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With photon-number resolving detectors, we show compression of interference fringes with increasing
photon numbers for a Fabry-Perot interferometer. This feature provides a higher precision in determining the
position of the interference maxima compared to a classical detection strategy. We also theoretically show
supersensitivity if N-photon states are sent into the interferometer and a photon-number resolving measurement
is performed.
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I. INTRODUCTION

Interferometers with coherent light are one of the building
blocks for high-precision metrology. Recent progress in the
field of photon-number resolving detectors has made it pos-
sible to explicitly measure the photon statistics of different
quantum-light sources in interferometric schemes �1–3�. One
such detector �4�, the transition edge sensor �TES�, is a su-
perconducting microbolometer that has demonstrated very
high detection efficiency �95% at �=1550 nm� and high-
photon number resolution �2,5�.

Expanding the average intensity of an interference pattern
into its photon-number resolved components provides a bet-
ter understanding of the interplay of sensitivity and reso-
lution of an interferometer. Using a TES, we are now able to
observe photon-number resolved interference fringes and
learn how they differ from a classical photon-averaged sig-
nal. Although it is also possible to obtain the photon-number
resolved interference fringes with multiplexed single photon
counter modules �6�, it is advantageous to use a photon-
number resolving detector such as a TES which provides a
high-detection efficiency. The TES offers the advantage of
high fidelity detection �high probability of detecting the cor-
rect number of incident photons�. On the other hand, photon-
number resolving configurations that rely on multiplexed
single-photon counters, which although have made excep-
tional progress in recent years, still suffer from limited
photon-number resolving fidelity �7,8�.

For stand-off applications, such as a laser ranging device,
it is typical to use coherent states, since they are more robust
under loss than nonclassical states of light. A known strategy
to improve the sensitivity of an interferometer is to squeeze
the vacuum of the unused port of an interferometer, which
was first demonstrated by Caves �9�. Another promising
strategy for quantum sensors is to maintain a coherent laser
light source, but replace the classical intensity measurement
with a photon-number resolving detector, or employ other

more complicated entangling measurements to improve the
performance of the quantum sensor further �10�. In addition,
the performance of different nonclassical input states, to-
gether with a photon-number resolving detection scheme,
may be investigated. Under some conditions, the resolution
and, in particular cases, the sensitivity of these quantum sen-
sors may exceed the performance of “classical” light sources
and detection schemes. We emphasize here and highlight
later that while resolution and sensitivity are related, they are
not identical. For an overview of quantum metrology appli-
cations, see Ref. �11�.

Many authors have proposed resolution and sensitivity
enhancements in different types of interferometric schemes,
where a large variety of Sagnac, Michelson, Mach-Zehnder,
and Fabry-Perot interferometers �FPI� are considered
�12–20�. A notable example is the laser interferometer gravi-
tational wave observatory �LIGO� that consists of a Michel-
son interferometer with Fabry-Perot cavities in each of the
two arms to boost the overall sensitivity of the device �21�.

We first theoretically investigate the photon-number re-
solved interference fringes of a Fabry-Perot interferometer as
we scan its phase. We then experimentally implement this
with a TES. Similarly, Khoury et al. have reported the use of
a visible light photon counter to monitor the output of a
Mach-Zehnder interferometer �18�. We compare resolution
and sensitivity of the photon-number resolved interference
pattern with the classical case where a coherent state is sent
through a FPI and only the average intensity is measured. We
also theoretically investigate the performance of resolution
and sensitivity for a single-mode photon-number state �n� in
combination with a photon-number resolving detection of the
interference fringes.

II. QUANTIZED DESCRIPTION OF A FABRY-PEROT
INTERFEROMETER

We start our investigation by deriving a quantum me-
chanical description for the Fabry-Perot interferometer. Lou-
don first considered a quantum theory of the FPI for high-
resolution length measurements �22�. The two incoming and*wildfeuer@phys.lsu.edu
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two outgoing modes of the FPI can be quantized as displayed
in Fig. 1.

The modes described in Fig. 1 can be transformed by an
effective beam-splitter �BS� transformation, as is displayed
in Fig. 2.

