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We analytically investigate the influence of complex backscattering coefficients and pump current on the
noise spectra of a two-mode model for semiconductor ring laser in the Langevin formulation. The system
features in the bidirectional regime are naturally described in terms of the two mode-intensity sum �I spectrum�
and difference �D spectrum�. The I spectrum reflects the energy exchange between the total field and the
medium and behaves similarly to the relative intensity noise for single-mode semiconductor lasers. The D
spectrum represents the energy exchange between the two counterpropagating modes and is shaped by the
noisy precursor of a Hopf bifurcation induced by the complex backscattering.
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I. INTRODUCTION

Semiconductor ring lasers �SRLs� �1� have recently
gained interest due to their peculiar properties from both fun-
damental and applicative points of view. As SRLs do not
require claved facet mirrors or gratings for optical feedback,
thus monolithic integration is easily achievable �2�. These
devices exhibit different operating regimes characterized by
bidirectional-continuous waves or alternate oscillations to bi-
stability, mode locking, and chaos �3–7�. Whereas some re-
gimes are shared with solid-state ring lasers �SSRLs� �8–10�,
SRLs possess peculiar features. In particular, the bistable re-
gime is interesting for applications in integrated optical log-
ics, optical gating, and reshaping �11�, whereas the bidirec-
tional regime has been widely exploited for rotation sensing
applications �12�.

An important issue in view of applications is about the
effects of fluctuations in ring lasers as they change the per-
formance as well as the dynamics of these devices. As a
matter of fact, noise determines the performance of the ring
laser gyroscope �13� and induces spontaneous switching in a
bistable SRLs �14,15�. The main fundamental noise source of
a semiconductor laser is represented by spontaneous emis-
sion, which yields to fluctuations in the signal intensity and
frequency �16�. Different examples of how to model the
spontaneous emission noise are shown in �17–21�. However,
semiconductor ring lasers show peculiarities in the noise
spectra that still deserve attention. New features in the modal
power spectrum of a SRL were recently reported, such as the
presence of an unexpected radio frequency peak explained in
�22� as a mode partition noise effect associated to the intra-
cavity backscattering.

While SRLs share some general characteristics with other
ring lasers, they have some distinctive features such as cou-
pling between phase and amplitude, which is known to affect
phase noise �16�, and strong intermodal gain cross saturation,
which induces anticorrelated dynamics in the mode-power
distribution �3,30�. Also, the light extraction system in inte-
grated SRLs introduces a perturbation of the refraction index
�23�, which turns out to be a localized reflection enhancing
the conservative backscattering. Therefore, SRLs experience
conservative backscattering stronger than the dissipative one,
differently from gas, dye �24�, or solid-state ring lasers �10�.

The influence of backscattering in the noise spectra consti-
tutes a possible strategy to extract backscattering parameters
in working conditions, useful for laser characterization.

In this paper, we consider the effects of the spontaneous
emission noise in a two-mode rate equations model
�4,14,15,25,26� for a SRL operating in the bidirectional re-
gime. In the following, after introducing the model, we re-
view the operation regimes of SRLs by representation on a
Poincaré sphere �Sec. II�. We then focus on the bidirectional
regime calculating analytically the linearized dynamics of
the fluctuations and their correlations �Sec. III�. Noise spec-
tra are obtained for decoupled quantities that are mode-
intensity sum and difference. Correlations are calculated ana-
lytically within a linear approximation and compared to
simulations of the full nonlinear model, showing a very good
agreement in the considered regime.

II. MODEL

Considering single longitudinal-mode operation, the elec-
tric field inside the cavity reads

E�x,t� = E+�t�e−i��t−kx� + E−�t�e−i��t+kx�, �1�

where E+ and E− are the mean-field slowly varying complex
amplitudes of the electric field associated with the two
propagation directions, E+ clockwise �CW� and E− counter-
clockwise �CCW�, respectively, being x the spatial coordi-
nate along the ring, assumed positive in the clockwise direc-
tion, and � is the optical frequency of the selected
longitudinal mode. The model we consider is composed by
the following set of dimensionless rate equations for the time
evolution of the electric fields E� and the carrier density N:

