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In this paper, optical properties of coupled silica disk microresonators are investigated. The spectral response
and the light intensity distribution along the coupled disks were measured. It was found that the distribution
depends on the particular excited resonance, which can be attributed to the formation of normal modes of the
coupled resonator system. A developed theoretical model gives quantitative agreement with the experimental
observations.
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I. INTRODUCTION

Optical microresonators of different morphology �spheres,
disks, toroids, pillars, and rings� have been attracting a great
deal of interests in the last decade due to their potential use
as building blocks in future microphotonic and nanophotonic
devices �1�. These resonators support whispering gallery
modes �WGMs� with extremely high Q factors �as high as
108 for spheres and 106 for disks� and very small mode vol-
ume. Recently, the focus of research in this area has shifted
from individual systems �2–11� to coupled resonator struc-
tures. Due to the fact that the advantage of highest Q factors
is offset by difficulties in achieving size uniformity required
for coupled structures �12�, coupled microspheres were
mainly investigated in terms of light propagation effects de-
pending on the size disorder of the individual spheres
�13,14�. While these effects are of interest from the point of
view of optical investigation of Anderson localization �15�,
they are detrimental for most potential applications. On the
other hand, despite the lower Q factors, the advantage of disk
and ring microresonators is the ability to fabricate them with
the accuracy much better than for microspheres using an
electron-beam lithography process. Therefore, coupled ring
resonators, for instance, were investigated for such configu-
rations and applications as coupled resonator optical
waveguides �CROW� �16�, side-coupled integrated spaced
sequence of resonators �SCISSOR� �17�, tunable filters �18�,
slow light devices �19�, and nonlinear wavelength converters
�20�. To get a better understanding of optical coupling of
microresonators, scientists started to investigate microdisks
and microspheres in the context of so-called “photonic mol-
ecules” �21–23�, where two or only a few resonators are
coupled. Based on such structures, for instance, an enhance-
ment of the sensitivity of an integrated biosensor was theo-
retically predicted �24�.

In this paper, we present experimental and theoretical in-
vestigations of coupled microdisk structures. We describe a

manufacturing procedure for fabrication of such structures
with arbitrary configurations. Experimental data of two and
three coupled disks are compared with theoretical calcula-
tions based on the developed analytical model.

II. THEORETICAL MODEL

An effective theoretical description of individual and mul-
tiple disk systems is based on a two-dimensional approxima-
tion, which is valid as long as the thickness of the disks does
not allow for formation of standing waves in the “vertical”
�perpendicular to the plane of the disks� direction, which will
be chosen to be the z axis. In this case, in-plane and vertical
coordinates can be approximately separated �11,25,26� and
the thickness of the disk is incorporated through the concept
of an effective refractive index. In this approach, Maxwell
equations are reduced to a two-dimensional scalar wave
equation with an effective refractive index for z component
of magnetic �TE polarization� or electric �TM polarization�
fields. The effective refractive index in this approximation is
different for modes of different polarizations and is better
treated as a fitting parameter determined from comparison
between calculated and measured resonance positions for
single disks. With this approach, the two-dimensional �2D�
approximation �2D model� is accurate enough to give rea-
sonable agreement between experimental and theoretical re-
sults for coupled disks, which will be shown below.

The systems of coupled disks have been studied inten-
sively by a variety of numerical methods �see recent review
in �27� and references therein as well as �23,24,28��. These
methods are based on the numerical solution of integral
equations and allow studying structures of coupled disks
with noncircular boundaries. However, in the experiments
described in this work, the disks have almost ideal circular
shape �Figs. 1�a� and 1�b��. Taking advantage of this fact, we
can use a simpler and physically more transparent approach
based on modal expansion, which, in the case of high-Q
whispering gallery modes, allows for additional simplifica-
tions. This approach is similar to multisphere Mie analysis
�29� and its application to the case of high-Q WGMs in
coupled spherical microresonators �21,30–32�.