For a FPI with two identical highly reflecting mirrors, the
transmission and reflectance functions T and R are given by
�22�

T�r,�� =
�1 − �r�2�e−2i�1−�r�2

�r�2e−2i�1−�r�2e2i� − 1
, �1�

R�r,�� =
�r�e−i�1−�r�2�e−i� − ei�e−2i�1−�r�2�

�r�2e−2i�1−�r�2e2i� − 1
, �2�

where r denotes the complex reflectivity of the mirrors, and
�=kL=2�L /� denotes a phase determined by the wave
number k of the incoming light, and the distance L between
the two mirrors �22�.

As a classical baseline, we consider a single-mode coher-
ent state given by �23�

��� = e−���2/2�
k=0

�
�k

�k!
�k� �3�

�where �k� is a k-photon Fock state and � is the dimension-
less electric field amplitude of the coherent state with the
mean photon number n̄= ���2�, which describes very well a
single-mode laser above threshold. This state is incident on
the FPI in mode â, and vacuum �0� goes in mode â�. The
two-mode input state ���â�0�â�= �� ,0�ââ� is then transformed

with the BS transformation in Fig. 2, from which we obtain
â†=Tâu

†+Râd
†, where the subscripts u and d stand for up and

down, respectively. Note that T and R satisfy the conditions
�T�2+ �R�2=1 as well as TR�+RT�=0.

We transform the incident coherent state �� ,0�â,â� by the
effective BS transformation and obtain the output of the FPI.
An ideal k-photon detection is described by the projector

Ĉ= �k�	k�. An approach including detection efficiencies is
presented in Ref. �24�. Applying this on mode âu, we obtain
the photon-number resolved interference fringes, which leads
to the expression for the probability of detecting k photons

pk
coh = Tr�Ĉ�̂coh� = e−n̄�

j=k

�
n̄j

k ! �j − k�!
�T�2k�1 − �T�2� j−k, �4�

where �̂coh is the reduced density matrix for the coherent
state in mode âu. This result is displayed in Fig. 3�b� for a
mean photon number of four �n̄=4� and k=1, ... ,4 detected
photons, which shows pk

coh as a function of L /� �or � /2��.
The structure of the transmission functions may be under-

stood from interpreting the terms in Eq. �4�. Each term in the
sum represents the probability that k photons are transmitted
through the FPI, multiplied by the probability that j−k pho-
tons are reflected off the FPI. The transmission probabilities
�T�2k have a maximum where the reflection probability
�1− �T�2� j−k has its minimum. The multiplication of both
probabilities results in the additional minimum in the trans-
mission probabilities for k� n̄.

We can also calculate the response of a non-photon-
number resolving detector by calculating the expectation
value

pcoh = 	âu
†âu�coh = �

k=1

�

kpk
coh = n̄�T�2, �5�

which is proportional to the mean number of photons inci-
dent on the detector. We refer to this result as the “classical”
signal that is usually associated with the output of a FPI.

For a nonclassical input we consider a single-mode Fock
state �n� in mode â incident on the FPI, and the vacuum state
�0� in mode â�. The input state �n�â�0�â�= �n ,0�â,â� is then
transformed to

�n,0�â,â� =
�â†�n

�n!
�0,0�â,â� →

�Tâu
† + Râd

†�n

�n!
�0,0�âu,âd

=
1

�n!
�
�=0

n 
n

�
�T�Rn−��� ! �n − ��!��,n − ��âu,âd

.

�6�

Suppose we also perform a photon-number resolving mea-
surement on the transmitted photons. The result of this mea-
surement is given by

pk
F = Tr�Ĉ�̂F� =

n!

k ! �n − k�!
�T�2k�1 − �T�2�n−k, �7�

where �̂F is the reduced density matrix for the Fock state in
mode âu and the superscript F denotes Fock state. Note that
the right-hand side of Eq. �7� is a binomial distribution with

FIG. 1. �Color online� Fabry-Perot cavity with complex ampli-
tudes R and T for reflected and transmitted modes, respectively, and
incident intensity I. Each mode can be assigned a mode operator
marked by the hat to quantize the respective mode, where the sub-
scripts u and d stand for up and down. We assume, for simplicity,
that both mirrors have identical complex reflection and transmission
coefficients denoted with r and t.

