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We demonstrate a quadratic phase gate for one-way quantum computation in the continuous-variable regime.
This canonical gate, together with phase-space displacements and Fourier rotations, completes the set of
universal gates for realizing any single-mode Gaussian transformation such as arbitrary squeezing. As opposed
to previous implementations of measurement-based squeezers, the current gate is fully controlled by the local
oscillator phase of the homodyne detector. Verifying this controllability, we give an experimental demonstra-
tion of the principles of one-way quantum computation over continuous variables. Moreover, we can observe
sub-shot-noise quadrature variances in the output states, confirming that nonclassical states are created through
cluster computation.
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I. INTRODUCTION

Measurement-based one-way quantum computation �1�,
using an offline prepared multiparty entangled cluster state,
is a conceptually interesting alternative to the standard uni-
tary circuit model of quantum computation �2�. In the cluster
model, universality is achieved through different choices of
measurement bases, while the cluster state remains fixed.
Unitary gates are effectively applied at each measurement
step, corresponding to elementary teleportations �3,4� for
propagating and manipulating a quantum state through the
cluster. The cluster model also turned out to provide new
potentially more efficient approaches to the experimental re-
alization of quantum logical gates, especially in the quantum
optical setting �5,6�.

A translation of the circuit model for quantum computa-
tion over continuous variables �CVs� �7,8� to universal clus-
ter computation with CV was given in Ref. �9�. The canoni-

cal universal gate set for CV is �Û3��� ,C�, where C

= �Ẑ�s� , Û2��� , F̂ ,CZ� with the momentum shift operator

Ẑ�s�=exp�2isx̂�, the phase gates Ûl��l�=exp�i�lx̂
l�, the Fou-

rier transform operator F̂, and the controlled-Z gate CZ
=exp�2ix̂ � x̂� �10�. Through concatenation, the full set en-
ables one to simulate any Hamiltonian in terms of arbitrary
polynomials of the position x̂ and the momentum p̂ to any
precision �7�.

The same set without the cubic gate Û3, i.e., the set C, is
still universal for realizing any quadratic Hamiltonian, that
is, the whole group of Gaussian unitary transformations, the
analog to the Clifford group for discrete variables �DVs�. In
the case of DV, for example, single-qubit Clifford transfor-

mations are fully covered by the Hadamard gate Ĥ and the

“� /4”-phase gate Û�/4 acting upon the qubit Pauli operators

as Û�/4
† ZÛ�/4=Z and Û�/4

† XÛ�/4=−iXZ=−Y; full universality
for single-qubit transformations would then require, in addi-
tion, the well-known “� /8”-phase gate �2�, the analog to the

cubic phase gate Û3 for CV. Focusing on CV, the quadratic
gate from the universal set C for all Gaussian transforma-

tions maps the Weyl-Heisenberg displacement operators Ẑ�s�
and X̂�s�=exp�−2isp̂� into

Û2
†���Ẑ�s�Û2��� = Ẑ�s� ,

Û2
†���X̂�s�Û2��� = e−i�s2

X̂�s�Ẑ�− �s� , �1�

in analogy to the qubit � /4-phase gate Û�/4. The effect of
the phase gate may be more conveniently expressed in terms
of the generators of the Weyl-Heisenberg group,

Û2
†���x̂Û2���= x̂ and Û2

†���p̂Û2���= p̂+�x̂.
In quantum optics, it is well known that there is an exact

finite decomposition of any quadratic unitary into single-
mode squeezers and beam splitters �11,12�. In this quantum

optical language, the quadratic phase gate Û2, together with

the Fourier transform F̂, provides single-mode squeezing,
and the two-mode gate CZ involves beam splitting modulo
single-mode squeezing.

In the cluster-based one-way model, the quadratic gate
can be fully controlled through the local oscillator �LO�
phase of the homodyne detector �9�. Here, we experimentally
demonstrate this controllability, with a fixed, offline two-
mode cluster state. We show that a large set of squeezing
transformations can be achieved by means of this one-way
phase gate; sequential application of the gate would lead to
universal single-mode Gaussian transformations �where
changes of the first moments in phase space require, in ad-

dition, p-displacements Ẑ�s�, trivially realizable through a
cluster state for CV �9��.