Let us consider pth disk of our structure characterized by
radius Rp and position of the center rp. We present internal
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and scattered magnetic fields �without restrictions only TE
polarization is considered� associated with this disk as a lin-
ear combination of two-dimensional cylindrical harmonics
with radial parts having a form of Bessel �for the inside field�
or Hankel �for the scattered field� functions

Bint
�p� = �

m

dm
�p����eim�pJm�ndk�r − rp�� , �1�

Bsc
�p� = �

m

bm
�p����eim�pHm�n0k�r − rp�� . �2�

The field incident on this disk has contributions from the
original incident field as defined in the coordinate system
centered at this disk plus the field scattered by all other disks

Binc
�p� = �

m

am
�p����eim�pJm�ndk�r − rp�� + �

q�p
�
m

bm
�q�

����eim�qHm�n0k�r − rq�� . �3�

In these equations, m is the azimuthal mode number, nd is the
effective refractive index as mentioned above, n0 is the re-
fractive index of surrounding media �air�, and k is the
vacuum wave number. Expansion coefficients bm

�p�, dm
�p�, and

am
�p� define contributions of mth mode of the pth disk to the

respective fields. The polar angles �q are defined in local
polar coordinate systems, which are centered at different rp
but have the same orientation for all disks in the structure. In
order to be able to use boundary conditions at the rim of the
pth disk, the scattered field �Eq. �3�� needs to be rewritten in
the coordinate system centered at the pth disk. This can be

achieved with the help of Grafs formula for the Hankel func-
tion �24�

eim�qHm�n0k�r − rq��

= �
n=−�

+�

Hn−m�n0kRq,p�ei�m−n��q,pJn�n0k�r − rp��ein�p,

�4�

where Rq,p and �q,p are radial and polar coordinates of the
pth disk in the coordinate system centered at the qth disk.
Substituting Eq. �4� in Eq. �3� leads to

Binc
�p� = �

m
�am

�p���� + �
q�p

�
n

bn
�q����Hm−n�n0kRq,p�ei�n−m��q,p�

�eim�pJm�n0k�r − rp�� . �5�

Matching internal, scattered, and incident fields given by
Eqs. �1�–�3�, respectively, with the help of Maxwell bound-
ary conditions, we arrive at a system of linear equations re-
lating expansion coefficients of scattered and incident fields
for different disks

bm
�p���� = �m

�p�����am
�p���� + �

q�p
�

n

bn
�q�

����Hm−n�n0kRq,p�ei�n−m��q,p� . �6�

Here we introduced the single disk scattering amplitude

�m
�p���� =

ndJm�xd�Jm� �x0� − ndJm� �xd�Jm�x0�
n0Hm�x0�Jm� �xd� − ndJm�xd�Hm� �x0�

, �7�

where x0,d=n0,dkR�p�. The system of linear coupled Eqs. �6�,
which for two disks was obtained in �26�, describes the prob-
lem in the most general form for an arbitrary configuration of
disks and taking into account coupling between all azimuthal
modes. In order to consider a linear chain of disks, we can
choose the polar axis of the coordinate system along the line
connecting disk’s centers and specifying that

�q,p = 	� , q � p

0, q 	 p .

 �8�

In the case of high-Q whispering gallery modes, additional
simplifications are possible. Indeed, in this case one deals
with modes characterized by large azimuthal index �m�
1.
Since Hankel function with large indices grows exponen-
tially with increasing �m�, the largest contribution to Eq. �6�
comes from terms with n=−m, which means that a mode
with a given m couples strongest to a counterpropagating
mode n=−m in the adjacent disk, which is characterized by
the same resonance frequency. At the same time, interaction
with nonresonant modes will be shown to result in qualita-
tively new effects, which can be accounted for perturba-
tively. In addition, Hankel functions with �m�
1 decrease
very fast with increasing distance between the disks �evanes-
cent coupling�, which allows treating Eq. �6� in the nearest-
neighbor approximation.
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FIG. 1. �Color online� �a� shows a SEM picture of an investi-
gated sample of two coupled disks. �b� shows the sketch of the 2D
representation of the structure with notations of radii and the calcu-
lated expansion coefficients �the thick arrow marks the excited
mode�. The lower two pictures show the calculated spectra of the
b�103

�1,2� expansion coefficients for the scattered field of first �c� and
second �d� disks for varying radius of second disk �single disk reso-
nance at 1.5533 �m with m=103� exhibiting splitting of the reso-
nances. The white solid lines show the real part of the coefficients
along the dashed white lines for equal radii of 20 �m. In this case,
light intensity is equal in both disks for both resonances.