FIG. 2. �Color online� Effective beam-splitter for the Fabry-
Perot cavity with complex amplitudes R and T for reflected and
transmitted modes, respectively, which satisfy the conditions
�T�2+ �R�2=1 as well as TR�+RT�=0.
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the property �k=0
n pk

F=1. The detection probabilities pk
F in Eq.

�7� are displayed in Fig. 3�b� �dashed lines� as a function of
L /� for a four-photon state and a photon-number detection
for k=1, . . . ,4. The mean photon counts at the output of the
FPI are obtained from the expectation value

	âu
†âu�F = �

k=1

n

kpk
F = n�T�2. �8�

The result of Eq. �8� is the same as in the classical case �Eq.
�5�� above, when we identify n̄=n. However, the photon-
number resolving measurements in Eq. �7� show a different
behavior. In particular, we consider the case k=n, i.e., we
measure the same photon number in our detector as that of
the initial input state. In this case Eq. �7� reduces to

pn
F = �T�2n. �9�

It turns out that the transmission peaks become narrower as
the photon number n increases �Fig. 4�. We also observe a
similar interference pattern for the photon-number resolved
peaks for k�n for the same reason as described earlier for
coherent states. As in the coherent case, for k�n the trans-
mission probability �T�2k for k photons is multiplied by the
probability �1− �T�2�n−k which is the probability that the other
n−k photons are reflected. The multiplication of these two
probabilities, which have opposite functional forms, pro-
duces the dip in the middle of the maximum.

III. RESOLUTION AND SENSITIVITY FOR COHERENT
STATES

To quantify our results for different states and detection
operators, we first calculate the uncertainty in determining

the free spectral range �FSR� given by �L /�, which is the
dimensionless distance between two adjacent interference
peaks �Fig. 4�. From the experimental data we can determine
the variance of the transmission peaks. The uncertainty of the
absolute positions, or in other words, the standard deviation
of the mean �SDM� value of the individual peaks one and
two are given by 	L1

=	1 /�n1 and 	L2
=	2 /�n2, where n1

and n2 are the total number of counts in peak one and two.
For an explicit definition of the SDM 	Li

see Sec. V, which
contains our experimental results. The uncertainty in deter-
mining the FSR is then given by

FIG. 3. �Color online� �a� shows the classical normalized transmission function as a result of Eq. �5� displayed for a reflectivity of
�r�2=70% �LHS� and �r�2=90% �RHS� of the FPI-mirrors. Note that the transmission peaks become narrower and the maxima slightly shifted
to the left as the reflectivity increases. Also the minima go to zero for 90% reflectivity whereas they do not reach zero for lower reflectivities.
�b� shows the probabilities of detecting k photons, pk

coh for a single-mode coherent input state ��� with mean photon number n̄= ���2=4
incident on the FPI and a photon-number resolving measurement displaying k=1, ... ,4 �solid lines�. The reflectivity �r�2 of the mirrors is
70%. The dashed lines shows the transmission probabilities pk

F for a single-mode photon-number state �4�. We observe that the Fock states
�dashed lines� show transmission peaks that are sharper in general. This effect is equivalent to operating at a larger reflectivity of the mirrors,
which is demonstrated in �a� for the classical curves. A major difference appears for k=4 where the transmission maxima reach one for the
Fock state, whereas the coherent state stays low. Here and in the following, we choose a reflectivity of 70% as the important features are
more pronounced than for larger reflectivities.
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n
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n = 1
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for k = n

L/λ

FIG. 4. �Color online� Transmission probabilities for a single-
mode photon-number state and a photon-number resolving mea-
surement, for photon numbers n=1,2 ,3. The free spectral range
�L /� is the distance between two adjacent maxima. Transmission
probabilities are calculated for 70% reflectivity of the mirrors.
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	�L =�	1
2

n1
+

	2
2

n2
� �2

	

�n
, �10�

where the approximation holds, if the two peaks have ap-
proximately the same variance and number of counts. A
smaller variance 	 for the transmission peaks provides an
improvement in resolution, but increasing the number of
counts can provide a similar improvement. If the variance
shrinks by a factor of m, i.e., 	→	 /m, the uncertainty of the
peak center in Eq. �10� becomes �2	 / �m2n�1/2. This means
that we need a factor of m2 fewer counts to obtain the origi-
nal variance 	. In Sec. V we show experimentally that we
can determine the position of the peaks from the photon-
number resolved data obtained with coherent states with up
to three times higher precision, for the same optical power
compared to the classical signal.

