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Quantum optical input-output models are described for a class of optical switches based on cavity quantum
electrodynamics �QED� with a single multilevel atom �or comparable bound system of charges� coupled
simultaneously to several resonant field modes. A recent limit theorem for quantum stochastic differential
equations is used to show that such models converge to a simple scattering matrix in a type of strong-coupling
limit that seems natural for nanophotonic systems. Numerical integration is used to show that the behavior of
the prelimit model approximates that of the simple scattering matrix in a realistic regime for the physical
parameters and that it is possible in the proposed cavity-QED configuration for low-power optical signals to
switch higher-power signals at attojoule energy scales.
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It has long been appreciated that in cavity quantum elec-
trodynamics �QED� with strong coupling �1,2�, the transmis-
sion or reflection of an optical field coupled to the cavity
mode can be controlled by the state of a single intracavity
atom �or comparable bound system of charges, e.g., as in
solid-state systems� �3–5�. This simple insight leads naturally
to various schemes for the implementation of optical
switches in which a low-power beam is used somehow di-
rectly to manipulate the atomic internal state and thus to
determine whether a higher-power beam incident on the cav-
ity input coupling mirror is transmitted or reflected �for re-
lated proposals, see �6–8��. As cavity-QED switches should
be realizable in integrated nanophotonic platforms �9,10� and
could potentially function down to the single-photon level
�11� �although it is not clear whether robust circuit-level op-
eration could be achieved with few-photon signals in the
presence of finite propagation losses�, this type of device
could contribute to the development of ultralow power nano-
photonic signal processing, for example, in the context of
on-chip nanophotonic interconnect �12–14�.

In quantitative performance studies of cavity-QED switch
designs, it is important to consider fundamental models that
include the effects of optical shot noise, spontaneous emis-
sion, and dipole fluctuations. Such models should be cascad-
able and should clearly indicate the key parameters for opti-
mizing switching performance. The purpose of this Brief
Report is to describe quantum-optical input-output models
for an elementary class of cavity-QED switches, which can
be cascaded easily using the series and concatenation prod-
ucts for quantum stochastic differential equations �QSDEs�
�15�, and to show that these models converge to a very
simple scattering-matrix description in a certain strong-
coupling limit that seems natural for nanophotonic systems.
The limit model may provide a useful abstraction for circuit-
level analysis and synthesis of photonic signal processing
systems �16–20�, while numerical integration of the primary
model can be used to characterize deviations from ideal
switching behavior as well as the limits of low-power opera-
tion for finite values of the physical parameters.

Figure 1 presents the basic structure of the cavity-QED
switch we will consider, which was recently proposed in
�16�. The device functions essentially as a set-reset flip-flop
switch. The intracavity atom, whose internal state determines
the overall state of the switch, is assumed to have levels

��g� , �h� , �e� , �s�� in the arrangement shown. States
��g� , �s� , �e�� are assumed to have the same angular momen-
tum m �eigenvalue of angular momentum along the z axis�
while �h� should have angular momentum m−1. Although
we have drawn �e� and �s� at different energies, we note that
this would not necessarily have to be the case if other selec-
tion rules �associated with a symmetry rather than energy�
could be used to prevent the POWER cavity mode from
coupling to the �g� , �h�↔ �s� transitions. In normal operation,
the atomic state should be either �g� or �h�, as �e� is ideally
never populated and �s� serves only to facilitate transitions
between �g� and �h�. We assume that the POWER input
drives a cavity mode that couples only to the �g�↔ �e� tran-
sition, that the SET input drives a cavity mode that couples
only to the �g�↔ �s� transition, and that the RESET input
drives a cavity mode that couples only to the �h�↔ �s� tran-
sition. While the flexibility of, e.g., photonic crystal resona-
tor design could potentially provide the three required atom-
field couplings via three modes in a single nanophotonic
structure, we here propose a configuration of two Fabry-
Perot-type cavities to illustrate concretely that the selection
rules we have assumed are reasonable. Specifically, we as-
sume that the cavities are sufficiently birefringent �21� that
the cavities support linearly polarized resonant modes. In the
POWER/SET cavity, we utilize modes that are polarized
along the z axis �atomic quantization axis�, so that these
fields only induce � transitions. In the RESET cavity, we
utilize a mode polarized along the x axis so that the associ-
ated field does not couple to � transitions but can couple the
�+ transition �h�↔ �s�. We assume that the cavities are sym-
metric �as opposed to single sided�.

