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The hyperfine-structure constants of the lowest s and p1/2 states of superheavy elements Z=119 and Z
=120+ are calculated using ab initio approach. Core polarization and dominating correlation effects are in-
cluded to all orders. Breit and quantum electrodynamic effects are also considered. Similar calculations for Cs,
Fr, Ba+, and Ra+ are used to control the accuracy. The dependence of the hyperfine-structure constants on the
nuclear radius is discussed.
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I. INTRODUCTION

The study of the hyperfine structure �hfs� of heavy and
superheavy elements is an important source of the informa-
tion about nuclear structure of these elements �see, e.g., Refs.
�1,2��. Hyperfine-structure intervals are proportional to
nuclear moments, such as magnetic dipole moment, electric
quadrupole moment, etc. The values of these moments can
be extracted from the comparison of the calculations and the
measurements. Apart from that, the hyperfine-structure inter-
vals are sensitive to electric charge and magnetic moment
distributions within the nucleus. Parameters of these distri-
butions can often be extracted from the analysis of the hy-
perfine structure subject to sufficient experimental data and
the accuracy of the calculations.

The hyperfine-structure analysis can be even more impor-
tant for the superheavy elements �Z�100� where sources of
the information are very limited. The study of the superheavy
elements are motivated by the hypothetical island of stability
in the region Z=114 to Z=126 where shell closures are pre-
dicted �see, e.g., �3��. Elements up to Z=118, excluding Z
=117, have been synthesized �see, e.g., Refs. �4,5�� and evi-
dence for the naturally occurring element Z=122 has been
reported �6�.

The use of the hyperfine-structure analysis is limited to
nuclei with odd number of protons or neutrons. The heaviest
examples of such nuclei that can be found in the literature as
being already observed include, e.g., 115

288Uup and 114
289Uuq �7�.

There are numerous similar examples for smaller Z. The in-
formation about nuclear magnetic dipole and electric quad-
rupole moments, charge, and magnetic moment distribution
for these elements is practically absent.

Some standard approaches to the analysis of the hyperfine
structure do not work for very high Z. Consider, for example,
the Fermi-Segré �2� formula with the Casimir relativistic fac-
tor. It expresses the hyperfine-structure constant of the s state
of an external electron via its wave function in the origin,

As = const � ���0��2Frel�Z���1 − ��Ry, �1�

where � is the fine-structure constant, Ry is Rydberg, � is the
correction due to finite nuclear size, and Frel�Z�� is the rela-
tivistic factor

Frel�Z�� =
3

��4�2 − 1�
, � = �1 − Z2�2. �2�

Formulas �1� and �2� are widely used in the hfs analysis;
however, they fail at very high Z. It is easy to see that the
relativistic factor �2� turns to infinity at Z=118.7. Therefore,
it is likely to overestimate the relativistic corrections at
smaller Z as well. The reason for this is that the formulas
treat finite nuclear size as a small correction. Hydrogenlike
wave functions for a pointlike nucleus are used to calculate
the relativistic factor. However, it is known that the finite
nuclear size correction for superheavy elements is not small
and cannot be treated as a perturbation �see, e.g., �8��.

A combination of analytical and numerical approaches
was recently used in Ref. �9� to study the dependence of the
hyperfine-structure intervals on the nuclear radius. A formula
was suggested, which is in good agreement with accurate
numerical calculations for s states of atoms with Z�100.
However, this formula also fails at higher Z.

In this Brief Report we do not use any analytical ap-
proaches but just perform accurate numerical calculations of
the hyperfine-structure constants for superheavy atoms. We
demonstrate that the calculation which uses finite-size nuclei
with realistic charge and magnetic moment distribution is
very similar to the calculations for lighter atoms. We con-
sider elements E119 and E120+. The latter may have hyper-
fine structure if there is an isotope with odd number of neu-
trons. Neither of these elements has been synthesized yet.
However, the ways of their production and the physics of
their nuclei are discussed in the literature �10�. These ele-
ments are heavier than any known element. Therefore, if the
calculation of the hyperfine structure brings no surprises for
them, one can expect no surprises for lighter elements as
well. Also, these elements have a very simple electron struc-
ture with one external electron above closed shells. There-
fore, very accurate calculations are possible for the elements.
In our previous work �11� we have calculated the energy
levels of E119 and E120+. Apart from some expected rela-
tivistic effects such as larger fine structure and stronger at-
traction of the s states to atomic core, the spectra of these
superheavy elements are very similar to the spectra of their
lighter analogies, Fr, Ra+, Cs, and Ba+. We expect similar
trend for the hyperfine structure and we perform the calcula-
tions for the same set of atoms. This gives us an estimate of
the accuracy of the results for superheavy elements. We
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stress that, although the calculations bring no major surprise,
the dependence of the hyperfine structure on the nuclear ra-
dius is significantly stronger for the superheavy elements
than for their lighter analogies.