On the other hand, we can compute the uncertainty 
L of
a length measurement, which we also refer to as sensitivity,
from the expression


L =
�Ĉ

��	Ĉ�/�L�
, �11�

where 	Ĉ� is the mean value of the detection operator and

�Ĉ= �	Ĉ2�− 	Ĉ�2�1/2 is the standard deviation of the observ-

able Ĉ �25�.
Next, we compute the sensitivity 
Ln̄

coh for a coherent state
with average photon number n̄ as a classical baseline, and
compare it with the photon-number resolved transmission
probabilities �Fig. 5�. For a coherent state input and a mean
intensity measurement, Eq. �11� reduces to


Ln̄
coh =

1
�n̄

�T�
�� �T�2/�L�

. �12�

This expression defines the shot-noise limit evidenced by the
1 /�n̄ dependence. Improving the sensitivity beyond this is
referred to as supersensitivity. For the photon-number re-
solved sensitivity 
Lk

coh, Eq. �11� reduces to


Lk
coh =

�pk
coh�1 − pk

coh�
��pk

coh/�L�
. �13�

We observe that the uncertainty of a length measurement

Lcoh /� for the photon-number resolved measurement is al-
ways larger than for the average photon-number measure-
ment. In other words, the photon-number resolved interfer-
ence fringes do not increase the sensitivity of the
interferometer. However, we show in the next section that
increased sensitivity can be achieved by replacing the input
coherent state with a photon-number state.

IV. SENSITIVITY FOR N-PHOTON STATES

We propose an experiment with an N-photon state �N�
incident on the FPI as displayed in Fig. 6. From the Fig. 3�b�
�dashed line for k=4�, and Fig. 4 we conclude that in addi-
tion to obtaining narrower transmission functions as the
photon-number increases �increased resolution�, the ampli-
tude at the maximum remains one. That is an indication that
we have an additional benefit from using N-photon states as
opposed to a coherent state input. We not only increase the
resolution, we also obtain a higher sensitivity. To quantify
this statement we calculate the sensitivity as defined by Eq.
�11�. The sensitivity is given by


Lk
F =

�pk
F�1 − pk

F�
��pk

F/�L�
, �14�

where pk
F is taken from the expression in Eq. �7�, which

simplifies for a �k� Fock state input and a k-photon detection
to


Lk
F =

�T�k�1 − �T�2k

�� �T�2k/�L�
. �15�

We display the sensitivity as a function of phase �here scaled
length L /�� in Fig. 7, analogous to the coherent state case in
Fig. 5. We observe that the shot-noise limit given by the
black solid line is beaten by the k=4 curve. This means that
we can achieve supersensitivity �beating the shot-noise limit�
with a photon-number state input �n� and a n photon detec-
tion.

We can also investigate how the minimum phase uncer-
tainty behaves as a function of the photon number n for the
photon-number state input or mean photon number n̄ for co-
herent states, respectively. We see that �Fig. 8�, as opposed to
coherent states, a length measurement with photon-number
states provides us with a much smaller uncertainty 
L in the
few photon limit. Hence, the sensitivity of the FPI is in-
creased. An alternative way to describe the result can be

�0.1 0.0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.5
δLcoh

k
λ

L/λ

n̄ = 4

k = 1

k = 4

FIG. 5. �Color online� Dimensionless uncertainty 
Lk
coh /�

�where L is the length change of the FPI and � is the wavelength of
the coherent laser beam� for a mean intensity measurement with
n̄=4 compared to photon number resolving measurements k=1 and
k=4. The solid line also represents the shot-noise limit. The reflec-
tivity �r�2 of the mirrors is 70%.

FIG. 6. �Color online� Transmission experiment with an
N-photon state incident on a Fabry-Perot interferometer and
photon-number resolving detection of the output.
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formulated in terms of the finesse F=FSR /FWHM of the
FPI, where FWHM stands for full width at half maximum.
The finesse F of the FPI, which for R�0.5 can be approxi-
mated by F=�R1/2 / �1−R� for classical detection, is essen-
tially improved by using photon-number resolving detection
without changing the reflectivity of the mirrors, since the
FSR remains the same but the FWHM becomes narrower
with increasing photon number.

