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Recently some authors have pointed out that there exist nonclassical correlations which are more general,
and possibly more fundamental, than entanglement. For these general quantum correlations and their classical
counterparts, under the action of decoherence, we identify three general types of dynamics that include a
peculiar sudden change in their decay rates. We show that, under suitable conditions, the classical correlation
is unaffected by decoherence. Such dynamic behavior suggests an operational measure of both classical and
quantum correlations that can be computed without any extremization procedure.
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It is largely accepted that quantum mutual information is
the information-theoretic measure of the total correlation in a
bipartite quantum state. Groisman et al. �1�, inspired by
Landauer’s erasure principle �2�, gave an operational
definition of correlations based on the amount of noise
required to destroy them. From this definition, they proved
that the total amount of correlation in any bipartite quantum
state ��AB� is equal to the quantum mutual information
�I��A:B�=S��A�+S��B�−S��AB�, where S���=−Tr�� log2 �� is
the von Neumann entropy and �A�B�=TrB�A���AB� is the re-
duced density operator of the partition A�B��. Another argu-
ment in favor of the claim that quantum mutual information
is a measure of the total correlation in a bipartite quantum
state was given by Schumacher and Westmoreland �3�. They
showed that, if Alice and Bob share a correlated composite
quantum system that is used as the key for a “one-time pad
cryptographic system,” the maximum amount of information
that Alice can send securely to Bob is the quantum mutual
information of the shared correlated state.

We are interested here in the dynamics of both quantum
and classical correlations under the action of noisy environ-
ments. For these purposes, it is reasonable to assume that the
total correlation contained in a bipartite quantum state may
be separated as I��A:B�=Q��AB�+C��AB�, owing to the dis-
tinct nature of quantum �Q� and classical �C� correlations
�1,4–6�. Some proposals for characterization and quantifica-
tion of Q and C in a composite quantum state have appeared
in the last few years �1,4,5,7–9�. The quantum correlation,
Q��AB�, between partitions A and B of a composite state can
be quantified by the so-called quantum discord, D��AB�, in-
troduced by Ollivier and Zurek �7�. Such a quantum correla-
tion is more general than entanglement in the sense that
separable mixed states can have a nonclassical correlation
that leads to a nonzero discord. It measures general nonclas-
sical correlations, including entanglement. For separable

mixed states �unentangled states� with nonzero discord, this
quantum correlation provides a speedup, in performing some
tasks, over the best known classical counterpart, as was
shown theoretically �10� and experimentally �11� in a non-
universal model of quantum computation. Therefore, such a
nonclassical correlation might have a significant role in
quantum information protocols. For pure states, we have a
special situation where the quantum correlation is equal to
the entropy of entanglement and also to the classical corre-
lation. In other words, Q��AB�=C��AB�=I��A:B� /2 �1,4�. In
this case, the total amount of quantum correlation is captured
by an entanglement measure. On the other hand, for mixed
states, the entanglement is only a part of this more general
nonclassical correlation, Q��AB� �7,11,10�. A quantum com-
posite state may also have a classical correlation, C��AB�,
which for bipartite quantum states can be quantified via the
measure proposed by Henderson and one of us �4�. Since we
assume that the total correlation is given by the quantum
mutual information and if we adopt the definition of classical
correlation given in �4�, Q��AB� turns out to be identical to
the definition of quantum discord in Ref. �7�; in other words,
Q��AB�=D��AB�=I��A:B�−C��AB�, as already noted in Ref.
�12�.

We have identified three different kinds of dynamic be-
havior of C and Q under decoherence, which depend on the
“geometry” of the initial composite state and on the noise
channel: �i� C remains constant and Q decays monotonically
over time; �ii� C suffers a sudden change in behavior, decay-
ing monotonically until a specific parametrized time, pSC �to
be defined below�, and remaining constant thereafter, while
Q has an abrupt change in its rate of decay at pSC, becoming
greater than C within certain parametrized time interval; and
�iii� C and Q decay monotonically. For two-qubit states with
maximally mixed marginals we show which conditions lead
to the different types of dynamic behavior for certain noise
channels �i.e., phase flip, bit flip, and bit-phase flip�. We also
recognize a symmetry among these channels and provide a
necessary condition for C to remain constant under decoher-
ence, which enables us to define an operational measure for
both classical and quantum correlations.

Let us start with the definition of classical correlation �4�,
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C��AB� � max
��j�

�S��A� − S��j�
��A�B�� , �1�

where the maximum is taken over the set of projective
measurements �� j� �13� on subsystem B �14�,
S��j�

��A�B�=	 j qjS��A
j � is the conditional entropy of sub-

system A, given the knowledge �measure� of the state of
subsystem B, �A

j =TrB�� j�AB� j� /qj, and qj =TrAB��AB� j�.
We consider the scenario of two qubits under local deco-

herence channels. The evolved state of such a system under
local environments may be described as a completely posi-
tive trace preserving map, �� · �, which, written in the
operator-sum representation, is given by �15,16�

���AB� = 	
i,j

�i
�A�� j

�B��AB�i
�B�†� j

�A�†,

where �i
�k� �k=A ,B� are the Kraus operators that describe the

noise channels A and B.
For simplicity, let us consider a class of states with maxi-

mally mixed marginals ��A�B�=1A�B� /2�, described by

�AB =
1

4

1AB + 	

i=1

3

ci�i
A

� �i
B� , �2�

where �i
k is the standard Pauli operator in direction i acting

on the subspace k=A ,B, ci�R such that 0� �ci��1 for
i=1,2 ,3, and 1A�B� is the identity operator in subspace A�B�.
The state in Eq. �2� represents a considerable class of states
including the Werner ��c1�= �c2�= �c3�=c� and Bell
��c1�= �c2�= �c3�=1� basis states.