SCHMIDT et al. PHYSICAL REVIEW A 80, 043841 �2009�

043841-2



A. Nearest-neighbors resonant approximation

In the simplest approximation, we only take into account
in Eq. �6� nearest-neighbor terms with azimuthal index
n=−m. Taking into account that H−m�x�= �−1�mHm�x�, we re-
write Eq. �6� in the following form:

bM
�p���� = �M

�p�����aM
�p���� + b−M

�p−1����H2M�n0kRp−1,p�

+ b−M
�p+1����H2M�n0kRp+1,p�� ,

b−M
�p� ��� = �M

�p�����bM
�p−1����H2M�n0kRp−1,p�

+ bM
�p+1����H2M�n0kRp+1,p�� , �9�

where we assumed that the incident wave has only M azi-
muthal component. In a finite chain of N disks numerated
from p=1, . . . ,N, these equations must be complemented by
boundary conditions

bM
�0� = b−M

�0� = bM
�N+1� = b−M

�N+1� = 0. �10�

In the case of identical disks positioned at equal distances
from each other, the solution of Eqs. �9� with boundary con-
ditions �Eq. �10�� can be found using discrete sine Fourier
transform. Assuming that only disk p0 is excited, we find

b�M
�p� =

2

N + 1�
l=1

N

b̃�M
�l� sin� �l

N + 1
p� , �11�

where

b̃M
�l� =

aMgM���sin� �l

N + 1
p0�

�gM��� − X��gM��� + X�
,

b̃−M
�l� =

2iaMtM cos� �l

N + 1
�sin� �l

N + 1
p0�

�gM��� − X��gM��� + X�
, �12�

with X=2itM cos��l / �N+1��. Here we introduced inverse
single disk scattering amplitude gM���= ��M����−1 and the
nearest-neighbor coupling parameter for resonant modes
tM =−iH2M�n0kD�, which depends on the distance between

the centers of the adjacent disks D2R, and is defined to
have predominant real part. The resonances of this multidisk
structure are determined by zeroes of denominators in Eq.
�12�,

gM��� = � 2itM cos� �l

N + 1
� . �13�

These equations define two branches of normal quasimodes
of the chain characterized by complex-valued frequencies,
whose dispersion curves are shown in Fig. 2. Each normal
frequency corresponds to two different modes characterized
by l= p	 �N+1� /2 from one branch and l=N+1− p� �N
+1� /2 from the other one. This means that in this approxi-
mation, coupling between disks does not remove the double
degeneracy of the modes originally existing in single disks.
These degenerate modes can be described by symmetric and
antisymmetric combinations of coefficients bM and b−M. The
obtained Eqs. �11� and �12� allow also describing distribution
of the intensity along the chain. For instance, in the case of
two disks, when only two modes with l=1,2 are possible,
one finds �assuming that the first disk is excited�

bM
�1� =

aMgM���
�gM��� − itM��gM��� + itM�

;b−M
�1� = 0, �14�

b−M
�2� =

iaMtM

�gM��� − itM��gM��� + itM�
;bM

�2� = 0, �15�

so that the total intensity of the field is the same in both disks
at both resonance frequencies defined by equations
gM���� itM =0.