Ė� = G��N, �E��2�E� − �E� + ���t� , �2�

Ṅ = ��� − N�1 + 	+�E+�2 + 	−�E−�2�� , �3�

where �3� is the Bloch equation for the carrier dynamics,

G��N, �E��2� =
1

2
�1 + i
��N	� − 1� �4�

is the nonlinear gain, and
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	� = 1 − s�E��2 − c�E��2,

is the gain suppression function.
The complex backscattering coefficient is �=kd+ ikc, with

its dissipative �kd� and conservative �kc� components �27�.
Dissipative backscattering is associated to light extraction
losses, similarly to other RLs. On the other side, SRLs were
experimentally found to exhibit strong conservative back-
scattering with respect to the dissipative one. This feature
derives from unavoidable intracavity reflections at the light
extraction region �evanescent coupler�. In order to extract
light, the curved waveguide is coupled to a straight wave-
guide by evanescent wave �23�. This introduces a localized
perturbation to the effective refraction index which reverts to
a source of localized back-reflections, i.e., conservative
backscattering �24,28�. The values of the backscattering co-
efficients we take in this paper are extracted from experi-
ments on real devices �4�. Also in Eq. �4�, the 
 factor de-
scribes the phase-amplitude coupling mechanism present in
semiconductor lasers. The saturation effects in the gain, writ-
ten in the quadratic approximation, are represented by the
parameters s and c, which are normalized self- and cross-
gain saturation coefficients, respectively. The parameter �
represents the pump and is normalized to the threshold cur-
rent �i.e., �=1 at threshold� and � is the ratio between the
photon lifetime and the carrier lifetime. The model was
proven to give excellent quantitative agreement with experi-
ments �3,4�. The fluctuations terms ���t� are the Langevin
forces �29�, i.e., white Gaussian complex noise sources with
non vanishing correlations

����t���
� �t��	 = 2
��pNst
�t − t�� , �5�

where �p is the photon lifetime, Nst is the carrier steady-state
solution �11�, and � represents the fraction of spontaneously
emitted photons coupled to the cavity. Noise terms �+ and �−
reflect the effect of spontaneous emission in each direction of
propagation. For simplicity, we do not take into account a
noise source for the carrier density equation, considering the
spontaneous emission as the main noise source in semicon-
ductor lasers �16,17�.

According to the experimental fitting �3� through this pa-
per, we take the following parameter sets �except where oth-
erwise is noticed� 
=3.5, s=0.005, c=0.01, kd=3.27�10−4,
kc=4.4�10−3, �p=10 ps, and �=2�10−3.

Instabilities of the SRL

The bifurcation diagram of the SRL is obtained by nu-
merical integration of Eqs. �2� and �3� and is shown in the
first panel of Fig. 1 for increasing values of the pump coef-
ficient �. As in all the regimes, the total intensity is constant
and in order to analyze the evolution of the intensity differ-
ence and the relative phase between the two counterpropa-
gating fields, we introduce new variables represented in a
Poincaré sphere, the relative intensity �, and the relative
phase �,

� = 2 arctan� �E+�2 − �E−�2

�E+�2 + �E−�2� ,

� = arctan
 Im�E+

E−
�

Re�E+

E−
�� . �6�

In this context, � is equivalent to ellipticity in the description
of the polarization of the electric field in the sense that it
describes how the field is distributed between the two coun-
terpropagating modes �here analogous to the circular polar-
ization modes�. Those new variables are projected in the
Poincaré sphere by means of the Stokes parameters as fol-
lows:

s1 = cos � cos � ,

s2 = cos � sin � ,

s3 = sin � . �7�

We note that we consider a fixed value of the total intensity
giving a sphere with unitary radius. The poles represent uni-
directional solutions, being the north pole a pure CW opera-
tion and the south pole a pure CCW operation. The equator is
the line where the two counterpropagating waves have the
same intensity but different relative phases �31�. Along the
equator, the point s2=0, s3=0 represents the two fields in
phase while the point s2=1, s3=0 represents the two fields
with a phase difference equal to �.

We can now visualize the instabilities of the SRL on the
Poicaré sphere by numerical integration of Eqs. �2� and �3�
�35�. Above threshold ���1�, the first stable regime found is
a symmetric solution �bidirectional regime�, where the two
counterpropagating fields have the same intensity. In panel
�2� of Fig. 1, we see a trajectory starting from random initial
conditions and ending at the fixed point s2=0 in the equator.
Increasing the pump �, a Hopf bifurcation takes place which