II. METHOD OF CALCULATION

We perform the calculations using a totally ab initio
method developed in our previous works �11–16�. It starts
from the relativistic Hartree-Fock �RHF� calculations for
atomic core and includes dominating correlation and all core
polarization corrections to all orders.

Single-electron orbitals are found by solving a system of
the RHF equations for N−1 electrons of the closed-shell core
�the VN−1 approximation�. The RHF Hamiltonian has a form

Ĥ0 = c� · p + �	 − 1�mc2 + Vnuc�r� + VN−1. �3�

Here, � and 	 are Dirac matrices, Vnuc�r� is the nuclear po-
tential, VN−1=Vdir+Vexch is the sum of the direct and ex-
change Hartree-Fock potentials, and N is the number of elec-
trons. At distances much larger than the nuclear radius rN, the
nuclear potential is given by Vnuc�r�=−Ze2 /r; at short dis-
tances Vnuc�r� is obtained by numerical integration of the
Fermi distribution of nuclear electric charge. We use d
=2.3 fm as the thickness of the distribution and the data
from Ref. �17� for the radii �see Table I�. We use rN
=1.1�2.5Z�1/3 fm for superheavy elements.

The hyperfine interaction �HFI� is included in a self-
consistent way as well. The time-dependent Hartree-Fock
�TDHF� method �12�, which is equivalent to the well-known
random-phase approximation �RPA�, is used for this. To take
into account finite nuclear size we use a simple model which
represents the nucleus as a uniformly magnetized ball. In our
calculations the magnetic nuclear radius is the same as the
electric one. However, these two parameters can be varied
independently.

The HFI Hamiltonian is given by

Ĥhfi = e
 · F�r� , �4�

F�r� = �
r � �

rm
3 , r � rm

r � �

r3 , r � rm,� �5�

where rm is the magnetic nuclear radius.

The TDHF equations have a form

�Ĥ0 − �a���a = �− Fz − �VN−1 + ��a��a, �6�

��a = 	�a�Fz + �VN−1��a
 . �7�

Here, the index a numerates states in the closed-shell core.
These equations are solved self-consistently for all states in
the core.

States of the valence electron are calculated in the frozen
field of atomic core complemented by the correlation poten-

tial operator ̂ �13�,

�Ĥ0 + ̂ − ���v
BO = 0. �8�

Here, the index v numerates valence states. The correlation
potential  includes all lowest second-order correlation cor-
rections and dominating higher-order correlation corrections
�14,15�. These higher-order correlations include screening of
Coulomb interaction and hole-particle interaction. They are
taken into account in all orders. Solving Eq. �8� for valence
states we find the so-called Brueckner orbitals �BOs� for the
valence states. This is emphasized by using superscript BO
for the orbitals.

The total-energy shift for the valence state v due to HFI
and correlations is given by

��v = 	�v
BO�Fz + �VN−1 + �̂��v

BO
 . �9�

Here, �̂ is the change to the correlation potential ̂ due to

the hyperfine interaction. The term with �̂ is often called
the structure radiation. Finally, there is a contribution due to
the renormalization of the many-electron wave function �see,
e.g., �13��

��norm = − 	�v�Fz + �VN−1��v
	�v� � ̂/�E��v
 . �10�

The magnetic dipole hyperfine-structure constant Av for the
valence state v is given by

Av =

e2

2mpI

��v

�jv�jv + 1��2jv + 1�
. �11�

Breit and quantum electrodynamics corrections

It is hard to claim high accuracy of calculations for super-
heavy elements without considering Breit and quantum elec-

TABLE I. Isotopes of Cs, Ba, Fr, and Ra for which hyperfine-structure constants have been calculated in
the present work. Magnetic moments are in nuclear magnetons; gI�
 / I.

Isotope 
 I gI

rN

�fm�
rms

�fm�a

133Cs 2.582024 7/2 0.737721 5.671 4.8041
135Ba 0.837943 3/2 0.558629 5.703 4.8273
211Fr 4.00�8� 9/2 0.889 6.717 5.5545
225Ra −0.7348�15� 1/2 −1.4696 6.887 5.6781

aReference �17�.
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trodynamics �QED� corrections. We include Breit corrections
in a very accurate way described in our previous works
�16,18�. The QED corrections are included approximately
via the QED potential suggested in Ref. �19�.

The Breit operator has the form

hB = −
�1 · �2 + ��1 · n���2 · n�

2r
, �12�

where r=nr, r is the distance between electrons, and � is the
Dirac matrix. It corresponds to the zero-energy transfer ap-
proximation and includes magnetic interaction and retarda-
tion.

Similar to the hyperfine interaction, Breit operator induces
a correction to the self-consistent Hartree-Fock potential,
which is taken into account in all orders in Coulomb inter-
action by iterating the RHF equations with the potential

VN−1 = VC + VB, �13�

where VC is the Coulomb potential and VB is the Breit po-
tential. The same potential �13� goes to the left- and right-
hand sides of the TDHF equations �6�.