For the system of three disks, the situation is more inter-
esting. For the total intensity of the field inside each disk,
which is defined as IM

�p�= ��bM
�p��2+ �b−M

�p� �2� / �aM�2, we obtain

IM
�1� =

1

4
 gM���

�gM��� − Y��gM��� + Y�
+ �M���2

, �16�

IM
�2� =

1

4
 tM

�gM��� − Y��gM��� + Y�
2

, �17�
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FIG. 2. �Color online� Solution of dispersion relation �13� for the case of six coupled disks, showing two branches of normal quasimodes,
characterized by complex-valued frequencies �left �right� graph shows real �imaginary� part�. The dashed arrows mark the normal frequen-
cies and the two corresponding modes from the two branches.
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IM
�3� =

1

4
 gM���

�gM��� − Y��gM��� + Y�
− �M���2

, �18�

with Y = itM /�2. We can see that now there are three reso-
nance frequencies, one of which coincides with the fre-
quency of the single disk resonance determined by
��M����−1=0. If the system is excited at this frequency, the
intensity of the field in the middle disk is expected to be
significantly smaller than in the other two disks because, as it
is seen from Eq. �17�, the response of the second disk does
not have a resonance at this frequency. This can be under-
stood by noting that the resonance at the single disk fre-
quency is due to the excitation of the mode with l= �N
+1� /2, for which parameter X introduced in Eq. �12� turns
zero. In the case of three disks, this corresponds to l=2. It is
seen, however, from Eq. �11� that for the second disk in the
three-disk structure �p=2�, the contribution of this mode
vanishes. This phenomenon is illustrated below in Fig. 5.

B. Coupling to nonresonant modes

The role of coupling to nonresonant modes will be ana-
lyzed for the case of two disks, which do not have to be
identical; implications of this analysis and its extension to
longer structures are straightforward. We rewrite Eq. �6�
separating out resonant and nonresonant modes. For the lat-
ter, we only take into account their interaction with the reso-
nant modes while neglecting the interaction between them-
selves. Also, anticipating that the modes of the two-disk
system should have definite parity with respect to inversion
of the azimuthal number M �26�, we introduce new coeffi-
cients

bM
��p� = bM

�p� � b−M
�p� , �19�

where p=1,2 for disk one or two. Eliminating amplitudes of
nonresonant modes, we derive two pairs of independent
equations for “even” �bM

+ � and “odd” �bM
− � modes

bM
+�1��sM

+�1� + �M
+�2�� = aM + itMbM

+�2�, �20�

bM
+�2��sM

+�2� + �M
+�1�� = itMbM

+�1�, �21�

bM
−�1��sM

+�1� − �M
+�2�� = aM − itMbM

−�2�, �22�

bM
−�2��sM

+�2� − �M
+�1�� = − itMbM

−�1�. �23�

Here we introduce new parameters emerging due to interac-
tion with nonresonant modes

sM
�1,2� = gM

�1,2� + �
n�−M

�n
�1,2��tM−n�2 �24�

and

�M
�1,2� = �

n�−M

�n
�1,2�tM+ntM−n, �25�

where tM�n=−iHM�n�n0kD�. The main qualitative result of
this interaction is that now we have four distinct resonance
frequencies as oppose to just two, when the nonresonant
modes are neglected. This means that nonresonant modes are

responsible for lifting of the degeneracy between odd and
even modes of a two-disk system. The four resonance fre-
quencies in the case of identical disks are given by the fol-
lowing equation:

s�1,2,3,4� = � �M � itM . �26�

In the case of high-Q modes, when ��M�� �tM�, the four reso-
nances described by Eq. �26� are grouped in two pairs of
closely spaced doublets. In a general case of a N-disk chain,
the coupling to nonresonant modes will split each of the
dispersion curves described by Eq. �13� into two close
branches.

From the experimental point of view, the relevance of
interaction with nonresonant modes depends on observability
of the respective doublets, which can be obscured by the
weakness of this interaction and other effects such as surface
roughness and deviation of the shape of the disks from the
ideal circle. As it will be seen below, in our experiments the
splitting of main resonances given by Eq. �26� into the dou-
blets was not observed, which justifies neglecting nonreso-
nant modes in our analysis.