FIG. 1. �1� Bifurcation diagram for electric fields intensity for
increasing pump current �. ��2�–�4�� Evolution of the Stokes pa-
rameters on the Poincaré spheres for each regime. �2� �=1.2, �3�
�=2, and �4� �=2.6.
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marks the beginning of a limit cycle regime �alternate oscil-
lations in �4,10��, where the two field intensities are oscillat-
ing in anticorrelated fashion, i.e., when one field reaches its
maximum intensity, the other reaches its minimum and vice
versa. Panel �3� shows the limit cycle on the Poincaré sphere
reached from a random initial condition. Increasing further
�, an asymmetric solution regime due to a pitchfork bifur-
cation is found �25�. Here, the two counterpropagating fields
have different intensities and the difference increases with �.
In this regime, depending on the initial conditions, the laser
emission is mainly concentrated either in CW or CCW direc-
tion. Panel �4� shows two trajectories from different initial
conditions and how they are attracted by different fixed
points corresponding to the two emission directions. When �
increases, the two fixed points move toward the poles.

III. FLUCTUATIONS DYNAMICS AND CORRELATIONS

A. Monochromatic solutions

Focusing on the bidirectional regime, we look for a mono-
chromatic solution for the two fields with the same amplitude

E��t� = Qei�t�i�. �8�

SRLs admit two possible solutions. In the in-phase case,

�in = 0 → �in = 
kd − kc, �9�

while in the out-of-phase case,

�out =
�

2
→ �out = − 
kd + kc. �10�

Depending on the sign of the backscattering parameters, one
of the solutions is stable and the other unstable. If
kd�0�kd�0�, the out-of-phase case is stable �unstable�.
Physically, the two solutions are equivalent because the sign
of kd represent which direction �clockwise �CW� or counter-
clockwise �CCW�� is chosen as positive. From now on, we
focus on the out-of-phase case without loosing generality.
The corresponding stationary solution for the carrier density
N=Nst as a function of the amplitude of the fields and the
pump parameter is

Nst =
�

1 + 2Q2f
, �11�

where f =1−sQ2−cQ2. For the amplitude Q, we find

Q2 =
Nst − 1 + kd

�c + s�Nst
. �12�

B. Linear fluctuations dynamics

Hereby, we analyze the effect of a perturbation on the
stationary solutions. We consider a real perturbation n in the
carrier density and complex perturbations a� for the fields

E� = �Q + a��ei�t�i�,

N = Nst + n . �13�

By making use of Eq. �13� in Eqs. �2� and �3�, we derive the
following linear system:

ṅ = − ���1 − 2Q2�s + c��NstQ�a+ + a+
� + a− + a−

��

+ �1 + 2Q2f�n� ,

ȧ� =
1

2
�1 + i
���Nstf − 1�a�

− NstQ
2�s�a� + a�

� � + c�a� + a�
� �� + Qfn� − i�a�

− ��cos 2� � i sin 2��a� + ��. �14�

At this point, we introduce a new set of variables to simplify
the set �14� in two independent problems by block diagonal-
ization. The new variables are

S = a+ + a−,

R = a+ − a−. �15�

We can relate those new variables to the typical experimen-
tally measured quantities �E+�2 and �E−�2 defining

I = �E+�2 + �E−�2, �16�

D = �E+�2 − �E−�2, �17�

and writing those new variables as I= I0+ I and D=D0+D,
where I0 and D0 are constants and the perturbations, I and D
can be expressed in terms of S and R at first order,

I = Q�S + S�� , �18�

D = Q�R + R�� . �19�

The variable I describes the perturbation of the total intensity
of the laser regardless of its distribution between the two
modes, whereas D describes the power exchange between
the two counterpropagating fields.

C. Relative Intensity

The equation for the dynamic evolution of R is

Ṙ = �1 + i
�K�R + R�� − 2�R + �R�t� , �20�

where the fluctuation term is derived from Eqs. �15� and �5�,
�R�t�=�+�t�−�−�t� with the correlation properties

��R�t��R
��t��	 = 4
��pNst
�t − t�� , �21�

and K is a real constant defined by

K =
1

2
NstQ

2�c − s� . �22�

The corresponding eigenvalues for the differential equations
system for R and R� are

�1,2 = K − 2kd � �K2 + 4K
kc − 4kc
2�1/2. �23�

The above eigenvalues are used to construct the stability dia-
grams shown in Fig. 2 as functions of the two backscattering
parameters. The figure shows how above a certain threshold
for the conservative backscattering kc the eigenvalues be-
come complex conjugate �vertical line in all panels in Fig.
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2�. This implies the presence of a new eigenfrequency in the
system. In the unstable region A, such frequency originates a
limit cycle, according to previous works �4�, whereas in re-
gions B and C, perturbations relax to the monochromatic
solution. For increasing values of the pump �, the unstable
region A becomes less pronounced.

