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We calculate the rate of two-photon absorption for frequency-entangled photons in a tapered optical fiber
whose diameter is comparable to the wavelength of the light. The confinement of the electric field in the
transverse direction increases the intensity associated with a single photon, while the two-photon absorption
rate is further enhanced by the fact that the sum of the frequencies of the two photons is on resonance with the
upper atomic state, even though each photon has a relatively broad linewidth. As a result, the photons are
effectively confined in all three dimensions and the two-photon absorption rate for frequency-entangled pho-
tons in a tapered fiber was found to be comparable to that for unentangled photons in a microcavity with a
small mode volume.
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I. INTRODUCTION

In addition to its fundamental interest, two-photon absorp-
tion has recently been shown to have potential applications
in quantum information processing and classical communi-
cations. Quantum logic operations can be performed using
the quantum Zeno effect produced by strong two-photon ab-
sorption �1,2�, while the resolution of images can be en-
hanced using two-photon absorption in conjunction with
quantum imaging techniques �3�. Two-photon absorption can
also be used to implement a source of single photons �4� and
it was recently shown that all-optical switching of classical
beams of light can be performed at very low power levels
using two-photon absorption �5�. All of these potential appli-
cations would benefit from new techniques for enhancing the
rate of two-photon absorption while minimizing single-
photon losses.

In an earlier paper, we showed that two-photon absorption
can be enhanced in tapered optical fibers with diameters less
than the free-space wavelength of the photons �6�. A substan-
tial fraction of the energy propagates outside of such a ta-
pered fiber, which allows the photons to interact with an
atomic vapor. The reduction in the effective mode volume
compresses the photons into a smaller region of space and
increases the electric field strength associated with a single
photon. Since the rate of two-photon absorption depends on
the fourth power of the electric field, this enhances the rate of
two-photon absorption compared to the single-photon losses.

Here, we generalize this situation to include photons that
are entangled in energy and time. Although both photons
have a relatively wide bandwidth, the sum of their frequen-
cies is still well defined, which allows two-photon absorption
to be on resonance with the upper excited level of the atoms.
Pairs of energy-time entangled photons are emitted at very
nearly the same time and will be detected at nearly the same
location if they are propagating in the same single-mode fi-
ber. This allows both photons to simultaneously interact with
a given atom, which enhances the rate of two-photon absorp-
tion �7–13�. This enhancement is roughly equivalent to what
would occur if the photons were confined to a small region in
the direction of propagation, as will be discussed in more
detail below. When the entangled photons are also propagat-

ing in a tapered fiber, their mode volume is effectively re-
duced in all three dimensions and the rate of two-photon
absorption is greatly increased.

Section II describes the system of interest and the corre-
sponding Hamiltonian. The rate of two-photon absorption
�TPA� is calculated in Sec. III using density-operator tech-
niques and the rate of two-photon absorption is optimized as
a function of the bandwidth and detuning of the photons in
Sec. IV. For comparison purposes, the rate of two-photon
absorption in toroidal microcavities with small mode vol-
umes is calculated in Sec. V for the case of monochromatic
�unentangled� photons and these results are found to be com-
parable to that obtained for entangled photons in a tapered
fiber. A summary and conclusions are presented in Sec. VI
and further details of the calculations are described in the
Appendix.

II. FREQUENCY-ENTANGLED PHOTONS
IN TAPERED FIBERS

The tapered fiber system of interest here is similar to the
one studied in Ref. �6�, except that here we consider the
situation in which two incident photons are frequency-
entangled and traveling in the same direction. As illustrated
in Fig. 1, a tapered optical fiber with diameter D and length
L is surrounded by rubidium vapor with density �A. A single
transverse mode will be excited if the diameter is sufficiently
small compared to the wavelength of the light �14�. This
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FIG. 1. A tapered optical fiber with diameter D in a vacuum
chamber surrounded by rubidium vapor. Two frequency-entangled
photons are assumed to be propagating in the z direction. The eva-
nescent fields of the photons extend into the atomic vapor and allow
strong two-photon absorption to occur.
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classical mode can be quantized in the usual way even
though it includes both traveling and evanescent components
�15�. The electric field operator can be written in cylindrical
coordinates in the form

Ê�r,�,z� = Ê�+��r,�,z� + Ê�−��r,�,z�

= �
�

N��Erer + E�e� + Ezez�ei����zâ��� + H.c.