We specify our primary switch model via the �S ,L ,H�
coefficients �15� for a �right-sided� QSDE with S= I, the
components of the vector L given by

L1 = L2 = k1
	�pa, L3 = L4 = k2

	�sb ,

L5 = L6 = k2
	�rc, L7 = 	��gs, L8 = 	��hs,

L9 = 	��ge, L10 = 	��he �1�

and
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H = ik1
2gp�a†�ge − a�ge

† � + ik2gs�b†�gs − b�gs
† �

+ ik2gr�c†�hs − c�hs
† � , �2�

where a, b, and c are annihilation operators for the POWER,
SET, and RESET cavity modes, �ge
�g��e�, �he
�h��e�,
�gs
�g��s�, and �hs
�h��s�. The parameter � is an atomic
spontaneous emission rate, �p,s,r and gp,s,r are the field decay
rates and atomic coupling strengths �vacuum Rabi frequen-
cies� of the POWER, SET, and RESET cavity modes, and
k1,2 are dimensionless scaling parameters that we will use to
derive the scattering-matrix limit. Note that the rates of the
four atomic spontaneous emission processes could vary with
minor impact on switch performance. With the above order-
ing of the components of L, we specify QSDE modes 1 and
2 as the POWER input and output, modes 3 and 4 as the SET
input and output, and modes 5 and 6 as the RESET input and
output.

The operating principle of the switch is as follows. With
the atom in the �h� state, the POWER cavity mode does not
couple to the atom at all and therefore the POWER input
field is routed to the OUT output �transmitted through the
cavity�. With the atom in the �g� state, however, the POWER
cavity mode experiences a large vacuum Rabi splitting and
the POWER input is therefore routed to the OUT output
�reflected from the cavity�. When the atom is in the �g� state,
injection of photons into the SET cavity mode induces Rabi
oscillation on the �g�↔ �s� transition that is promptly termi-
nated by decay into the atomic �h� state via cavity-enhanced
�via coupling to the RESET mode vacuum� spontaneous
emission. When the atom is in the �h� state, decay into the �g�
state can likewise be induced by injection of photons into the
RESET cavity mode. We assume that under normal opera-
tion, photons are never injected into both the SET and RE-
SET cavity modes simultaneously, as this would induce a
“race” condition which should not normally occur in a clas-
sical logic circuit. Note that when no photons are injected
into either the SET or RESET cavity mode, the atomic state
should ideally remain constant �“hold” condition�, although
again this should not be necessary in conventional circuits.

In order to prove that this primary model should behave
according to these principles in a regime of strong coupling,
we invoke the QSDE limit theorem of �22�, first taking
the scaling parameter k1→� and subsequently taking
k2→�. For the first limit, we satisfy the structural
requirements of �22� by choosing the limit state space

H0=span��g0anbnc� , �h0anbnc� , �s0anbnc�� �where the photon
numbers na,b,c indicate corresponding Fock states of the
cavity modes� and for the second limit, we choose
H0=span��g0a0b0c� , �h0a0b0c� , �s0a0b0c��. In the resulting
model—which is actually still an intermediate model from
which we will subsequently derive an even simpler scatter-
ing matrix—the �e� excited state and all three cavity modes
have been adiabatically eliminated. As a result, we can drop
modes 9 and 10 from the QSDE model, as they were used
only to provide spontaneous emission from �e�. The remain-
ing coefficients of the “intermediate” QSDE are

S11 = S22 = �g, S12 = S21 = − �hs,

S34 = S43 = S56 = S65 = S77 = S88 = 1,

L3 = L4 = 	��gs, L5 = L6 = 	��hs,

L7 = 	��gs, L8 = 	��hs, �3�

with H and all remaining components of S and L equal to
zero. Here, �g
�g��g�, �hs
�h��h�+ �s��s�, and we have de-
fined a new parameter �
g2 /� �which we will later limit
→�� assuming gs=gr
g and �s=�r
�.