Finally, we provide an intuitive interpretation of our re-
sults. The probability that a single photon traverses through a
single beam-splitter, described by the complex transmittivity
t, and reflectivity r, is just �t�2. If we ask for the probability

that n photons in a Fock state traverse through the BS, we
obtain �t�2n �compare with Eq. �7��. In our quantum mechani-
cal model for the FPI, we use an effective BS transformation
where the matrix elements of the unitary BS transformation
are given by the complex functions T and R defined in Eqs.
�1� and �2�. We observe then the same functional behavior as
for the regular BS and Fock states. The transmission function
for the FPI, given the n photons in a Fock state that have
traversed the FPI, is �T�2n, as given by Eq. �7�. As �T� be-
comes smaller than one, the probability of transmitting n
photons given by �T�2n decreases more rapidly than that for
single photons �n=1� or a coherent state, which manifests as
narrower transmission curves. This feature may find applica-
tions in interferometry for high-precision length measure-
ments as in LIGO for instance. The quantum light source
may provide a high sensitivity at a much reduced optical
power. The FPI can also be nested in a Michelson or Mach-
Zehnder interferometer, as has been implemented at LIGO,
to boost the sensitivity and achieve an even higher resolving
power.

V. EXPERIMENTAL RESULTS FOR COHERENT STATES

We performed an experiment with an attenuated coherent
pulsed laser diode at a fixed wavelength �=1550 nm, a rep-
etition rate of 50 kHz, and a pulse duration of 50 ps �Fig. 9�.
Our photon-number resolving TES detected on average four
photons per pulse �4�. We used a scanning Fabry-Perot inter-
ferometer that had originally been designed as a tunable filter
with a FSR of 70 nm and a FWHM of 0.15 nm to be used in
locked mode. However, its feedback �locking� circuit locks
only to the maximum of the transmission curve. Since we
wanted to measure the entire transmission function, we had
to use the FPI in the unlocked mode. The stability of the
unlocked FPI was initially poor due to ambient temperature
fluctuations. To circumvent this, we employed a thermoelec-
tric cooler to stabilize the temperature within 0.1 °C. For the
measurement, we attenuated the laser diode output, sent it
through the FPI and then to the fiber-coupled TES. We ad-
justed the distance between the mirrors of the FPI by tuning
the voltage of the piezoelectric transducer inside the FPI.

Photon absorption in the TES creates a voltage pulse
whose integral is proportional to the energy absorbed. Thus,
by simply integrating the output pulses from the TES, we can
resolve straightforwardly the number of photons absorbed in
a given time window. In our setup, we amplify the TES
signal and record it using a digital oscilloscope. We then
integrate each pulse and create a histogram of these pulse

FIG. 7. �Color online� Dimensionless uncertainty 
Lk
F /� �where

L is the length change of the FPI and � is the wavelength of the
light� for a mean intensity measurement with n̄=4 compared to
photon number resolving measurements k=1 and k=4. The solid
line also represents the shot-noise limit. The reflectivity �r�2 of the
mirrors is 70%. The shot-noise limit �solid line� is beaten by the
k=4 curve.

1 3 5 7 9 11 13 15
0

0.005

0.01

0.015

δL
λ

|α�

|n�

n̄

FIG. 8. �Color online� Comparison of the sensitivity 
L /� �Eq.
�12�� for a coherent state �solid line� and mean intensity detection
�shot-noise limit� as a function of mean number of detected photons
versus a n-photon state �n� with n-photon resolving measurement
�Eq. �15�� as a function of the photon number, where we take n= n̄,
slightly away from the transmission maximum. The reflectivity �r�2
of the mirrors is 70%. The parameter of the phase is chosen for each
n, n̄, respectively, so that the sensitivity is at its minimum.

FIG. 9. �Color online� Transmission experiment with a weak
coherent laser beam incident on a length tunable FPI and a fiber
coupled TES. The light is collected and coupled into a single-mode
fiber and transmitted to the detector.
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integrals to observe the photon-number resolved detection as
shown in Fig. 10. We repeat this procedure to obtain a his-
togram at each value of the piezovoltage and generate the
curves shown in Fig. 11 for 1�k�7. The preliminary data
support the theoretical predictions, as can be seen in Fig. 11.