�1�

Here, Er, E�, and Ez are the classical components of the
electric field E�r ,� ,z�= �Erer+E�e�+Ezez�ei����z as derived
by Tong et al. �14�. The operator â��� annihilates a photon
with angular frequency � in the fiber, N� is a suitable nor-
malization factor, and H.c. denotes the Hermitian conjugate
term. The propagation constant ���� is a function of the
angular frequency � and can be determined by solving the
appropriate eigenvalue equation �6,14�.

Suitable pairs of frequency-entangled photons can be pro-
duced by spontaneous parametric down conversion �SPDC�
using a ��2� nonlinear crystal, for example. �This requires a
pump laser with a very narrow bandwidth that is locked to
the appropriate three-level transition �16��. As usual, the out-
put of the SPDC crystal will consist of two fields with rela-
tively large sidebands, commonly referred to as the signal
and idler. Their angular frequencies �s and �i are anticorre-
lated and the sum of their frequencies is equal to that of the
pump laser. As a result, they can be written as �s=�s0+� and
�i=�i0−�, respectively, where �s0 and �i0 are their mean
frequencies and � is the offset of the two frequencies from
their means. For simplicity, the intensities of the two fields
are assumed to be equal.

The incident photons are coupled to the three-level ru-
bidium atoms via their evanescent fields that extend outside
of the fiber. The relevant rubidium atomic states are illus-
trated in Fig. 2. The atomic transition frequencies from the
ground state �g� to the intermediate excited state �i� and from
state �i� to the second excited state �h� will be denoted as �1
and �2, respectively. These transitions are associated with
electric-dipole moments d1 and d2, while the transition �g�
→ �h� is forbidden in the dipole approximation. The decay
rates from the two excited states will be denoted by �1 and
�2, respectively. Here, we assume that the sum of the fre-

quencies of the down-converted pair is equal to the sum of
the atomic transition frequencies, e.g., �s+�i=�1+�2.

We will first calculate the TPA rate produced by a single
atom at a specific location outside of the fiber core and then
later integrate over all possible positions of the atoms, as-
suming a uniform distribution of atoms at density �A. The
system of interest will thus consist of a single atom and two
incident entangled photons. We assume that all of the atoms
are initially in the ground state �g� �17� and that the entangled
frequencies of the two photons are described by a Gaussian
distribution. �This assumption is reasonable in many down-
conversion experiments because of the use of narrow-band
frequency filters.� Thus the initial state of the system can be
taken to be

�	0� = N��
�

â†��s0 + ��â†��i0 − ��e−�2/�2
2��0��g� . �2�

Here, â†��s0+�� and â†��i0−�� are the creation operators for
the signal and idler modes with frequencies �s0+� and �i0
−�, respectively, 
 is the half-width of the Gaussian distri-
bution, and N� is a normalization constant to be determined.

For simplicity, we consider the case in which the detuning
in the intermediate state �i� is much less for the signal photon
than it is for the idler photon or ��s−�1�� ��i−�1�. With that
assumption, the probability of a two-photon absorption event
in which the idler photon is absorbed first followed by the
signal photon can be neglected compared to the absorption of
the signal photon followed by the idler photon �17�.

In the interaction picture and using the dipole and

rotating-wave approximations, the Hamiltonian V̂ for the in-
teraction between a single atom and the entangled photons
can be written as a superposition of terms with specific val-
ues of � corresponding to �s=�s0+� and �i=�i0−�,

V̂ = �
�

V̂�,

V̂� = m1,�
� 
̂gi

† â��s�e−i�t + m2,�
� 
̂ih

† â��i�ei�t + H.c. �3�

Here, 
̂gi produces a transition from �i� to �g�, and 
̂ih pro-
duces a transition from �h� to �i�. The atomic matrix elements
are m1,�

� = �−d1 ·Es�r��� and m2,�
� = �−d2 ·Ei�r���, where d1 and

d2 are the corresponding dipole moments. Es�r�� and Ei�r�� are
the classical electric fields with propagation constants ����
in the tapered fiber as in Eq. �1� �14�. The detuning in the
intermediate state is defined as �=�s−�1.