We note that in the context of a circuit analysis, the series
product for QSDEs �15� can be used to connect the inputs
and outputs of our switch model to those of other compo-
nents. For illustrative purposes, here we simply apply
coherent-state inputs of fixed amplitudes �, 	s, and 	r to the
POWER, SET, and RESET inputs �note that in this type of
QSDE model, coherent amplitudes are normalized such that
their square magnitudes correspond to photon flux per unit
time�. This results in the simple modifications L�L+Sd
and H�H+Im�L†Sd�, where d is a column vector of dis-
placement amplitudes �d1=�, d3=	s, d5=	r, and all other
components zero�. The master equation corresponding to a
QSDE model is in general
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FIG. 1. �Color� Detail diagrams for a set-reset flip-flop switch
�adapted from �16��: �a� signal connection diagram, �b� physical
diagram of optical inputs and outputs, and �c� required levels and
couplings for the intracavity “atom.”
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FIG. 2. �Color� Numerical integrations of the prelimit master
equation, displaying the �normalized� intracavity field amplitude as
a function of time. In each subplot, the black �broken� curve is for
initial state �g� and the red �solid� curve is for initial state �h�. See
text for parameters.
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̇t = − i�H,
t� + �
i
Li
tLi

� −
1

2
�Li

�Li,
t�� , �4�

which now takes the form


̇t = − i�H�,
t� + �� + 2���gs
t�gs
† −

1

2
��s,
t��

+ �� + 2���hs
t�hs
† −

1

2
��s,
t��

+ ���2��g
t�g + �hs
t�hs − 
t� , �5�

with

H� = i	��	s�gs
† − 	s

��gs� + i	��	r�hs
† − 	r

��hs� . �6�

Note that this H� includes terms from originating from the
Lindblad part of Eq. �4�. It is easy to see that the terms in H�
induce the atomic Rabi oscillations mentioned in our de-
scription of the switch operating principles above, while the
Lindblad terms provide the required cavity-enhanced sponta-
neous emission �with rate �+2�� from �s� to �g� , �h� as well
as dephasing �at rate ���2� of �g� relative to the subspace
spanned by �h� and �s�. The dephasing occurs since an out-
side observer can easily distinguish which of these subspaces
the atomic state is in simply by measuring the optical power
in the OUT and OUT outputs and is generally consistent with
the desired switch dynamics. It would appear, however, that
for ���� �	r�, there should be some “Zeno-like” suppression
of the reset action which can limit the degree of signal re-
generation ��� / �	r,s� that can be accomplished by this type of
switch without loss of switching speed. When 	s=	r=0

�hold condition�, we have relay equilibrium states �g� and �h�.
Looking at the upper 2�2 block of S, we find that it be-
comes the identity for �g�, indicating perfect reflection of the
POWER input beam into OUT, while for �h� it indicates
transmission of the POWER input into OUT. With
	s=0, 	r�0 �RESET condition�, only �g� is an equilibrium
state while with 	s�0, 	r=0 �SET condition�, only �h� is
an equilibrium state, so we find clear agreement between the
structure of this intermediate model and the switch-operating
principle described above.

We now take a final limit �→� to obtain a very simple
scattering-matrix model of an idealized cavity-QED switch.
Returning to the undriven intermediate QSDE model of Eq.
�3� and using once again the limit theorem of �22� with
H0=span��g0a0b0c� , �h0a0b0c��, we obtain the limit QSDE
coefficients

S11 = S22 = �g, S12 = S21 = − �h,

S33 = S44 = − �g/2, S34 = S43 = 1 − �g/2,

S55 = S66 = − �h/2, S56 = S65 = 1 − �h/2,

S35 = S36 = S45 = S46 = − �gh/2,

S53 = S54 = S63 = S64 = − �hg/2, �7�

where �h
�h��h�, �hg
�h��g�, and �gh
�g��h�. All remain-
ing components of S as well as both L and H are zero. If we
once again consider displacements of input modes 1, 3, and 5
with coherent amplitudes �, 	s, and 	r, respectively, the re-
sulting master equation for 
t can be written in terms of
independent matrix elements in the ��g� , �h�� basis


̇gg =
1

2
�− �	s�2
gg + �	r�2
hh� ,


̇hg = −
1

2
	s	r

� − 
hg����2 + �	s�2/2 + �	r�2/2� . �8�

We thus find that the rates of SET/RESET action are given in
this limit by �	s,r�2 /2. At equilibrium, we find


gg → �	r�2/��	s�2 + �	r�2� ,

FIG. 3. �Color� Configuration of two elementary switches to
match input and output wavelengths, in case this cannot be done at
the individual switch level: �a� port connections and �b� modified
coupling diagram in switch R� �note that the atomic level structure
is the same in R and R��.

