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Noise spectra of a semiconductor ring laser in the bidirectional regime
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We analytically investigate the influence of complex backscattering coefficients and pump current on the
noise spectra of a two-mode model for semiconductor ring laser in the Langevin formulation. The system
features in the bidirectional regime are naturally described in terms of the two mode-intensity sum (/ spectrum)
and difference (D spectrum). The I spectrum reflects the energy exchange between the total field and the
medium and behaves similarly to the relative intensity noise for single-mode semiconductor lasers. The D
spectrum represents the energy exchange between the two counterpropagating modes and is shaped by the
noisy precursor of a Hopf bifurcation induced by the complex backscattering.
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I. INTRODUCTION

Semiconductor ring lasers (SRLs) [1] have recently
gained interest due to their peculiar properties from both fun-
damental and applicative points of view. As SRLs do not
require claved facet mirrors or gratings for optical feedback,
thus monolithic integration is easily achievable [2]. These
devices exhibit different operating regimes characterized by
bidirectional-continuous waves or alternate oscillations to bi-
stability, mode locking, and chaos [3-7]. Whereas some re-
gimes are shared with solid-state ring lasers (SSRLs) [8-10],
SRLs possess peculiar features. In particular, the bistable re-
gime is interesting for applications in integrated optical log-
ics, optical gating, and reshaping [11], whereas the bidirec-
tional regime has been widely exploited for rotation sensing
applications [12].

An important issue in view of applications is about the
effects of fluctuations in ring lasers as they change the per-
formance as well as the dynamics of these devices. As a
matter of fact, noise determines the performance of the ring
laser gyroscope [13] and induces spontaneous switching in a
bistable SRLs [14,15]. The main fundamental noise source of
a semiconductor laser is represented by spontaneous emis-
sion, which yields to fluctuations in the signal intensity and
frequency [16]. Different examples of how to model the
spontaneous emission noise are shown in [17-21]. However,
semiconductor ring lasers show peculiarities in the noise
spectra that still deserve attention. New features in the modal
power spectrum of a SRL were recently reported, such as the
presence of an unexpected radio frequency peak explained in
[22] as a mode partition noise effect associated to the intra-
cavity backscattering.

While SRLs share some general characteristics with other
ring lasers, they have some distinctive features such as cou-
pling between phase and amplitude, which is known to affect
phase noise [16], and strong intermodal gain cross saturation,
which induces anticorrelated dynamics in the mode-power
distribution [3,30]. Also, the light extraction system in inte-
grated SRLs introduces a perturbation of the refraction index
[23], which turns out to be a localized reflection enhancing
the conservative backscattering. Therefore, SRLs experience
conservative backscattering stronger than the dissipative one,
differently from gas, dye [24], or solid-state ring lasers [10].
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The influence of backscattering in the noise spectra consti-
tutes a possible strategy to extract backscattering parameters
in working conditions, useful for laser characterization.

In this paper, we consider the effects of the spontaneous
emission noise in a two-mode rate equations model
[4,14,15,25,26] for a SRL operating in the bidirectional re-
gime. In the following, after introducing the model, we re-
view the operation regimes of SRLs by representation on a
Poincaré sphere (Sec. II). We then focus on the bidirectional
regime calculating analytically the linearized dynamics of
the fluctuations and their correlations (Sec. IIT). Noise spec-
tra are obtained for decoupled quantities that are mode-
intensity sum and difference. Correlations are calculated ana-
lytically within a linear approximation and compared to
simulations of the full nonlinear model, showing a very good
agreement in the considered regime.

II. MODEL

Considering single longitudinal-mode operation, the elec-
tric field inside the cavity reads

E(x,t) — E+(t)e—i(Qr—kx) + E_(t)e_i(QHkx), (1)

where E, and E_ are the mean-field slowly varying complex
amplitudes of the electric field associated with the two
propagation directions, E, clockwise (CW) and E_ counter-
clockwise (CCW), respectively, being x the spatial coordi-
nate along the ring, assumed positive in the clockwise direc-
tion, and () is the optical frequency of the selected
longitudinal mode. The model we consider is composed by
the following set of dimensionless rate equations for the time
evolution of the electric fields £ and the carrier density N:

Er = gi(N,

E:r|2)E1_ nE; + E.(1), (2

N=yAu-N1+a,|E|+0o|EP)], 3)

where (3) is the Bloch equation for the carrier dynamics,

G+(N,

1
E.[)=5(l+ia)iNo. -1} (4)
is the nonlinear gain, and
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0= =1-s|E.] = c[Ez ],

is the gain suppression function.