The output states of our elementary cluster computations
exhibit sub-shot-noise quadrature variance; thus, nonclassi-
cal states are created deterministically through cluster com-
putation with the degree of nonclassicality fully controlled
by the measurement apparatus. Therefore, our demonstration
differs from previous implementations of universal offline
squeezing �13,14�, in which different squeezing transforma-
tions require different beam splitter transformations to
achieve universality.

PHYSICAL REVIEW A 80, 050303�R� �2009�

RAPID COMMUNICATIONS

1050-2947/2009/80�5�/050303�4� ©2009 The American Physical Society050303-1

http://dx.doi.org/10.1103/PhysRevA.80.050303


The elementary teleportation step for the case of CV �9� is
described as follows. First, in the ideal scheme �Fig. 1�a��, an
arbitrary input state is coupled to a single-mode infinitely

squeezed state �a position eigenstate �x=0��, ÛQND���in�x
=0�A. This results in e−2ix̂inp̂A	dx��x��x�in	dp�p�A /
�
=	dx��x��x�in�x�A, where the subscripts “in” and “A” denote
the input and ancilla modes, respectively. Up to local Fourier
rotations, the resulting state corresponds to a perfect two-
mode cluster state, already carrying the quantum information
to be processed through the cluster �i.e., the quantum state
���in�.

Next, we measure the observable Û†�x̂�p̂Û�x̂� of mode 1,

where Û�x̂��exp�if�x̂�� is diagonal in the position basis and
p̂ is the conjugate momentum to x̂ ��x̂ , p̂�= i /2�. The quantum
state after the measurement with outcome p0 is


�in�p0�Û�x̂in�	��x��x�in�x�Adx

= 
�	in�p0�x�inU�x���x��x�Adx = Ẑ�− p0�Û�x̂A����A.

After correcting the displacement Ẑ�−p0�, we obtain the de-

sired state Û�x̂���� in the ancilla mode. Through this scheme,

in principle, we can apply an arbitrary unitary operator Û�x̂�
to ���in; for nonlinear gates such as the cubic gate Û3, how-
ever, this would require measuring a nonlinear observable.
Here, we consider detection of the whole range of rotated
quadratures �all linear combinations of x̂ and p̂�, effectively

applying the quadratic phase gate Û2���=exp�i�x̂2� to ���in,
up to a phase-space displacement depending on the measure-
ment result p0.

In our optical realization, x̂ and p̂ are quadrature operators

for the mode operator â= x̂+ ip̂. The quadratic gate Û2���
corresponds to a sequence of rotation, squeezing, and rota-
tion �11�, with x̂out= x̂in and p̂out= p̂in+�x̂in. Thus, the required
measurement corresponds to measuring �9� p̂+�x̂
=
1+tan2 ��p̂ cos �+ x̂ sin �� with �=tan �. Using homo-
dyne detection and setting the phase of the LO to �, we can
measure �p̂ cos �+ x̂ sin ��. Appropriate electric amplifica-
tion of the homodyne results with gain �1+tan2 ��1/2 leads to

the desired measurement of Û†p̂Û. We show this for several
values of �: 0, �1.0, �1.5, and �2.0 with coherent-state
inputs. The corresponding LO phases are 0°, �45°, �56.3°,
and �63.4°, respectively.

