms in a 100 Hz
spherical trap $(n/V \sim 10^{13} \text{ cm}^{-3})$, the obtained $(n/V \sim 10^{13}$ cm⁻³), obtained phase-diffusion times range from 0.1 ms for $85Rb$ to 1.3 ms for ²³Na. Assuming a molecular BEC of 5×10^4 mol-

- [1] E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Nature (London) 417, 529 (2002); S. J. J. M. F. Kokkelmans and M. J. Holland, Phys. Rev. Lett. **89**, 180401 (2002); T. Köhler, T. Gasenzer, and K. Burnett, Phys. Rev. A **67**, 013601 (2003).
- [2] S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev. Lett. 95, 190404 (2005); N. Syassen, D. M. Bauer, M. Lettner, D. Dietze, T. Volz, S. Dürr, and G. Rempe, *ibid.* **99**, 033201 $(2007).$
- [3] K. Winkler, G. Thalhammer, M. Theis, H. Ritsch, R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 95, 063202 (2005).
- [4] D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, Phys. Rev. Lett. 84, 5029 (2000); J. J. Hope and M. K. Olsen, *ibid.* **86**, 3220 (2001); M. G. Moore and A. Vardi, *ibid.* 88, 160402 (2002).
- 5 I. Tikhonenkov and A. Vardi, Phys. Rev. Lett. **98**, 080403 (2007); M. Ögren, C. M. Savage, and K. V. Kheruntsyan, Phys. Rev. A 79, 043624 (2009); M. W. Jack and H. Pu, *ibid.* 72, 063625 (2005); U. V. Poulsen and K. Molmer, *ibid.* 76, 013614 (2007).
- 6 B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A **33**, 4033 (1986).
- [7] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994); J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, J. V. Porto, and P. R. Johnson, Phys. Rev. Lett. 98, 200405 (2007).
- [8] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett.

I. TIKHONENKOV AND A. VARDI **Example 2009** PHYSICAL REVIEW A **80**, 051604(R) (2009)

ecules (2% dissociation) in the same trap, the dephasing of the molecular field takes place on a much longer $1/(u_m\sqrt{n_m}) \sim 10-100$ ms time scale. Thus, the rapid phase diffusion of the atomic seed will be the limiting factor in atom-molecule interferometry. By contrast, the atommolecule Feshbach conversion frequency $|g_{am} \sqrt{n_m / V}|$ with n_m / V ~ 10¹⁵ cm⁻³ is of order 1 MHz [[16](#page-3-16)], justifying the neglect of phase diffusion during the coupling pulses.

To conclude, the dissociation of molecular BECs holds great potential for the construction of Heisenberg-limited $SU(1,1)$ interferometers due to the inherent phase squeezing of the TACS. However, phase squeezing comes at the price of a super-Poissonian $\Delta n \sim n$ number distribution, making the TACS very sensitive to collisional phase diffusion. The same observation holds true for the $SU(2)$ phase-squeezed states produced by rotation of number-squeezed inputs in proposals for sub-shot-noise Mach-Zendher atom interferometry $\lceil 6, 7 \rceil$ $\lceil 6, 7 \rceil$ $\lceil 6, 7 \rceil$ $\lceil 6, 7 \rceil$ $\lceil 6, 7 \rceil$. Controlling this dephasing process will pose a major challenge to the implementation of precise atom interferometers, as well as to the realization of coherent superchemistry $[4,5]$ $[4,5]$ $[4,5]$ $[4,5]$.

This work was supported by the National Science Foundation through a grant for the Institute for Theoretical Atomic, Molecular, and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory, by the Israel Science Foundation (Grant No. 582/07), and by the United States-Israel Binational Science Foundation (BSF) (Grant No. 2008141).

85, 1594 (2000).

- 9 G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, Phys. Rev. Lett. 98, 030407 (2007).
- [10] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Nature (London) **455**, 1216 (2008).
- [11] I. Tikhonenkov, E. Pazy, Y. B. Band, and A. Vardi, Phys. Rev. A 77, 063624 (2008).
- [12] Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997); J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675 (1997).
- [13] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature (London) 419, 51 (2002); T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nat. Phys. 1, 57 (2005); A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev, M. D. Lukin, and E. Demler, Phys. Rev. Lett. **100**, 140401 (2008).
- [14] Gh-S. Paraoanu et al., J. Phys. B 34, 4689 (2001) ; A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001); Y. Makhlin, G. Schön, and A. Shnirman, *ibid.* **73**, 357 (2001); R. Gati and M. K. Oberthaler, J. Phys. B 40, R61 (2007).
- [15] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004); L. M. Jensen, H. Makela, and C. J. Pethick, Phys. Rev. A **75**, 033606 (2007).
- 16 M. Holland, J. Park, and R. Walser, Phys. Rev. Lett. **86**, 1915 $(2001).$