We complemented the presented analytical calculations
by the direct numerical solution of Eq. �6�, taking into ac-
count only resonant modes but allowing for variations in the
radii of the disks and the gap size between them. As an
example, the calculated expansion coefficients for two
coupled disks are plotted in Figs. 1�c� and 1�d� for both disks
as a function of both the wavelength around a resonance at
1.5533 �m and the radius of the second disk. It can be seen
that even in the presence of slight size mismatch between the
disks �in the range of �20 nm�, a splitting of frequencies is
still observable.

III. FABRICATION AND EXPERIMENTAL
CHARACTERIZATION OF SAMPLES

To test the applicability of the theoretical model, coupled
silica disk microresonators were fabricated by an electron-
beam lithography process with subsequent etching steps.
Starting point was a thermally oxidized silicon wafer with a
silica layer of about 1 �m thickness. On top of the silica, a
chromium layer and electron-beam resist were deposited.
The disk structures were defined by the electron-beam writ-
ing process. After resist development and chromium etching,
the remaining chromium acts as an etching mask for the
silica and the silicon below. In an anisotropic etching step,
the disk structures were transferred into the silica layer.
There after, the silicon was isotropically etched, which leads
to an underetching of the silica layer and produces free
standing silica disks on silicon pedestals. In a penultimate
step, the silicon was deeply etched to get a larger distance of
the silica disks to the silicon substrate in order to provide
easy access for a tapered optical fiber. Finally, the chromium
mask was removed.

The fabricated samples were spectrally characterized with
a tunable laser source in the telecommunication band. The
light from the laser was coupled through a tapered optical
fiber �diameter of approximately 1.3 �m�, which was
brought in close proximity to the investigated disk resonators
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and provides very efficient coupling due to strong-mode field
overlap and phase matching of both modes �8�. The output of
the tapered fiber was then connected to a photodiode with
125 MHz bandwidth, which was connected to an oscillo-
scope. The laser was operated in continuous sweeping mode
and when the excitation wavelength coincides with a reso-
nance the transmission through the taper drops. Therefore,
the spectral response of the disk microresonator is directly
observable on the oscilloscope. The polarization of the ex-
cited resonances can be controlled with an inline fiber polar-
ization controller. Part of the light coupled to the disk is
scattered out of the disk and is collected by an infrared cam-
era. This information is complementary to spectral data and
can be used to characterize the field distribution among disks
of the coupled resonator system.

First, the spectral response of a single disk resonator was
measured to identify the modes in the investigated wave-
length range. The measured spectra were compared with re-
sults of numerical simulations using the 2D model described
above by calculating the poles of the single disk scattering
amplitude �Eq. �7��. This can be done independently for both
polarizations. The refractive index n and the thickness h of
the disk were used as fitting parameters. This allows us to
obtain the azimuthal mode numbers as well as the polariza-
tion of the modes corresponding to the measured resonances.
Due to a difference in the free spectral range of the reso-
nances of different polarizations, the change in the polariza-
tion state of the incoming light will result in the shift of the
relative positions of the observed spectral peaks. This effect
is clearly seen in Fig. 3, where in the shorter wavelength
range the TE resonance appears before the TM one and, at
the longer wavelength range, the TE resonance appears after

the TM one. The same situation can be observed in the nu-
merical calculations and therefore with realistic choice of
relevant disk parameters the polarization and mode numbers
can be identified unambiguously. In this context, “realistic
choice” especially restricts the thickness h of the disk, which
has to be measured accurately by a scanning electron micro-
scope �SEM�. The effect of changes of h used in the simula-
tions were investigated for the measured spectral response in
Fig. 3. The depicted resonances calculated with the 2D
model were obtained for h=0.911 �m and n=1.451, where
h is in good agreement with the measured thickness of
hSEM = �0.92�0.04� �m. Another set of parameters �h
=1.067 �m, n=1.443� results in comparable agreement of
the resonance wavelengths with all mode numbers increased
by one, but the disk thickness in this case is significantly
larger than the measured value. The same effects can be ob-
served in results from finite element �FEM� simulations �for
possible implementation, see �33��, which were used to
verify our simpler two-dimensional model. The calculated
resonance positions from the FEM shown in Fig. 3 below the
horizontal gray line were obtained with h=0.915 �m, n
=1.453, and are in good agreement with the results from the
2D model and the experimental data, especially for the fun-
damental modes �highest mode numbers�. The difference of
the disk thickness of 4 nm is clearly below the accuracy of
the SEM measurement and the variations in the refractive
index can be addressed to the inherent inaccuracy of the
effective index method. This also explains the stronger de-
viations for the second-order radial modes in Fig. 3. Both the
2D effective index model and the FEM can, in principle, also
be used to calculate the radiative Q factor of the disks related
to the curvature of the surface �for FEM, see �33��. However,
the samples under investigation show significant surface
roughness, which introduces additional scattering loss as the
limiting factor for the Q value. This effect cannot be easily
introduced into the used models exactly and therefore the
focus of this paper is not on the prediction of exact experi-
mental Q factors. Instead, we add a small imaginary part to
the refractive index to approximate all possible contributions
to loss by adjusting the bandwidth of the calculated reso-
nances to the experimental ones.