Phase flip channel. This is a quantum noise process with
loss of quantum information without loss of energy. For this
channel, the Kraus operators are given by �15,16� �0

�A�

=diag��1− pA /2,�1− pA /2� � 1B, �1
�A�=diag��pA /2,

−�pA /2� � 1B, �0
�B�=1A � diag��1− pB /2,�1− pB /2�, and

�1
�B�=1A � diag��pB /2,−�pB /2�, written in the subsystem ba-

sis ��0k , �1k�, k=A ,B. We are using pA�B� �0� pA�B��1� as
parametrized time in channel A�B�. We consider here the
symmetric situation in which the decoherence rate is equal in
both channels, so pA= pB� p.

The description of the dynamical evolution of the system
under the action of a decoherence channel using the param-
etrized time p is more general than that using a specific func-
tional dependence on time t in the sense that it accounts for
a large range of physical scenarios. For example, for the
phase damping channel �the phase damping and phase flip
channels are the same quantum operation �15��, we have
p=1−exp�−�t�, where � is the phase damping rate �17�.

The density operator in Eq. �2� under the multimode noise
channel, ���AB�, has the eigenvalue spectrum,

�1 = 1
4 �1 − 	 − 
 − ��, �2 = 1

4 �1 − 	 + 
 + �� ,

�3 = 1
4 �1 + 	 − 
 + ��, �4 = 1

4 �1 + 	 + 
 − �� , �3�

with 	= �1− p�2c1, 
= �1− p�2c2, �=c3, and the
von Neumann entropies of the marginal states remain
constant under phase flip for any p, S�TrA�B� ���AB��=1.
To compute the classical correlation �Eq. �1��
under phase flip, we take the complete set of orthonormal

projectors �� j = �� j�� j� , j= � ,��, where ����cos����0
+ei sin����1 and ����e−i sin����0−cos����1. Then the
reduced measured density operator of subsystem A under
phase flip, �̃A

j =TrB�� j���AB�� j� /qj, will have the following
eigenvalue spectrum,

�1,2
�j� = 1

4 �2 � �2�2 + 	2 + 
2 + �2�2 − 	2 − 
2�cos�4�� + 2�	2

− 
2�cos�2�sin2�2���1/2� , �4�

and qj =1 /2 for j= � ,�. From Eq. �1�, it follows that

C����AB�� = 1 − min
�,

�S��̃A
� �� �5�

since �1,2
��� =�1,2

��� and hence S��̃A
� �=S��̃A

��. The classical corre-
lation and the quantum correlation under phase flip may be
written as

C����AB�� = 	
k=1

2
1 + �− 1�k�

2
log2�1 + �− 1�k�� , �6a�

Q����AB�� = 2 + 	
k=1

4

�k log2 �k − C����AB�� , �6b�

respectively, where �=max��	� , �
� , ����, which depends on
the relation between the coefficients ci of state in Eq. �2� and
on the parametrized time p.

�i� If �c3�� �c1� , �c2� in Eq. �2�, the minimum in Eq. �5� is
obtained by �==0. The classical and the quantum correla-
tions under phase flip will be given in Eqs. �6a� and �6b�,
respectively, with �= �c3�. In this case, the classical correla-
tion C����AB�� is constant �it does not depend on the param-
etrized time p� and equal to the mutual information of the
completely decohered state �p=1�, C��AB�=C����AB��
=I����A:B� �p=1�, while the quantum correlation �Eq. �6b�� de-
cays monotonically.

�ii� If �c1�� �c2� , �c3� or �c2�� �c1� , �c3� and �c3��0, we have
a peculiar dynamics with a sudden change in behavior. C
decays monotonically until a specific parametrized time,
pSC=1−��c3� /max��c1� , �c2��, and from then on C remains
constant. For p� pSC, the minimum in Eq. �5� is achieved
when �=� /4, =0 �if �c1�� �c2�� or =� /2 �if �c1�� �c2��,
and �= �1− p�2 max��c1� , �c2��. Thus, C decays monotonically.
On the other hand, for p� pSC, the choice �==0 leads to
the minimum in Eq. �5� and �= �c3�. Then C suddenly be-
comes constant at p= pSC, C����AB� �p�pSC

�=I����A:B� �p=1�,
and the decay rate of Q changes suddenly at p= pSC. In Fig.
1, we depict this peculiar behavior for a given choice of
parameters and, in Fig. 2, we show the values of the sudden
change parametrized time, pSC, as a function of c1 and c2.