Unfortunately, although the stability of the FPI output was
improved with temperature control, substantial drift occurred
during the data acquisition time of more than 30 min, result-
ing in smearing of the data. Also, the apparent classical sig-
nal from the photon-number resolved data is systematically
underestimated. For weak laser pulses with a mean photon
number of four, we would need to include photon-number
resolved data of up to k=10 to cover 99% of the signal. Our
measurements only cover 1�k�7, before the signal disap-
pears into the noise, which results in the reconstructed clas-
sical signal being 15% lower than expected.

Note that from the theoretical curves shown in Fig. 3�b�,
one can see that there is always a dip in the middle of the
maximum whenever k� n̄. The dip becomes less pronounced
as k approaches n̄, and disappears for k
 n̄. This feature can
be utilized as a diagnostic tool to bound n̄, without doing any
detailed fitting. For example, from the data in Fig. 11, we can
easily identify 3� n̄�4, just from the “dip characteristics”
described above. We can therefore confidently justify the re-
jection of the reconstructed number n̄�=2.6 from Fig. 11
�bottom right�, which corroborates the arguments given in
the caption of Fig. 11 and the above text.

The photon-number resolved output of the FPI �Fig. 11�
shows narrower peaks with increasing photon number. To
quantify any improvement in resolution we compare the
standard deviations of the photon-number resolved peaks 	k
to the standard deviation 	cl obtained from the classical
transmission peak �Table I�.

The SDM is defined by 	2=�ipi��i−��2, where the mean
� obtained from �=�ipi�i, pi is the normalized probability

defined by pi= f i /N, f i is the number of counts for a particu-
lar phase �i=2�Li /�, and N is the total number of counts for
the kth transmission peak 	k or the classical signal 	cl. For
the photon-number resolved peaks we observe that the SDM

FIG. 10. Sample histogram of the output pulse integrals of the
photon-number resolving TES used in our experiment. The histo-
gram indicates the probabilities of detecting each photon number, as
well as the probability no photons were detected �labeled “0”�. The
vertical lines show the thresholds between the individual photon-
number peaks.

FIG. 11. �Color online� Transmission probabilities for a single-
mode coherent state and a photon-number resolving measurement,
for photon numbers k=1, .. ,7. The blue solid lines show the indi-
vidual theoretical fits. The peaks become narrower as k increases.
The fit yields the mean photon number n̄�3.9 and the reflectivity
of the mirrors �91%. The graph at the bottom right is the recon-
structed classical signal from the photon-number resolved curves
with pcoh=�k=1

7 kpk
coh. The black solid line is the theoretical fit. From

the fit the mean photon-number is determined as n̄�=2.6, which is
not in good agreement with the mean photon-number obtained from
the photon-number resolved curves of n̄�3.9 and reflects insuffi-
cient stability of the used FPI. We also only have access to photon-
number counts in the range 1�k�7 which amounts to reconstruct-
ing the classical signal with an amplitude 15% too low.

TABLE I. Resolution improvements. Theoretical and experi-
mental results for the photon-number resolved SDM 	k

exp compared
to the SDM 	cl

exp=0.103 nm of the classical signal. The theoretical
results are calculated for a mean photon number n̄=3.9 and 91%
mirror reflectivity �fit-parameters determined from the experimental
data�. The expected classical SDM is 	cl

theo=0.0995 nm. All stan-
dard deviations are given in nm.

k 1 2 3 4 5 6 7

	k
theo 0.176 0.116 0.074 0.052 0.039 0.032 0.028

	cl
theo /	k

theo 0.6 0.9 1.3 1.9 2.5 3.1 3.6

	k
exp 0.161 0.094 0.062 0.064 0.075 0.045 0.036

	cl
exp /	k

exp 0.6 1.1 1.7 1.6 1.4 2.3 2.9
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gets smaller for larger photon numbers �Fig. 12�. This feature
allows us to determine the center of the peak positions with
higher accuracy than classically possible, if we are using the
photon-number resolved peaks for k
3.