In our optical demonstration, we use three squeezed-
vacuum ancillae. One ancilla is coupled to the input via a
quantum nondemolition �QND� gate �denoted by subscript
A�. The QND gate itself requires two additional squeezed
vacuum states �denoted by subscripts B, C�. For the QND
gate, we employ the scheme of Refs. �13,15�. The full input-
output relations of the scheme including finite-squeezing re-
sources are

x̂out = x̂in + x̂A
�0�e−rA −


5 − 1

2
4 5
x̂B

�0�e−rB,

p̂out = p̂in + �x̂in +
1

4 5

�x̂B
�0�e−rB +


5 + 1

2
4 5
p̂C

�0�e−rC. �2�

Even with the excess noise from the finite squeezing of the
ancillae, we are able to observe sub-shot-noise quadrature
squeezing for sufficiently large �. In the remainder of the
Rapid Communication, we shall describe the experimental
details and present the results of the experiment.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is illustrated in Fig.
1�b�. The original source of light is a continuous wave �cw�
Ti:sapphire laser, whose output is 860 nm in wavelength and
1.5 W in power. Quantum states at the 1.34 MHz sideband
are used in our demonstration.

The experimental setup consists of the following parts:
preparation of the input and ancilla states, the QND coupling
gate, measurement, feedforward, and finally, the verification
measurement.

The input state, a coherent state at the 1.34 MHz side-
band, is generated by modulating a weak laser beam of about
10 �W using electro-optic modulators �EOMs�. We prepare
three types of coherent states ���: �=xin, �= ipin, and �=0,
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FIG. 1. �Color online� Schematic of a one-way quantum gate and our experimental setup. OPO: optical parametric oscillator, LO: optical
local oscillator, and EOM: electro-optic modulator.
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corresponding to phase modulation, amplitude modulation,
and no modulation of the laser beam, respectively.

In order to prepare the ancilla states, there are three sub-
threshold optical parametric oscillators �OPOs�, each gener-
ating a single-mode squeezed state, whose squeezing level is
−4.3 dB, −4.9 dB, and −5.2 dB. An OPO is a bow-tie
shaped cavity of 500 mm in length, containing a
periodically-poled KTiPO4 �PPKTP� crystal �16�. The sec-
ond harmonic �430 nm in wavelength� of Ti:sapphire output
is divided into three beams in order to pump the OPOs.

The QND gate basically consists of a Mach-Zehnder in-
terferometer with a single-mode squeezing gate in each arm
�15�. Each single-mode squeezing gate contains a squeezed
vacuum ancilla, homodyne detection, and feedforward
�13,14�. The variable beam splitters in the QND gate are
composed of two polarizing beam splitters and a half-wave
plate. We can eliminate the QND gate and just measure the
input states by setting the transmittances of the variable
beam splitters to unity. At each beam splitter, we lock the
relative phase of the two input beams by means of active
feedback to a piezoelectric transducer. For this purpose, two
modulation sidebands of 154 and 107 kHz are used as phase
references. For the homodyne detection, the LO phase is ad-
justed in accordance to the desired � value; the feedforward

displacement is carried out with the right gain depending on
�.

To verify the output state, we employ another homodyne
detection. As is well known from optical homodyne tomog-
raphy, we can reconstruct the quantum state from the mar-
ginal distributions for various phases �17�. We slowly scan
through the LO phase and perform a series of homodyne
measurements. The 1.34 MHz component of the homodyne
signal is extracted by means of lock-in detection: it is mixed
with a reference signal and then sent through a 30 kHz low
pass filter. Finally, it is analog-to-digital converted where the
sampling rate is 300 000 samples/s.

The powers of the LOs are about 3 mW. The detector’s
quantum efficiencies are greater than 99%, the interference
visibilities to the LOs are on average 98%, and the dark
noise of each homodyne detector is about 17 dB below the
optical shot noise level produced by the LO. Propagation
losses of our whole setup are about 7%.

III. EXPERIMENTAL RESULTS

As mentioned earlier, we carry out the experiment with
three types of input coherent states ���: �=xin �xin=1.4�, �
= ipin �pin=1.3�, and �=0. For each input state, we demon-
strate the gate for seven different � values: 0, �1.0, �1.5,
and �2.0.