The complex backscattering coefficient is =k +ik., with
its dissipative (k,;) and conservative (k.) components [27].
Dissipative backscattering is associated to light extraction
losses, similarly to other RLs. On the other side, SRLs were
experimentally found to exhibit strong conservative back-
scattering with respect to the dissipative one. This feature
derives from unavoidable intracavity reflections at the light
extraction region (evanescent coupler). In order to extract
light, the curved waveguide is coupled to a straight wave-
guide by evanescent wave [23]. This introduces a localized
perturbation to the effective refraction index which reverts to
a source of localized back-reflections, i.e., conservative
backscattering [24,28]. The values of the backscattering co-
efficients we take in this paper are extracted from experi-
ments on real devices [4]. Also in Eq. (4), the « factor de-
scribes the phase-amplitude coupling mechanism present in
semiconductor lasers. The saturation effects in the gain, writ-
ten in the quadratic approximation, are represented by the
parameters s and ¢, which are normalized self- and cross-
gain saturation coefficients, respectively. The parameter w
represents the pump and is normalized to the threshold cur-
rent (i.e., u=1 at threshold) and v is the ratio between the
photon lifetime and the carrier lifetime. The model was
proven to give excellent quantitative agreement with experi-
ments [3,4]. The fluctuations terms &.(7) are the Langevin
forces [29], i.e., white Gaussian complex noise sources with
non vanishing correlations

(E-(nEL(1") =2VBT, N8t —1'), (5)

where 7, is the photon lifetime, N, is the carrier steady-state
solution (11), and B represents the fraction of spontaneously
emitted photons coupled to the cavity. Noise terms &, and &_
reflect the effect of spontaneous emission in each direction of
propagation. For simplicity, we do not take into account a
noise source for the carrier density equation, considering the
spontaneous emission as the main noise source in semicon-
ductor lasers [16,17].

According to the experimental fitting [3] through this pa-
per, we take the following parameter sets (except where oth-
erwise is noticed) a=3.5, s=0.005, c=0.01, k;,=3.27 X 1074,
k.=4.4x107, 7,=10 ps, and y=2Xx107.

Instabilities of the SRL

The bifurcation diagram of the SRL is obtained by nu-
merical integration of Egs. (2) and (3) and is shown in the
first panel of Fig. 1 for increasing values of the pump coef-
ficient w. As in all the regimes, the total intensity is constant
and in order to analyze the evolution of the intensity differ-
ence and the relative phase between the two counterpropa-
gating fields, we introduce new variables represented in a
Poincaré sphere, the relative intensity 6, and the relative
phase i,

|E,)” - IE_|2>

0=2 t
e a“(|E+|2+ E_P
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FIG. 1. (1) Bifurcation diagram for electric fields intensity for
increasing pump current w. [(2)—(4)] Evolution of the Stokes pa-
rameters on the Poincaré spheres for each regime. (2) u=1.2, (3)

pn=2, and (4) u=2.6.
E
Im(—+>
E_

= arctan | (6)
Re(—+>
E

In this context, 6 is equivalent to ellipticity in the description
of the polarization of the electric field in the sense that it
describes how the field is distributed between the two coun-
terpropagating modes (here analogous to the circular polar-
ization modes). Those new variables are projected in the
Poincaré sphere by means of the Stokes parameters as fol-
lows:

sl =cos 6 cos i,
§2 =cos 6 sin ¥,

s3 =sin 6. (7)

We note that we consider a fixed value of the total intensity
giving a sphere with unitary radius. The poles represent uni-
directional solutions, being the north pole a pure CW opera-
tion and the south pole a pure CCW operation. The equator is
the line where the two counterpropagating waves have the
same intensity but different relative phases [31]. Along the
equator, the point s2=0, s3=0 represents the two fields in
phase while the point s2=1, s3=0 represents the two fields
with a phase difference equal to 7.