III. EQUATIONS OF MOTION AND ANALYSIS METHOD

To calculate the TPA rate, we choose a convenient set of
basis states

�1�� = �0� � �h� ,

�2�� = â†��i0 − ���0� � �i� ,

�3�� = â†��s0 + ��â†��i0 − ���0� � �g� . �4�

The time evolution of the density matrix �̂ is given �6� by

FIG. 2. Energy level diagram for the atomic system under con-
sideration. The incident field consists of two entangled photons
propagating in the same direction with their angular frequencies
centered at �s0 and �i0, respectively. The sum of their frequencies
is equal to the sum �1+�2 of the atomic transition frequencies from
the ground state �g� to the highest level �h� through intermediate
state �i�.
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� �̂

�t
=

− i


�V̂, �̂� −

1

2
	�̂, �̂
 . �5�

The matrix elements of V̂ and �̂ will be denoted by

�n��V̂�m���=Vn�,m�� and �n���̂�m���=�n�,m��. In component
form, this equation is equivalent to

��i�,j��

�t
=

− i


�
m��

��Vi�,m���m��,j�� − �i�,m��Vm��,j���

−
1

2
��i�,m���m��,j�� + �i�,m���m��,j����

=
− i


�
m

�Vi�,m��m�,j�� − �i�,m��Vm��,j���

−
1

2
��i�i�,j�� + �i�,j��� j� . �6�

Here, we have used the fact that Vn�,m��=0 unless �=�� and
�i�,m��=�mi�im����.

We assume that the effects of any dephasing collisions are
negligible and that the system is initially in a pure state �	0�.
Thus, the matrix elements of the initial density matrix can be
written as

�i�,j���0� = ci��0�cj��
� �0� , �7�

where ci� represents the probability amplitude of each of the
basis states �i�� in the initial pure state. It was shown in the
Appendix of Ref. �6� that the solution to Eq. �6� can be
written in a factored form at all subsequent times

�i�,j���t� = �i��t�� j��
� �t� , �8�

where the �i��t� are complex coefficients given by the solu-
tion to the set of equations

d�i��t�
dt

=
1

i
�

j

V̂i�,j�� j��t� −
1

2
�i�i��t� �i = 1,3� . �9�

We will assume that the interaction is sufficiently weak that
perturbation techniques can be used. In that case and to low-
est order, it is apparent from Eqs. �3� and �9� that the total
probability amplitude A1 that the atom will absorb two pho-
tons and make a transition to the second excited state will
correspond to a coherent superposition of the probability am-
plitudes corresponding to different values of � in Eq. �3�.
Thus, it will be convenient to first solve for the probability
amplitude �1 that the atom will be in the state �h� after the
absorption of two photons with well-defined frequencies cor-
responding to a specific value of � with �i=�02−� and �s
=�01+�. Subsequently, we will integrate the result over a
Gaussian distribution of all possible two-photon frequencies
that sum to the energy of the atomic transition �g�→ �h�, as
described in Eq. �3�.

If the interaction is so weak that the initial state is not
depleted significantly, the population of the ground state can
be taken to be unity. In addition, the intermediate state will
not be significantly depleted by transitions to the upper level.
In that case, the components of Eq. �9� can be reduced to

�̇1�t� =
1

i
m2

�ei�t�2�t� −
1

2
�2�1�t� ,

�̇2�t� =
1

i
m1

�e−i�t�3�t� −
1

2
�1�2�t� ,

�3�t�  1, �10�

with the initial conditions �1�0�=�2�0�=0. The relevant
atomic matrix elements are given by

m1
� = �− d1 · Es�r��� = − ei���s�zd1�Es�r,��� ,

m2
� = �− d2 · Ei�r��� = − ei���i�zd2�Ei�r,��� . �11�

Here, Es�r�� is the classical electric field mode with angular
frequency �s and unit polarization vector �s and Ei�r�� is the
classical electric field mode with angular frequency �i and
unit polarization vector �i. The dipole moments d1 and d2
represent an average over random atomic orientations and
the detuning is now �=�s−�1.