The investigated samples with two and three coupled
disks show different spectral response due to a coupling-
induced mode splitting, which is accompanied by a small
shift of the entire spectrum. The latter might happen because
of small changes in the disk parameters due to fabrication
inaccuracies from sample to sample and also a change in
excitation conditions. Nevertheless, the resonances still can
be identified as described above if the coupling between the
disks is weak, which corresponds to a large gap size between
the disks.

A. Two coupled disks

For the investigation of two coupled disks, different
samples were fabricated with disk radii of about 20 �m and
a gap size between the disks ranging from 1 �m to 300 nm.
Analog to Fig. 3, spectra were measured and, as described
above, the thickness and refractive index of the disks were
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FIG. 3. �Color online� Measured spectral response of a single
disk resonator for both polarization states �TE: blue solid line, TM:
red dashed line�. The blue dots �TE� and red crosses �TM� are the
calculated resonance wavelengths �above �below� the gray line from
the 2D-effective index �FEM� model� with the corresponding azi-
muthal mode numbers m. The stronger resonances are fundamental
�high Q� modes with large m. The weaker excited resonances are
second-order radial modes �two intensity maxima in radial direc-
tion� with lower values of m. Due to the good agreement for the
relative distances of differently polarized modes, the measured reso-
nances can be identified.
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found from numerical fitting of the experimental data to be
h=1.0783 �m and n=1.4595. The obtained thickness corre-
sponds very well to measurements from SEM images of the
sample, where a thickness of hSEM = �1.07�0.04� �m was
found. For a detailed investigation, a TE polarized resonance
with a wavelength of 1.5533 �m and an azimuthal mode
number of m=103 were chosen. The found parameters were
used in the coupled disk model to calculate the expansion
coefficients bm

�p� of the scattered field. The wavelength depen-
dence of these coefficients gives positions and widths of the
splitted resonances, which can be compared with the experi-
mental spectra. The magnitudes of the calculated expansion
coefficients for each disk can be compared with the mea-
sured scattered light intensity. Figure 4 shows the compari-
son between measured and calculated data for samples with
three different gap sizes. The blue line shows the measured
data when the first ��a�–�c�� or second ��d�–�f�� resonator is
excited; the black curves show the calculated scattering ex-
pansion coefficient �solid line for the first resonator; dashed-
dotted line for the second one�. For each gap size, the radius
of the second resonator �R2� was chosen to match the split-
ting of the resonance while the radius of the first disk was
fixed to the design value for the samples �R1=20 �m�. For
the gap sizes of 500 and 300 nm R2 was found to be equal
19.9907 �m, while for a gap size of 1000 nm R2 was deter-
mined to be 19.9947 �m. The difference in the radii be-
tween the samples as well as the difference between the two
disks of the same sample of about 10 nm is in the range of