We can now visualize the instabilities of the SRL on the
Poicaré sphere by numerical integration of Egs. (2) and (3)
[35]. Above threshold (x> 1), the first stable regime found is
a symmetric solution (bidirectional regime), where the two
counterpropagating fields have the same intensity. In panel
(2) of Fig. 1, we see a trajectory starting from random initial
conditions and ending at the fixed point s2=0 in the equator.
Increasing the pump w, a Hopf bifurcation takes place which
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marks the beginning of a limit cycle regime (alternate oscil-
lations in [4,10]), where the two field intensities are oscillat-
ing in anticorrelated fashion, i.e., when one field reaches its
maximum intensity, the other reaches its minimum and vice
versa. Panel (3) shows the limit cycle on the Poincaré sphere
reached from a random initial condition. Increasing further
M, an asymmetric solution regime due to a pitchfork bifur-
cation is found [25]. Here, the two counterpropagating fields
have different intensities and the difference increases with w.
In this regime, depending on the initial conditions, the laser
emission is mainly concentrated either in CW or CCW direc-
tion. Panel (4) shows two trajectories from different initial
conditions and how they are attracted by different fixed
points corresponding to the two emission directions. When u
increases, the two fixed points move toward the poles.

III. FLUCTUATIONS DYNAMICS AND CORRELATIONS

A. Monochromatic solutions

Focusing on the bidirectional regime, we look for a mono-
chromatic solution for the two fields with the same amplitude

E.(1)= Q"1 ®)
SRLs admit two possible solutions. In the in-phase case,
Gin=0— w,;, = ak,— k., )
while in the out-of-phase case,

r
¢out = 5 7 Woy =~ akd + kc" (10)

Depending on the sign of the backscattering parameters, one
of the solutions is stable and the other unstable. If
k;>0(k;<0), the out-of-phase case is stable (unstable).
Physically, the two solutions are equivalent because the sign
of k, represent which direction [clockwise (CW) or counter-
clockwise (CCW)] is chosen as positive. From now on, we
focus on the out-of-phase case without loosing generality.
The corresponding stationary solution for the carrier density
N=N,, as a function of the amplitude of the fields and the
pump parameter is

K~
1+20%°
where f=1-sQ>—cQ?. For the amplitude Q, we find

Q2=N9t_ 1 +kd.
(c+ )Ny,

Ny = (11)

(12)

B. Linear fluctuations dynamics

Hereby, we analyze the effect of a perturbation on the
stationary solutions. We consider a real perturbation n in the
carrier density and complex perturbations a. for the fields

E.=(0Q+ ai)eiwtiw,

N=Ng+n. (13)

By making use of Eq. (13) in Egs. (2) and (3), we derive the
following linear system:
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n=—H[1-20*s+c)INyO(a, +a;+a_+a’)
+(1+20%f)n},

(I +ia){(Nyf - Da-

=

1
2
— N, O s(as +a%) +clas +a2)]+ Ofn} —iwaz

— n(cos 2¢ ¥ i sin 2¢)a~ + &-. (14)

At this point, we introduce a new set of variables to simplify
the set (14) in two independent problems by block diagonal-
ization. The new variables are

S=a,+a_,

R=a,-a._. (15)

We can relate those new variables to the typical experimen-
tally measured quantities |E,|> and |E_|*> defining

I=|E)*+|E_]*, (16)

D=|EL-|E] (17)

and writing those new variables as [=1y+/ and D=Dy+D,
where [, and D, are constants and the perturbations, / and D
can be expressed in terms of S and R at first order,

I1=Q(S+5%), (18)

D=0Q(R+R"). (19)

The variable I describes the perturbation of the total intensity
of the laser regardless of its distribution between the two
modes, whereas D describes the power exchange between
the two counterpropagating fields.

C. Relative Intensity

The equation for the dynamic evolution of R is

R=(1+ia)K(R+R") = 27R + &(1), (20)

where the fluctuation term is derived from Egs. (15) and (5),
Er(D)=E&,(1)— &_(r) with the correlation properties

(R0 &R(t") = AN BTNy St = 1), (21)

and K is a real constant defined by

Ay 0%
K=ZNQ%(c~s). (22)

The corresponding eigenvalues for the differential equations
system for R and R* are

No=K-2k; = [K2+4Ka’kc—4k?]l/2, (23)

The above eigenvalues are used to construct the stability dia-
grams shown in Fig. 2 as functions of the two backscattering
parameters. The figure shows how above a certain threshold
for the conservative backscattering k. the eigenvalues be-
come complex conjugate (vertical line in all panels in Fig.
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FIG. 2. Stability diagrams of the symmetric solutions (10)—(12)
for different values of w depending on backscattering coefficients.
In region A, the symmetric solution is unstable, region B is stable
with real eigenvalues, and in region C is stable with complex con-
jugates eigenvalues. (1) corresponds to u=1.2, (2) to u=1.15, (3)
to u=1.1, and (4) to u=1.05.