Using the methods of Ref. �6�, the probability amplitude
�1 that the atom will be in the state �h� in the steady-state
limit is

�1�r�� =
− 4iei����s�+���i��zd1d2�Es�r,����Ei�r,���

2�2� + i�1��2
. �12�

We now integrate this result using a Gaussian distribution for
� as in Eq. �2� in order to get the total probability amplitude
A1 that the atom will be in the second excited state

�1�r�� = − 4id1d2�
�

N�

�e−�2/�2
2�e
i����s0+��+���i0−���z�Es�r,����Ei�r,���

2�2� + 2� + i�1��2
.

�13�

Here, �=�s0−�1 is the mean detuning in the intermediate
state. For sufficiently small bandwidths of the down-
converted photons, dispersion can be neglected �18� and the
propagation constants can then be expanded to lowest order
in � as

���s0 + �� � ���s0� +
d�

d�
� ,

���i0 − �� � ���i0� −
d�

d�
� . �14�

Inserting Eq. �14� into Eq. �13�, we have

A1�r�� = − 4iei����s0�+���i0��zd1d2

��
�

N�e−�2/�2
2� �Es�r,����Ei�r,���
2�2� + 2� + i�1��2

. �15�

It can be seen that the frequency-entangled nature of the
photon pairs allows all of the frequency components to add
coherently and on resonance with the upper transition
�7–13�. This would not be possible for two classical pulses of
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light and this enhances the two-photon absorption rate be-
yond the corresponding rate.

Equation �15� was obtained using periodic boundary con-
ditions. It is shown in the Appendix that the total probability
amplitude A1 in the continuum limit becomes

A1�r�� = − iei����s0�+���i0��z−�2� + i�1�2/�8
2�d1d2

��2��L


u
�Es0�r,����Ei0�r,���

Erfi�2� + i�1

2�2

� − i

2�2
.

�16�

Here, u=d� /d� is the group velocity of the wave packets,
Es0 is the classical electric field mode with angular frequency
�s0, Ei0 is the classical electric field mode with angular fre-
quency �i0, and Erfi is the imaginary error function. This
result assumes that the bandwidth of the down-converted
photons is sufficiently small that the classical field modes do
not vary significantly over their frequency range. The two-
photon absorption rate in the steady-state limit is then deter-
mined by the decay rate out of state �h� and is given by

R2�r�� = �A1�2�2 =
2��L


u
e−�4�2−�1

2�/�4
2��d1d2�2

��Es0�r,��Ei0�r,���2
�Erfi�2� + i�1

2�2

� − i�2

4�2
.

�17�

These results can be integrated over all possible locations of
an atom outside of the taper for a given density �A and using
the known form of the field modes �14�. This results in a
total TPA rate of

R2 =
2��L


u
e−�4�2−�1

2�/�4
2��d1d2�2

�Erfi�2� + i�1

2�2

� − i�2

4�2

��
VQ�

d3r��Es0�r,��Ei0�r,���2�A, �18�

where VQ� denotes an integral over all space outside of the
core. The integral over the field modes was performed nu-
merically using MATHEMATICA.

IV. RESULTS

Typical two-photon absorption rates for monochromatic
�unentangled� photons in a tapered fiber were estimated in
Ref. �6�. In order to compare to that result, we will consider
a tapered diameter of 350 nm with a length of 5 mm as
before. The central wavelength of the signal and idler pho-
tons will also be assumed to be the same as in Ref. �6�,
where both photons corresponded to a wavelength of 778 nm
�degenerate case�. We also consider the 5S1/2→5P3/2
→5D5/2 transition in rubidium with �=2.1 nm, d1,2=r1,2q,
with r1=0.223 nm and r2=0.0492 nm, �1=�2=109 s−1,

and �A=1012 /cm3, as before. The bandwidth of the down-
converted photons was assumed to correspond to a wave-
length spread of 
=1 nm, which is typical of many experi-
ments.