VI. SUMMARY

We have highlighted the difference resolution and sensi-
tivity in interferometry measurements with classical and non-
classical sources and detectors. In particular we have shown
that the resolution of a Fabry-Perot interferometer with weak
coherent states and photon-number resolving detection is im-

proved up to three times compared to a classical detection
strategy. Here, resolution relates to how well two peaks can
be seen as distinct as opposed to the sensitivity in finding the
center of one lone peak. The improvement in resolution is
not to be confused with the sensitivity shown in Fig. 5,
which actually cannot be improved for the coherent state
input and a photon-number resolving measurement. We also
show that by replacing the classical input state with a
photon-number state �n� incident on the FPI and performing
a photon-number resolved measurement, we obtain supersen-
sitivity �beat the shot-noise limit, Fig. 8�. A demonstration
experiment to show this effect with photon pairs from a
spontaneous parametric down conversion source or an opti-
cal parametric oscillator incident on a FPI should be well
within reach. An interesting line of research would be to
investigate generalized quantum metrology schemes other
than the schemes above with coherent states and detection
strategies based on photon-number resolving detectors.

ACKNOWLEDGMENTS

C.F.W. and J.P.D. acknowledge the Defense Advanced
Research Projects Agency Quantum Sensors Program. A.J.P.,
J.C., J.F., and A.M. acknowledge the MURI Center for Pho-
tonic Quantum Information Systems ARO/IARPA, the
IARPA Entangled Source, and the Intelligence Community
Postdoctoral Research Programs for their support. We thank
H. Lee, N. Sauer, W. W. Johnson, S. Polyakov, and S. W.
Nam for very helpful comments. C.F.W. thanks all the mem-
bers of the optical technology division at NIST, Gaithersburg
for their generous hospitality.

�1� D. Lincoln, Nucl. Instrum. Methods Phys. Res. A 453, 177
�2000�.

�2� A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko,
Appl. Phys. Lett. 83, 791 �2003�.

�3� E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y.
Yamamoto, Phys. Rev. Lett. 92, 113602 �2004�.

�4� A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032
�2008�.

�5� A. E. Lita, A. J. Miller, and S. W. Nam, J. Low Temp. Phys.
151, 125 �2008�.

�6� M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature
�London� 429, 161 �2004�.

�7� P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph,
New J. Phys. 9, 233 �2007�.

�8� E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B.
Voronov, G. Goltsman, S. A. Hamilton, and K. Berggren, J.
Mod. Opt. 56, 364 �2009�.

�9� C. M. Caves, Phys. Rev. Lett. 45, 75 �1980�.
�10� K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J.

Pryde, J. L. O’Brien, and A. G. White, Phys. Rev. Lett. 98,
223601 �2007�.

�11� H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt. 49, 2325
�2002�; J. P. Dowling, Contemp. Phys. 49, 125 �2008�.

�12� A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 �2000�.

�13� S. J. Bentley and R. W. Boyd, Opt. Express 12, 5735 �2004�.
�14� S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L.

Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev. Lett.
101, 253601 �2008�.

�15� V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, Phys.
Rev. A 79, 013827 �2009�.

�16� M. Tsang, J. H. Shapiro, and S. Lloyd, Phys. Rev. A 78,
053820 �2008�.

�17� S. Lloyd, Science 321, 1463 �2008�.
�18� G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouw-

meester, Phys. Rev. Lett. 96, 203601 �2006�.
�19� S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A

78, 063828 �2008�.
�20� A. Kolkiran and G. S. Agarwal, Opt. Express 15, 6798 �2007�.
�21� H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P.

Vyatchanin, Phys. Rev. D 65, 022002 �2001�.
�22� M. Ley and R. Loudon, J. Mod. Opt. 34, 227 �1987�.
�23� R. J. Glauber, Phys. Rev. 131, 2766 �1963�.
�24� H. Lee, U. Yurtsever, P. Kok, G. M. Hockney, C. Adami, S. L.

Braunstein, and J. P. Dowling, J. Mod. Opt. 51, 1517 �2004�.
�25� J. P. Dowling, Phys. Rev. A 57, 4736 �1998�.

σ

k

σcl

σk

FIG. 12. �Color online� Figure of the standard deviations as a
function of k presented in Table I.

RESOLUTION AND SENSITIVITY OF A FABRY-PEROT … PHYSICAL REVIEW A 80, 043822 �2009�

043822-7