�iii� Finally, if �c3�=0, we have a monotonic decay of both
correlations C and Q.

The dynamic behavior of correlations under the phase flip
channel described in Fig. 1 is quite general. Such a sudden
change in behavior occurs also when we consider the bit flip
and the bit-phase flip channels �of course under other condi-
tions on the ck’s in state �2��. Moreover, these results contra-
dict the early conjecture that C�Q for any quantum state
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�1,4,18�. Here, we have shown that the quantum correlation
may be greater than the classical one for some states, for
example, ���A:B� �p=pSC

.
It is worth mentioning that this peculiar sudden change in

behavior is a different phenomenon from entanglement sud-
den death �16,19,20�. Indeed, it seems that these correlations
do not present sudden death �21�.

Bit flip channel. The Kraus operators are �15,16�
�0

�A�=diag��1− p /2,�1− p /2� � 1B, �1
�A�=�p /2�x

�A�
� 1B,

�0
�B�=1A � diag��1− p /2,�1− p /2�, and �1

�B�=1A � �p /2�x
�B�.

The eigenvalue spectrum of ���AB� is given by Eq. �3�,
where the variables now take the form 	=c1, 
= �1− p�2c2,
and �= �1− p�2c3. The correlations can again be written as
Eqs. �6a� and �6b�. The dynamic behavior of C and Q under
bit flip is symmetrical to that for the phase flip channel �just

exchanging c1 and c3�. Type �i� dynamics is obtained when
�c1�� �c2� , �c3�. Type �ii� occurs for �c3�� �c1� , �c2� or
�c2�� �c1� , �c3� and �c1��0, with a sudden change in behavior
of C and Q at pSC=1−��c1� /max��c2� , �c3��. Finally, if �c1�
=0, we have type �iii� dynamics.

Bit-phase flip channel. Now, the Kraus operators
are �15,16� �0

�A�=diag��1− p /2,�1− p /2� � 1B, �1
�A�

=�p /2�y
�A�

� 1B, �0
�B�=1A � diag��1− p /2,�1− p /2�, and

�1
�B�=1A � �p /2�y

�B�. The variables in Eq. �3� turn out to be
	= �1− p�2c1, 
=c2, and �= �1− p�2c3. C and Q under bit-
phase flip can again be written as Eqs. �6a� and �6b�, respec-
tively. Once more, the conditions for the various types of
dynamics are obtained by swapping c2 and c3 in the phase
flip channel. For type �ii� dynamics, we now have
pSC=1−��c2� /max��c1� , �c3��.

Necessary conditions for C to remain constant under de-
coherence are the following:

�� j,�k
�B�� = 0, ∀ j,k . �7�

These relations depend on the angles � and  that define the
minimum in Eq. �5�. For the channels mentioned above,
�0

�B��1B and �1
�B���i

�B� with i=1 for the bit flip, i=2 for the
bit-phase flip, and i=3 for the phase flip. Hence, condition
�7� will be satisfied when the projective measurements that
reach the minimum in Eq. �5�, � j, are performed on eigen-
states of �i

�B� �22�. On the other hand, the angles � and  that
define the minimum in Eq. �5� depend on the geometry of the
initial state. When the larger component of state in Eq. �2� is
in the direction 1, 2, or 3, C remains constant under bit flip,
bit-phase flip, or phase flip, respectively.

The fact that, for a given state, the classical correlation
can remain unaffected by a suitable choice of noise channel,
�, immediately suggests an operational way �without any ex-
tremization procedure� of computing classical and quantum
correlations. It could be done as follows: depending on the
state geometry, we send its component parts through local
channels that preserve its classical correlation, so that the
quantum correlation will be given simply by the difference
between the state mutual information I��A:B� and the com-
pletely decohered mutual information, I����A:B� �p=1�,

Q��AB� � I��A:B� − I����A:B��p=1� ,

since I��A:B�=Q��AB�+C��AB� and

C��AB� = I����A:B��p=1� .

A suitable channel for the class of states described by Eq. �2�
is chosen which satisfies condition �7� as discussed above.

A problem to be addressed before such a measure can be
used for a general state is to establish a protocol to find the
map �if this map exists� which leaves the classical correlation
unaffected �23�. This suggests an interesting research pro-
gram to develop an operational way of investigating the role
of quantum and classical correlations in many scenarios,
such as quantum phase transitions �24�, nonequilibrium ther-
modynamics �25�, etc.

FIG. 1. Classical C����AB�� �dashed line�, quantum Q����AB��
�solid line�, and total I����A:B�� �dotted line� correlations under
phase flip. We have set, in this figure, c1=0.06, c2=0.42, and
c3=0.30. For this state the sudden change occurs at pSC=0.15 and
Q is greater than C for 0.09� p�0.20. At p=0.09 and p=0.20, we
have Q����AB��=C����AB��=I����A:B�� /2, as happens for pure
states.

FIG. 2. Sudden change parametrized time. pSC as a function of
c1 and c2, for c3=0.1, under a phase flip channel. In the regions
where pSC=0 or pSC=1 there is no sudden change.
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