For the QED corrections we use a radiative potential de-
rived in Ref. �19�. This potential was chosen to fit accurate
calculations of the QED corrections to the energies. It may
give less accurate results for the hyperfine structure. There-
fore, we consider current calculations of the QED corrections
as rough estimations only.

III. RESULTS

Table I lists isotopes of lighter analogies of the super-
heavy elements E119 and E120+ for which the hyperfine-
structure constants are calculated. The results of the calcula-
tions are presented in Table II. Here, RHF corresponds to the
	�v�Fz��v
 matrix elements with the Hartree-Fock wave func-

tions �v; RPA corresponds to the 	�v�Fz+�VN−1��v
 matrix
elements; BO and RPA�BO� columns correspond to the same
matrix elements but with Hartree-Fock wave function re-
placed with Brueckner orbitals; and the “Str+norm” column
includes structure radiation and renormalization.

As can be seen from the table the most important correc-
tions are the many-body corrections associated with the core
polarization effect �RPA� and with the correlation interaction
of the external electron with the core �BO�. These effects
follow approximately the same pattern when moving from
light to heavy atoms. This means that the accuracy of the
results should be about the same for all atoms and ions.

Breit contribution is small and can be neglected in all
cases. This is because Breit contributions are proportional to
lower powers of Z than other relativistic effects. The QED
corrections are large for s states. They reduce the hfs con-
stants of these states by about 1%.

We also study the dependence of the hyperfine-structure
constants on the nuclear radius. This is done numerically by
calculating the hfs constants at different radii and then cal-
culating the derivative dA /drn numerically. It is convenient
to represent the results in a form of the dimensionless con-
stant �hr as in Ref. �9�,

�hr =
�Av/Av

�rn/rn
. �14�

Here, AV is the hyperfine-structure constant of the valence
state v and rn is the nuclear radius. The results are presented
in Table III. There are few things to note here. First, the
effect in superheavy elements is much larger than in their
lighter analogies. Second, the effects for s and p1/2 states are
significantly different. This represents an opportunity to use
the measurements of the hyperfine structure in superheavy
elements not only to extract nuclear magnetic moments but
also to get some information about the nuclear radius. Note

TABLE II. Hyperfine-structure constants of the lowest s1/2 and p1/2 states of Cs, Fr, E119, Ba+, Ra+, and E120+ in different approxima-
tions in MHz �Cs, Fr, Ba+, Ra+� and gI�MHz �E119, E120+�.

Atom State RHF RPA BO RPA �BO� Breit Rad. Str+norm Total Expt.

Cs 6s 1425 1718 1970 2325 6 −21 −31 2279 2298.2a

6p1/2 161 202 240 294 0 0 5 299 291.89a

Fr 7s 5791 6875 7716 8967 33 −162 −120 8718 8713.9b

7p1/2 623 772 968 1180 −4 −4 8 1180 1142b

E119 8s 39344 46781 45531 53306 210 −553 −1315 51648

8p1/2 5141 6165 8751 10506 −65 −41 135 10535

Ba+ 6s 2607 3095 3147 3684 8 −42 −82 3568 3591.6706�3�c

6p1/2 441 530 568 674 −1 0 4 677 664.2�2.4�c

Ra+ 7s −21357 −25022 −25114 −28986 92 436 668 −27790 −27684�13�d

7p1/2 −3626 −4330 −4746 −5611 19 19 −31 −5604 −5446�7�d

E120+ 8s 74195 86640 80396 92884 352 −837 −2790 89609

8p1/2 16883 19849 22286 26218 −117 −92 12 26021

aReference �20�.
bReference �21�.
cReference �22�.
dReference �23�.
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finally that the analytical formulas describing the dependence
of the hyperfine structure on the nuclear radius presented in
Refs. �1,9� do not work here. They are not just inaccurate;
they give absolutely meaningless results. The reason for this
is that the effect is large and cannot be treated perturbatively.

Calculating �hr we assume that the magnetic and electric
radii of the nucleus are the same. However, the program
allows us to treat them independently and calculate two par-
tial derivatives �A /�rn and �A /�rm, where rn is the electric
radius and rm is the magnetic radius. Such calculations show
that the hyperfine-structure constants are more sensitive to
the change in the electric radius. The corresponding partial
derivatives are approximately two times larger than those
over the magnetic radius. This is true for both s and p1/2
states.

IV. CONCLUSION

The hyperfine structures of lowest s and p1/2 states of the
superheavy elements Z=119 and Z=120+ have been calcu-
lated with an uncertainty of a few percent. The dependence
of the constants on the nuclear radius is presented. The re-
sults may be used for experimental studies of nuclear, spec-
troscopic, and chemical properties of the elements.
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