2). This implies the presence of a new eigenfrequency in the
system. In the unstable region A, such frequency originates a
limit cycle, according to previous works [4], whereas in re-
gions B and C, perturbations relax to the monochromatic
solution. For increasing values of the pump wu, the unstable
region A becomes less pronounced.

The two-mode difference at a given frequency reads as

R(w) = ﬁ{[iw —(1-ia)K + 27" &) + (1 + ia) KEY
- o)}, (24)
where

Alw) =- 0+ iw(dk;-2K) — 4(k;+ ak,)K + 4(k§+ kz)’

leading to the two-frequency correlation

(R(0)R*(w")) = [4k5 — 4K (ky + k, cx)

A(w)A(- w)
+2K2(1 + &®) + 2Kaw

+(w- ch)z]S'n'\/ﬁTpNsté(w -w').
(25)

From Eq. (19), we immediately obtain the D spectrum

(D(@)D"(@')) = Q*((R(@)R* (")) +(R(- @)R*(- ©))).
(26)

The analytical result is shown in Fig. 3 for a parameter set in
region C of Fig. 2. The analytic is compared to numerical
simulations of the full nonlinear system [36]. Physically, the
backscattering represents the energy exchange rate between
the two modes. Such process shows a resonance (the peaks
in Fig. 3-5) which is more evident for increasing values of
gain cross-saturation and conservative backscattering,
whereas the resonance is damped for increasing values of
gain self-saturation and dissipative backscattering (see con-
tinuous black line in Fig. 4).
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FIG. 3. D spectrum. The gray line corresponds to the numerical
simulation for 20 noise realizations; the analytical solution
is the black line. B=1073 ns™!, a=3.5, s=0.005, ¢=0.01,
ky=3.27X107%, k,=4.4X 1073, y=2X1073, and u=1.2. The fre-
quency f is found from the adimensional angular frequency w. Here
and in the following figures, f =7"’Tp, where 7,=10 ps is the photon
lifetime in the ring cavity.

SRLs are well modeled by strong cross-saturation and
conservative backscattering. For such parameter choices, our
study unveils the presence of a resonance peak in the fre-
quency spectrum. Such behavior was reported in a recent
experimental work [22].

Figure 4 shows how the D spectrum is modified by con-
servative backscattering coefficient using the analytical ex-
pression (25) for parameter values corresponding to the
crosses in Fig. 2. The figure shows that the peak is more
pronounced when moving deeper into region C. Backscatter-
ing parameters are difficult to measure in operating condi-
tions and they are important to determine the static and dy-
namic properties of the laser. Such noise spectra,
corresponding to measurements of the correlation spectrum
of the intensity difference fluctuations, represent a novel and
suitable way to extract the actual extent of the backscattering
in its dissipative and conservative parts in working condi-
tions. Figure 5 shows the D-spectrum dependence on pump
current of the analytical expression (25) for pump values that

10°
f (Hz)

FIG. 4. D spectrum. Dependence on conservative backscattering
coefficient, k.. Black curve corresponds to k,=1073, the gray curve
to k,=1.83X 1073, the dashed black curve to k,=4.83 X 1073, and
the dashed gray curve to k.=1072. Each spectrum corresponds each
cross in panel (1) in Fig. 2; B=1073 ns™!, k,;=4X107*, and
n=12.
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10°

FIG. 5. D-spectrum dependence on pump current u. Black
curve corresponds to u=1.2, the gray curve to u=1.15, the dashed
black curve to u=1.1, and the dashed gray curve to u=1.05;
B=10"3 ns™!, k,=4x 1073, and k,;=4 X 107,

maintain the SRL in the bidirectional regime. The figure
shows the persistence of the resonance peak for increasing
pumps.

In time domain, such resonance emerges as a consequence
of the system oscillating around the fixed point due to spon-
taneous emission noise. Figure 6 shows the evolution of 6
and ¢ for the complete set (2) and (3) including spontaneous
emission noise in the bidirectional regime for different B
values. In the absence of noise [see Fig. 1 panel (2)], the
variables 6 and ¢ end in the fixed point after a transient, but
in the presence of noise, the transient becomes longer de-
pending on the value of B and produces slow undamped
oscillations around the fixed point. This is reported in litera-
ture as Hopf bifurcation precursor [32]. Therefore, in our
interpretation, the radio frequency resonance peak experi-
mentally [22] observed is given by a noise driven excitation
near a fixed point.