fabrication accuracy. Within this fabrication tolerance, a di-
rect extraction of a coupling coefficient related to the field
overlap of the modes in both disks is not useful due to the
fact that for each gap size different samples have to be used.
To overcome this uncertainty of different samples, it would
be necessary to use two initially separated disks, characterize
each of them with the above-mentioned techniques, and then
bring them close together with a definite but variable gap
size, which from a fabrication point of view, is not easy to
realize. The experimentally obtained resonance bandwidths
can be reproduced, as mentioned above, by adding an imagi-
nary part to the refractive index, which approximates all pos-
sible contributions to losses. In the simulations, it was found
to be 1.5�10−5 and gives very good agreement for the reso-
nance bandwidth in the case of 300 and 500 nm gap size, but
for 1000 nm the calculated bandwidth is overestimated. For
the latter sample with the weakest coupling between the
resonators, we also observed a surface scattering-induced
splitting and for the strong resonances we found a slightly
nonsymmetrical broadening due to thermal nonlinearity. We
did not take the nonlinear effects and scattering at surface
roughness into account and, consequently, the slight dis-
agreement between theoretical and experimental data is not
surprising. The small splitting also has to be distinguished
from the described splitting due to coupling to nonresonant
modes �see Sec. II B�. For the smaller gap sizes, the Q factor
of the coupled disk system is reduced due to coupling to
nonresonant modes, no thermal broadening is observable,
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FIG. 4. �Color online� Comparison of measured resonances with theoretical calculations for two coupled disk resonators with different
gap sizes �1000 nm ��a� and �b��, 500 nm ��c� and �d��, and 300 nm ��e� and �f���. In each graph, the blue line represents the measured
transmission signal through the taper. The black lines represent the calculated 1− �bm

�1,2��, where �bm
�1,2�� are the normalized expansion

coefficients of the scattered field of the first �solid line� and second �dashed-dotted line� disks. The insets show the images created by the
infrared scattered light from both disks �the left inset in each graph corresponds to the left resonance, the right inset to the right resonance�.
The locations of the disks are marked by the green circles and the corresponding numbers. The tapered fiber is highlighted by a straight green
line �in the upper graphs ��a�, �c�, and �e�� the first disk is excited; in the lower graphs ��b�, �d�, and �f�� the second disk is excited�.
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and the linear model shows very good agreement with the
experimental data. The splitting is found to increase from 0.4
nm �1000 nm gap� to approximately 1 nm �300 nm gap�. In
accordance with theoretical predictions, the measured data
show that the difference between amplitudes of the peaks in
two resonators decreases with increasing coupling. The rela-
tive strength of resonances of calculated expansion coeffi-
cients for the first and second resonators manifests itself in
distribution of the field intensity between the disks, as shown
in the insets of Fig. 4. The upper inset corresponds to the
short-wavelength resonance, whereas the lower inset repre-
sents the long-wavelength one. The green circles mark the
rim of the disks, which are numbered as the first and second
resonators. In Figs. 4�a� and 4�c�, one can clearly see that at
the shorter-wavelength resonance, the field intensity is stron-
ger in the second resonator, while at the longer-wavelength
resonance the situation is reversed. In case of excitation of
the second disk instead of the first one �Figs. 4�b� and 4�d��,
the distribution of intensities does not change. At the same
time, the relative peak amplitudes are reversed. This asym-
metry is in agreement with the theoretical calculations and is
caused by slightly different resonator diameters. For a gap
size of 300 nm �Figs. 4�e� and 4�f��, the measured IR signal
from both of the disks could not be reproduced well by the
calculated scattered field expansion coefficients. One reason
for this might be the reduced difference in the coefficient
strength due to the stronger coupling, which can be also seen
in the measured spectra �blue curves�. Another influence
could arise from deposited dust and other particles at the
surface of the disks, which acts as additional scattering cen-
ters and leads to a strong scattering signal randomly distrib-
uted along the rim of the disks �this fact was verified by
SEM measurements after the experiment�.