Under these conditions, the TPA rate for frequency-
entangled photons was calculated to be 1.45�106 s−1. For
comparison, the TPA rate for monochromatic photons was
2.7�104 s−1, which is 2 orders of magnitude smaller than
that for the entangled photons under the same conditions.

The enhancement of the TPA rate for frequency-entangled
photons is well known �7–13� and can be qualitatively un-
derstood as follows. In order to simplify the discussion, as-
sume that 
�� so that all the contributions from different
values of � will correspond to approximately the same de-
tuning. In that case, Erfi�z���−1/2ez2

/z. Thus, the total TPA
rate for entangled photons reduces to

R2 �
64L

u��
�d1d2�2 


4�4�2 + �1
2��2

��
VQ�

d3r��Es0�r,��Ei0�r,���2�A. �19�

Comparing Eq. �19� with the previous results for coherent
states at single-photon intensities �Eq. �16� in Ref. �6��, it can
be seen that the entanglement enhances the TPA rate by a
factor of L
 / �u���.

This enhancement factor can be further understood by
considering the coincidence rate Rc to detect the signal pho-
ton at a position r�1= �r1 ,�1 ,z1� and the idler photon at a
position r�2= �r2 ,�2 ,z2�. This coincidence rate is proportional
to

Rc = �	0�Ês
�−��r�1�Êi

�−��r�2�Êi
�+��r�2�Ês

�+��r�1��	0�

� �� d�N���s0+��N���i0−��NEs�r�1�Ei�r�2�e−�2/�2
2��2

.

�20�

Here, N���s01+��, N���i0−��, and N are the appropriate normal-
ization factors for the signal electric field, idler electric field,
and initial state, respectively. Considering the fact that the
electric fields and the normalization factors vary slowly over
the effective bandwidth of the Gaussian wave packet, the
integration is much more sensitive to the exponential phase,
that is,

Rc � �� d�ei���s0+��z1ei���i0−��z2e−�2/�2
2��2

� �� d�ei��z1−z2�/ue−�2/�2
2��2

= e−
2�z1 − z2�2/u2�� d�e−��/��2
� − i
�z1 − z2�/��2u��2�2

= 2�
2e−
2�z1 − z2�2/u2
, �21�

where u=d� /d� is the group velocity of the wave packet. It
can be seen that the typical longitudinal separation s between
two of the entangled photons is described by a Gaussian
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distribution with a half width s=u / ��2
�. This is equivalent
to confining the photons into a mode volume with length s
rather than L, which enhances the TPA rate by a factor of
roughly L /s=�2L
 /u. Aside from a factor of �2 /��1, this
is the same enhancement factor that was obtained by com-
paring the results for entangled and unentangled photons us-
ing Eq. �19�.

It should be noted that this enhancement is due to the
entanglement of many longitudinal modes contained within
the broad bandwidth of down-converted light. It has been
shown that a similar enhancement does not occur due to the
entanglement of transverse modes from a quasimonochro-
matic source �19�.

Larger TPA rates could be obtained, for example, by re-
ducing the average detuning � from the first atomic transi-
tion, as can be seen in Fig. 3�a�. This assumes that the de-
tuning is larger than the bandwidth 
, as illustrated in Fig.
4�a�, so that all of the frequency components of the signal
photon experience approximately the same detuning. On the
other hand, the bandwidth of the down-converted photons is

a crucial parameter for optimizing the TPA rate. It is desir-
able to have a large bandwidth so that both photons will
arrive at an atom at very nearly the same time, which also
enhances the TPA rate. But if the bandwidth is too wide,
there exist two-photon amplitudes that do not leverage the
small detuning from the intermediate state. In addition, as the
bandwidth is further increased, there will be signal photon
amplitudes that have the opposite detuning, as illustrated in
Fig. 4�b�. Two signal photon amplitudes with opposite detun-
ing will give contributions to the two-photon absorption am-
plitude that will tend to cancel out, since the TPA rate is
proportional to the inverse of the detuning. The dependence
of the two-photon absorption rate on the bandwidth for a
fixed detuning of 2.1 nm �or an angular frequency of 6.5
THz� is shown in Fig. 3�b�, where it can be seen that the TPA
rate first increases for increasing bandwidth but then reaches
a maximum at a bandwidth of approximately 
=1.71 nm
�an angular frequency of 5.3 THz�.