Figure 2 shows the raw data of marginal distributions and
the Wigner functions reconstructed via maximum-likelihood
method �18�. We show the results for the input state with the
amplitude in x as an example. Each scan contains about
80 000 data points which are uniformly distributed in phase
from 0 to 2�, and every 20 points are plotted in the figure
�about 4000 data points�. For �=0 �Fig. 2�b��, the input state
is regenerated at the output except for some excess noise. For
nonzero � �Figs. 2�c� and 2�d��, we can see that the distribu-
tion of the p variable is shifted proportional to x, with a
proportionality factor �. As a result, the output states are
squeezed and rotated.

In Fig. 3, the elliptic output Wigner functions for �
=0, �1.0, �2.0 are shown, where the position, size, and
shape of each ellipse correspond to the averaged amplitudes
and variances. Figures 3�a� and 3�b� are for the case of �
=xin: �a� experimental results and �b� theoretical ideal opera-
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(a)Input coherent state.
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(b)Output for κ = 0.
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(c)Output for κ = 1.0.
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(d)Output for κ = 2.0.

FIG. 2. �Color online� Input and output states with several �.
Left figures show raw data of marginal distributions and right ones
show the Wigner functions, reconstructed via maximum-likelihood
method �18�.
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FIG. 3. �Color� Input coherent state �black circle� and output states for several �. We assume Gaussian distributions, and show averaged
amplitudes, variances. ��a�, �c�, and �d�� Experimental results for three types of input coherent state ���, where � is the complex amplitude
�â= â�0�+��. �b� Theoretical prediction with infinite squeezed ancillae for the same input state as �a�.
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tion. They agree well in positions and inclinations of ellipses
although the ellipses in Fig. 3�a� are thermalized because of
the finite squeezing of the ancilla states. We estimate the
experimentally obtained � via �act= �p̂out� / �x̂in�, and the val-
ues obtained are �act=0.00, 0.95, −1.04, 1.94, and −2.02 for
theoretical values �th=0, �1.0, and �2.0, respectively. The
differences in inclinations between experimental and ideal
Wigner functions are less than 3°. The experimental results
for the other input states are shown in Figs. 3�c� and 3�d�.
The change in the amplitude in the input states only affects
the positions of the ellipses; the shapes and inclinations of
the ellipses remain the same. We can see in Fig. 3�d� that the
input amplitude in the p quadrature �pin� is simply repro-
duced at the output and is otherwise not affected for any �.
All of these results are in good agreement with the theoreti-
cal input-output relations.

In Fig. 4, the output quadrature squeezing of our setup is
plotted. Note that the squeezed quadratures are fragile and
easily degraded by excess noise. In the case of infinitely
squeezed ancillae, squeezing is obtained for any nonzero �;
for �=0, on the other hand, the variance of the input coher-
ent state is preserved. With finitely squeezed ancillae, the
excess noises are added to the variances of the ideal outputs.
Without nonclassical resources, squeezing below the SNL is,
of course, not obtained for any �. In the case of a squeezing
level of the ancillae below −2.9 dB relative to the SNL, the
output state is squeezed for sufficiently large ���. We can
observe a noise suppression below the SNL by 0.3�0.1 dB
for �= �1.0, 0.8�0.1 dB for �= �1.5, and 1.0�0.1 dB
for �= �2.0.

In conclusion, we have experimentally demonstrated the
canonical quadratic phase gate for CV in a small cluster

computation. The gate is fully controlled by the local oscil-
lator phase of the homodyne detector. We demonstrated con-
trollability for a set of coherent input states and we observed
sub-shot-noise quadrature variances in the output states, veri-
fying that our measurement-based gate creates nonclassical
states. Concatenating this scheme would enable one to real-
ize any single-mode Gaussian transformation, efficiently ap-
plicable to arbitrary input states including non-Gaussian
states.
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FIG. 4. �Color online� Variances of the squeezed output quadra-
ture. �i� Experimental results with squeezed ancillae and their the-
oretical curves derived from Eq. �2�. �ii� experimental results with
vacuum-state ancillae and their theoretical curves. �iii� Theoretical
results with infinite squeezing ancillae. �iv� Shot-noise limit. The
vertical axis is normalized to the shot-noise limit.
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