The two-mode difference at a given frequency reads as

R̃��� =
1

A���
��i� − �1 − i
�K + 2����̃R��� + �1 + i
�K�R

�̃�

− ��� , �24�

where

A��� = − �2 + i��4kd − 2K� − 4�kd + 
kc�K + 4�kd
2 + kc

2� ,

leading to the two-frequency correlation

�R̃���R̃�����	 =
1

A���A�− ��
�4kd

2 − 4K�kd + kc
�

+ 2K2�1 + 
2� + 2K
�

+ �� − 2kc�2�8�
��pNst
�� − ��� .

�25�

From Eq. �19�, we immediately obtain the D spectrum

�D̃���D̃�����	 = Q2��R̃���R̃�����	 + �R̃�− ��R̃��− ���	� .

�26�

The analytical result is shown in Fig. 3 for a parameter set in
region C of Fig. 2. The analytic is compared to numerical
simulations of the full nonlinear system �36�. Physically, the
backscattering represents the energy exchange rate between
the two modes. Such process shows a resonance �the peaks
in Fig. 3–5� which is more evident for increasing values of
gain cross-saturation and conservative backscattering,
whereas the resonance is damped for increasing values of
gain self-saturation and dissipative backscattering �see con-
tinuous black line in Fig. 4�.

SRLs are well modeled by strong cross-saturation and
conservative backscattering. For such parameter choices, our
study unveils the presence of a resonance peak in the fre-
quency spectrum. Such behavior was reported in a recent
experimental work �22�.

Figure 4 shows how the D spectrum is modified by con-
servative backscattering coefficient using the analytical ex-
pression �25� for parameter values corresponding to the
crosses in Fig. 2. The figure shows that the peak is more
pronounced when moving deeper into region C. Backscatter-
ing parameters are difficult to measure in operating condi-
tions and they are important to determine the static and dy-
namic properties of the laser. Such noise spectra,
corresponding to measurements of the correlation spectrum
of the intensity difference fluctuations, represent a novel and
suitable way to extract the actual extent of the backscattering
in its dissipative and conservative parts in working condi-
tions. Figure 5 shows the D-spectrum dependence on pump
current of the analytical expression �25� for pump values that
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FIG. 2. Stability diagrams of the symmetric solutions �10�–�12�
for different values of � depending on backscattering coefficients.
In region A, the symmetric solution is unstable, region B is stable
with real eigenvalues, and in region C is stable with complex con-
jugates eigenvalues. �1� corresponds to �=1.2, �2� to �=1.15, �3�
to �=1.1, and �4� to �=1.05.

FIG. 3. D spectrum. The gray line corresponds to the numerical
simulation for 20 noise realizations; the analytical solution
is the black line. �=10−3 ns−1, 
=3.5, s=0.005, c=0.01,
kd=3.27�10−4, kc=4.4�10−3, �=2�10−3, and �=1.2. The fre-
quency f is found from the adimensional angular frequency �. Here
and in the following figures, f = �

2��p
, where �p=10 ps is the photon

lifetime in the ring cavity.

FIG. 4. D spectrum. Dependence on conservative backscattering
coefficient, kc. Black curve corresponds to kc=10−3, the gray curve
to kc=1.83�10−3, the dashed black curve to kc=4.83�10−3, and
the dashed gray curve to kc=10−2. Each spectrum corresponds each
cross in panel �1� in Fig. 2; �=10−3 ns−1, kd=4�10−4, and
�=1.2.
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maintain the SRL in the bidirectional regime. The figure
shows the persistence of the resonance peak for increasing
pumps.

In time domain, such resonance emerges as a consequence
of the system oscillating around the fixed point due to spon-
taneous emission noise. Figure 6 shows the evolution of �
and � for the complete set �2� and �3� including spontaneous
emission noise in the bidirectional regime for different �
values. In the absence of noise �see Fig. 1 panel �2��, the
variables � and � end in the fixed point after a transient, but
in the presence of noise, the transient becomes longer de-
pending on the value of � and produces slow undamped
oscillations around the fixed point. This is reported in litera-
ture as Hopf bifurcation precursor �32�. Therefore, in our
interpretation, the radio frequency resonance peak experi-
mentally �22� observed is given by a noise driven excitation
near a fixed point.