V. COMPARISON TO TORIODAL MICROCAVITIES

Toroid microcavities with small mode volumes have been
extensively investigated and are expected to have a number
of important applications �20–22�. Figure 5 shows a model
of a microtoroid with principle diameter D and minor diam-
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FIG. 3. �a� Dependence of the two-photon absorption rate R2 on
the detuning � of the central frequency in the intermediate atomic
state, where the bandwidth 
 is set to 1 nm �or an angular frequency
of 3.11 THz�. �b� The dependence of two-photon absorption rate on
the bandwidth 
, where the detuning � is set to 2.1 nm �or an
angular frequency of 6.54 THz�.

FIG. 4. �Color online� Dependence of the TPA rate on the band-
width 
 of the photons. �a� When the bandwidth is relatively small
compared to the average detuning �, most of the frequency com-
ponents of the signal photon have a detuning with the same sign and
contribute constructively to the TPA rate. �b� When 
��, some
frequency amplitudes correspond to detunings � with the opposite
sign and their contributions to the probability amplitude for TPA
tend to cancel out, since the probability amplitude is inversely pro-
portional to the detuning.
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eter d. In comparison to a tapered fiber, the electric field in
the microtoroid is further confined in the longitudinal direc-
tion as well as the transverse confinement of a tapered fiber,
which leads to a very small mode volume for a single pho-
ton. In addition, these devices can have very low intracavity
losses as demonstrated by reported quality factors greater
than 108 �21�. The small mode volume and the ultrahigh
quality factor make them potential candidates for quantum
computing applications. For example, a potential implemen-
tation of a Zeno quantum logic gate using resonant cavities
of this kind is discussed in Ref. �2�, where two tapered fibers
are used to couple single photons to two microtoroids.

It is interesting to compare the enhancement in the TPA
rate that can be achieved using the small mode volume of a
toroidal microcavity and monochromatic �unentangled� pho-
tons to that obtained using frequency-entangled photon pairs

in a tapered fiber. The argument presented in the previous
section suggests that the TPA rates should be comparable if
the typical separation s between the frequency-entangled
photons is comparable to the circumference of the microtor-
oid.

The TPA rate in a microtoroid was calculated using meth-
ods that are similar to those used in Ref. �6� to calculate the
TPA rate in a tapered fiber. A perturbation solution to the
electric field of a microtoroid is given in �22�. We considered
the case in which the ratio d /R�1, which simplifies the
calculation of the field modes. The circumference of the tor-
oid was chosen to be equal to s for comparison to the en-
tangled photon case �D=s /��19 �m�. The minor diameter
d was chosen to be 350 nm, which is the same diameter
assumed for the tapered fibers; most toroidal microcavities
have larger values of d, but this also allows direct compari-
son to the tapered fiber results. We assumed two counter-
propagating monochromatic photons with the same wave-
length �778 nm�, which corresponds once again to the
Rb 5S1/2→5P3/2→5D5/2 transition and a relatively large de-
tuning �=6.5 THz. Under these conditions, the TPA rate in
the microtoroid was found to be �0.6�106 s−1, which is
comparable to that obtained for a tapered fiber using
frequency-entangled photons. Table I compares the rate of
TPA for the physical systems that we have considered, as-
suming the same transverse dimensions.

VI. SUMMARY AND CONCLUSIONS

We have calculated the expected rate of two-photon ab-
sorption for frequency-entangled photons in a tapered optical
fiber whose diameter is comparable to the wavelength of the
light. The confinement of the electric field in the transverse
direction increases the intensity associated with a single pho-
ton and increases the TPA absorption rate. The TPA rate is
further enhanced by the fact that the sum of the frequencies
of the two photons is on resonance with the upper atomic
state, even though each photon has a relatively broad line-
width �7–13�. This nonclassical enhancement of the TPA rate
can be qualitatively understood as being equivalent to con-
fining the photons in the longitudinal direction to a typical
separation s, which is inversely proportional to their band-
width 
. As a result, the photons are effectively confined in
all three dimensions and the TPA rate for frequency-
entangled photons in a tapered fiber was found to be compa-
rable to that in a microcavity.