FIG. 4. �Color� Detail diagrams for a set-reset
double-pole double-throw �DPDT� switch: �a�
optical inputs and outputs and �b� required level
diagram and couplings for the intracavity atom.
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hg → −
	s	r

�

2���2 + �	s�2 + �	r�2
, �9�

which shows that in fact sensible operation can be expected
even with 	s	r�0 �race condition�.

As mentioned above, it is straightforward to perform nu-
merical integration of the primary �prelimit� model given in
Eqs. �1� and �2� to characterize the switch performance for
any desired set of finite values of the physical parameters. In
Fig. 2, we display the results of such an integration, per-
formed using the quantum optics toolbox for MATLAB �23�
for parameter values �=0.3, gp=50, gs,r=10, �p,s,r=50,
�=0.5, and 	s,r as indicated in each subplot �with k1,2 fixed
at unity�. Assuming that g values generally can be decreased
and � values increased via resonator design optimization,
this hierarchy of rates is consistent with the parameters
�g ,� ,�� /2�= �16,16,0.1� GHz of current work with GaAs
nanophotonic resonators and InAs quantum dots �11� �al-
though quantum dots would not seem to have the multilevel
structure required for our scheme� and with projected num-
bers �g ,� ,�� /2�= �2.25,0.16,0.013� GHz for GaP nano-
photonic resonators and diamond nitrogen-vacancy �NV�
centers �10�. Note that in this parameter regime, the average
excitation �mean photon number� of all three cavity modes
remains quite low �1�, meaning that the simulations can be
performed with small Hilbert spaces and implying that “non-
linear” transitions to states outside of ��g� , �h� , �s� , �e�� can
safely be neglected.

From the usual cavity-QED input-output rule for two-
sided resonators �15,24�, we have that the coherent ampli-
tude of the reflected OUT mode will be 	�p�a�+� while that
of the transmitted OUT mode will be 	�p�a�. The results in
Fig. 2 thus clearly show that when the SET input is active,
the relay is driven to the �h� state in which OUT is high,
whereas when the RESET input is active, it is driven to the

�g� state in which OUT is high. In the latter condition, a finite
contrast �power� ratio OUT /OUT�66 results from the finite
ratios gp,s,r / ��p,s,r ,��, but assuming this is acceptable, the
results show that switching is achieved with a power “gain”
of ���2 / �	s,r�2=10. We furthermore see that the switching oc-
curs within a time scale ��300 and is thus effected by
��	s,r�2�10 photons, corresponding to a switching energy in
the aJ range assuming visible or near-IR wavelengths. Invok-
ing the physical parameters mentioned above in connection
with Ref. �10�, the parameters of the simulation correspond
to a power �1 pW for the control beam and thus �10 pW
for the signal beam.

While we have proposed a concrete model in which the
POWER beam differs in wavelength from the SET/RESET
beams �in order to utilize an atomic model with simple se-
lection rules�, it should be possible to create circuits from
such components in which many sequential logic operations
are performed with only two distinct signal wavelengths. To
illustrate this, we sketch in Fig. 3�a� a cascade of two
switches that achieves signal power regeneration without
overall change in wavelength. The first switch R is of the
type we have considered above while the second switch R� is
an analogous device constructed with the modified coupling
diagram shown in Fig. 3�b�. Our basic design also can be
extended straightforwardly to design more complex
switches. In Fig. 4, we illustrate the basic principle of a
device in which a single pair of SET/RESET input beams
simultaneously switches two POWER beams with different
wavelengths �16�; the POWER1 and POWER2 beams are
assumed to probe distinct longitudinal modes of the cavity.
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