D. Total intensity and carrier density

The equations for the dynamic evolution of S and n are

Ṡ = �1 + i
��Cn + K̃�S + S��� + �S�t� ,

ṅ = − ��n + �1 − 2Q2�s + c��NstQ�S + S��

+ 2Q2�1 − sQ2 − cQ2�n� , �27�

where the fluctuation term is derived from Eqs. �15� and �5�,
�S�t�=�+�t�+�−�t�, with the same correlation properties

shown in the previous section �21� and K̃ and C are real
constants

K̃ = −
1

2
NstQ

2�c + s� ,

C = Q�1 − Q2�c + s�� . �28�

The corresponding eigenvalues for the system �27� are

�0 = 0,

�1,2 = K̃ −
�

2
− �QC �

1

2
��2 + 4�K̃2 + K̃� + �2QC�1 + QC��

− 8��K̃QC + NstC
2��1/2. �29�

The presence of a zero eigenvalue indicates that the system
�27� is singular. The corresponding neutral eigenmode,
known as Goldstone mode �34�, appears because the solution
in the bidirectional regime breaks the global phase invari-
ance and gives rise to large undamped fluctuations. Indeed,
the Goldstone mode is associated to the imaginary part of S.
Interestingly, by using Eq. �18�, we can get rid of this mode
by decoupling the fluctuations dynamics from it and reduc-
ing the dynamics to a subspace orthogonal to the Goldstone
mode itself. Then a linear approximation is well-justified in
terms of the variable I, therefore the equation system �27�
reads

İ = 2K̃I + 2QCn + �I�t� ,

ṅ = − ��1 − 2Q2�s + c��NstI − ��1 + 2QC�n , �30�

where the fluctuation term is derived from Eqs. �15� and �5�,
�I�t�=QRe��S�t�+�S

��t��, with the correlation properties

��I�t��I�t��	 = ��I�t��I
��t��	 = 8Q2
��pNst
�t − t�� . �31�

By Fourier transform, we derive

Ĩ��� =
1

B���
�i� + ��1 + 2QC���̃I��� �32�

and

ñ��� =
− 1

B���
�Nst�1 − 2Q2�s + c���̃I��� , �33�

where

FIG. 5. D-spectrum dependence on pump current �. Black
curve corresponds to �=1.2, the gray curve to �=1.15, the dashed
black curve to �=1.1, and the dashed gray curve to �=1.05;
�=10−3 ns−1, kc=4�10−3, and kd=4�10−4.

FIG. 6. Poincaré spheres for the bidirectional regime in the pres-
ence of noise. �1� �=0.1�ns−1, �2� �=10−3 ns−1, and �3�
�=10−5 ns−1. �=1.3.
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B��� = − �2 + i����1 + 2QC� − 2K̃�

+ 2��QCNst + K̃�2Q − 1�� . �34�

We are able to find the following ensemble average:

�Ĩ���I�̃����	 =
Q2

B̃���B̃����

���2 + �2�1 + 2QC�2�16�
��pNst
�� − ��� .

�35�

Figure 7 shows the good agreement between I spectrum from
Eq. �35� and numerical simulations. The observed peak cor-
responds to the typical relaxation oscillations of the field-
medium-energy exchange process and its frequency depends
on the pump and medium characteristics. The backscattering
does not play any role in the field-medium-energy exchange
process as can be seen from Eq. �35�.

IV. CONCLUSIONS

We have studied the influence of spontaneous emission
noise in a two-mode model for semiconductor ring lasers
biased in the bidirectional regime. The analysis has been
carried out by linearizing the model close to a stable station-
ary solution and considering the effect of spontaneous emis-
sion as stochastic perturbations expressed by Langevin
forces. At a linear level, perturbations concerning the total
intensity and carrier inversion dynamics decouple from the
energy distribution processes between the two modes. This
fact has permitted a full analytic analysis, well confirmed by
numerical simulations of the complete non linear system.
The analysis showed that semiconductor ring lasers have pe-
culiar noise properties. On one side, the total intensity and
carrier density show a noise spectrum �I spectrum� charac-
terized by a resonance induced by the typical field-medium-
energy exchange process �relaxation oscillations� and the
global phase diffusion induced by the Goldstone mode. Be-
sides, the degree of freedom associated to the simultaneous
presence of two counterpropagating modes allows for a fur-
ther process of energy exchange between the two modes. Our
analysis unveiled that such process presents a resonance in-
fluenced mainly by the backscattering parameters and inter-
preted as a “noisy precursor” of a Hopf bifurcation. This
opens the possibility to extract the backscattering parameters
from the noise spectra.
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