(1) B=0.1 ns”

FIG. 6. Poincaré spheres for the bidirectional regime in the pres-
ence of noise. (1) B=0.1Xns!, (2) B=107 ns~!, and (3)
B=107 ns7!. pu=123.
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D. Total intensity and carrier density

The equations for the dynamic evolution of S and n are

S=(1+ia){Cn+K(S+5)}+ &),

n==yn+[1-20%s+c)IN,0(S+5")
+20°[1 - s0Q* - cQ*]n}, (27)

where the fluctuation term is derived from Egs. (15) and (5),
E()=&.()+&(r), with the same correlation properties

shown in the previous section (21) and K and C are real
constants

~ 1
K=-3 W0 (c +5),

C=0Q[1-Q%c+s)]. (28)
The corresponding eigenvalues for the system (27) are
)\0 = O,
~ 1 ~ ~
Na=K- g ~¥0C + _{y+4[K*+ Ky+¥0C(1 + Q0]
- 8(KQC + N, CH}'"”. (29)

The presence of a zero eigenvalue indicates that the system
(27) is singular. The corresponding neutral eigenmode,
known as Goldstone mode [34], appears because the solution
in the bidirectional regime breaks the global phase invari-
ance and gives rise to large undamped fluctuations. Indeed,
the Goldstone mode is associated to the imaginary part of S.
Interestingly, by using Eq. (18), we can get rid of this mode
by decoupling the fluctuations dynamics from it and reduc-
ing the dynamics to a subspace orthogonal to the Goldstone
mode itself. Then a linear approximation is well-justified in
terms of the variable I, therefore the equation system (27)
reads

I=2KI+20Cn+ &(1),

n=—Y1-20%s+c)IN,J—y(1+20C)n, (30)

where the fluctuation term is derived from Egs. (15) and (5),
&(1)=0Re[ &(1)+ &4(1)], with the correlation properties

(E(D&E) =(&(0E () =8QNBT,N St ~1'). (31)
By Fourier transform, we derive

1

I(w)= Bglet 1+ 200)]¢() (32)
and
-1 _
(o) = mﬂ\’n[l -20%(s + 0)1§(w), (33)
where
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L L L L L

10° 107 10° 10° 10"
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FIG. 7. I spectrum vs frequency. Gray line corresponds to the

numerical simulation and black line is the analytical solution (35),
B=1073 ns7!.

B(w)=- o +io[ (1 +20C) - 2K]

+ 21 QCN, + K(2Q - 1)]. (34)
We are able to find the following ensemble average:
-~ 0?
() (@)= ——
B(w)B*(w)
X[w® + ¥(1 +20C)* 1167 B7,Ny 8w - w').
(35)

Figure 7 shows the good agreement between / spectrum from
Eq. (35) and numerical simulations. The observed peak cor-
responds to the typical relaxation oscillations of the field-
medium-energy exchange process and its frequency depends
on the pump and medium characteristics. The backscattering
does not play any role in the field-medium-energy exchange
process as can be seen from Eq. (35).
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IV. CONCLUSIONS

We have studied the influence of spontaneous emission
noise in a two-mode model for semiconductor ring lasers
biased in the bidirectional regime. The analysis has been
carried out by linearizing the model close to a stable station-
ary solution and considering the effect of spontaneous emis-
sion as stochastic perturbations expressed by Langevin
forces. At a linear level, perturbations concerning the total
intensity and carrier inversion dynamics decouple from the
energy distribution processes between the two modes. This
fact has permitted a full analytic analysis, well confirmed by
numerical simulations of the complete non linear system.
The analysis showed that semiconductor ring lasers have pe-
culiar noise properties. On one side, the total intensity and
carrier density show a noise spectrum (I spectrum) charac-
terized by a resonance induced by the typical field-medium-
energy exchange process (relaxation oscillations) and the
global phase diffusion induced by the Goldstone mode. Be-
sides, the degree of freedom associated to the simultaneous
presence of two counterpropagating modes allows for a fur-
ther process of energy exchange between the two modes. Our
analysis unveiled that such process presents a resonance in-
fluenced mainly by the backscattering parameters and inter-
preted as a “noisy precursor” of a Hopf bifurcation. This
opens the possibility to extract the backscattering parameters
from the noise spectra.
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