B. Three coupled disks

The theoretical model for the scattered field expansion
coefficients �Eq. �6�� was also applied for a linear chain of
three coupled disks. For comparison with the experimental
data, the radius of the middle disk was used as a parameter,
which is consistent with the characteristics of the fabrication
process. Additionally, an imaginary part of refractive index
of 10−5 was found to give the best fit for the bandwidth of the
experimental data. In comparison to the two-disk case, the

spectral positions of the resonances did not change signifi-
cantly and, therefore, the refractive index and thickness of
the disks as well as the mode number were taken from the
two-disk calculations. In Fig. 5, the influence of radius mis-
match of the second disk �disk in the middle of the structure�
is plotted for a gap size of 300 nm �both gaps equal�. Corre-
sponding to the number of disks and the symmetry of the
system, one can see a splitting of the resonances into three
modes. Depending on the excited mode in the triplet, the
intensity distribution over the disks changes. For the shortest
and longest wavelengths of the splitted resonance, the field is
located in all disks with the intensity maximum in the middle
one �if the size of second resonator differs only weakly from
the two others�. For the resonance in the middle, the field is
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FIG. 5. �Color online� Calculated resonance splitting in the expansion coefficient for the scattered field of first �a�, second �b�, and third
�c� disks of a linear chain of three coupled disks for varying radius of the second disk �single disk resonance at 1.553 �m with m=103�. The
white solid line in each figure shows the real part of the coefficient along the dashed white line for equal radii.
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FIG. 6. �Color online� Measured spectral response of a linear
chain of three coupled disks �blue line� shows splitting in three
resonance dips. Good agreement can be observed for the calculated
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middle disk; and black dotted line: third disk�. For the correspond-
ing resonances �A,B,C�, the measured light distribution along the
chain is plotted in the lower three figures. The relative strength of
the calculated expansion coefficients �bm

�1,2,3�� of each disk agrees
well with the measurement �especially for the middle �b� and long-
wavelength �c� resonance�.
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only located in the first and third disks, whereas it is zero in
the second one. Considering the real part of the calculated
expansion coefficients, this state is an antisymmetric or odd
mode of the structure with the fields having a phase shift
� /2, whereas the other resonances represent symmetric or
even modes with the field in all resonators in phase or � out
of phase from one to another. This symmetry remains also
for larger mismatches of disk radii ��15 nm� and the fitting
of the spectral position and relative distance of the three
resonances could be used as a very accurate measure of the
radius mismatch. The measured and calculated resonance
splitting accompanied by intensity distribution is shown in
Fig. 6 for the sample with a gap size of 500 nm. One can
clearly see splitting into the three expected resonances. The
simulation, which was done for a slightly smaller gap size of
400 nm �the real gap size is always a bit smaller than the
design value due to nonvertical edges of the disks� and a
radius of 20.0013 �m for the second disk, shows good
agreement with the measured data. One has to mention that
although the radius mismatch is very small in comparison to
the deviation of gap size, it is responsible for the asymmetric
splitting of resonances observed in the experiments. Also the
corresponding light distribution along the chain of the disks
is in a reasonably good qualitative agreement with the mea-
sured scattered light signal. Although the measured signal for
the first resonance �A� is weak �only small dip in spectrum�,
the light is more or less equally distributed over all three
disks. For the second resonance �B�, the experimental data
show signal only in the first and third disks, which corre-

sponds to the calculated scattered field expansion coefficients
�remember that in the spectral plots, not the expansion coef-
ficients bm, but 1− �bm� are shown�. For the third resonance
�C�, the light is again distributed over all disks with a stron-
ger signal in the middle disk, which is also the case for the
calculated data �stronger dip for the second disk signal at
resonance C�.

In conclusion, we have measured the resonance splitting
and light distribution in two and three coupled disk resona-
tors, depending on the gap size between adjacent disks. As
expected, a splitting in two or three resonances has been
observed for distances between the disks of less than 1 �m.
The light distribution along the coupled disk structure de-
pends on the excited resonance, which is in correspondence
with the formation of normal modes of the coupled system.
Comparison with the developed theoretical model shows
good agreement with respect to the spectral distance of the
split resonances and the light intensity distribution along the
resonators. The structural parameters used for the calcula-
tions indicate a radius mismatch of the coupled disks of
about 10 nm. This information can be used for very accurate
measurement of the fabrication tolerances.
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