(a)(a)

(b)

D

d

(b)

FIG. 5. �a� A model of a toroidal microcavity fabricated on top
of a silicon pedestal. �b� A cut-away drawing of the microtoroid
illustrating the principle diameter D and the minor diameter d.

TABLE I. Comparison of the TPA rate in several different systems to the same transverse dimensions.
These results correspond to photon pairs with degenerate frequencies, while much higher rates can be
obtained for smaller detunings. The TPA rate for monochromatic �unentangled� photons in a tapered fiber
corresponds to an intensity giving an average of one photon in length L �5 mm�.

Physical system Features
TPA rate

�s−1�

Tapered fiber and monochromatic photons Small mode area 2.7�104

Tapered fiber and frequency-entangled photons Small mode area and nonclassical enhancement 1.45�106

Microtoroid and monochromatic photons
Small model volume �all three dimensions� and

high quality factors 0.6�106
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The rate of single-photon absorption must be much less
than the TPA rate for quantum-computing applications. The
TPA rates in a tapered fiber are not sufficiently high com-
pared to the single-photon losses to be useful for quantum
computing. It may be possible to reduce the single-photon
loss using electromagnetically induced transparency �EIT�
�23�, but frequency-entangled photons are not suitable for
general-purpose quantum logic operations that must remain
valid for arbitrary input qubit states. Nevertheless, these re-
sults provide additional insight into two-photon absorption
that may eventually be useful in implementing classical logic
and memory operations �5� as well as quantum logic devices
�1,2�.
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APPENDIX

In the main text, we evaluated the total probability ampli-
tude A1 for TPA absorption �Eq. �15�� using periodic bound-
ary conditions. The main purpose of this appendix is to con-
vert to the limit of continuous wavelengths and to perform
the necessary integrals to derive Eq. �16�.

The normalization factor N� is determined by the require-
ment that

1 = �	0�	0� = �N��2�Gatom��0� �
n,n�=−�

�

â��i0 − �n��â��s0 + �n��

�e−�
n�
2 /�2
2�â+��s0 + �n�â+��i0 − �n�e−�n

2/�2
2��0��Gatom�

= �N��2�
n

e−�n
2/
2

. �A1�

To evaluate this probability amplitude, the summation over
the angular frequency is converted into an integral in the
usual way

�
n

→
L

2�u
�

−�

�

d� . �A2�

Here, u=d� /d� is the group velocity of the photon wave
packet.

Equation �A1� then becomes

1 = �N��2�
n

e−�n
2/
2 → 1

= �N�2
L

2�u
�

−�

�

e−�2/
2
d� = �N�2

L

2�u
��
 . �A3�

As a result, the normalization factors are given by N�→N
=�2��u / �L
�.

This gives the total probability amplitude A1 in the con-
tinuum limit as

A1�r�� = − 4iei����s0�+���i0��zd1d2�2��u

L


L

2�u

��
−�

�

d�
�Es�r,����Ei�r,���e−�2/�2
2�

2�2� + 2� + i�1��2
�

− iei����s0�+���i0��zd1d2� 2L

�3/2
u
�Es0�r,���

��Ei0�r,����
−�

�

d�
e−�2/�2
2�

2�� + � + i�1/2��2

= − iei����s0�+���i0��z−�2� + i�1�2/�8
2�d1d2

��2��L


u
�Es0�r,����Ei0�r,���

Erfi�2� + i�1

2�2

� − i

2�2
,

�A4�

where we have used the fact that the electric field varies
slowly over the effective bandwidth of the Gaussian wave
packet so that Es�r ,���Es0�r ,�� and Ei�r ,���Ei0�r ,��.
The function Erfi�z� corresponds to the imaginary error func-
tion erf�iz� / i.
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