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We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical
parametric oscillator �self-imaging optical parametric oscillator�. We show that this device produces local
squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Further-
more, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it
is highly multimode for realistic experimental parameters.
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I. INTRODUCTION

Highly multiplexed quantum channels are more and more
needed as complexity increases in the quantum communica-
tion and information protocols. They can be obtained by cou-
pling many single mode quantum channels �1� but also by
directly using highly multimode quantum systems. In addi-
tion, the resolution of several problems in quantum imaging
�2� requires the generation of nonclassical states of light hav-
ing adjustable shapes in the transverse plane: this is the case
for super-resolution �3� or for image processing below the
standard quantum noise level �4�. For all these reasons, it is
very important to develop a source of highly multimode non-
classical light �squeezed and/or entangled� of arbitrary trans-
verse shape.

In the continuous variable regime, where optical resona-
tors are necessary to efficiently produce nonclassical states,
one of the keys to successfully generate multimode light is
the ability to operate a multimode optical resonator. Indeed,
many theoretical proposals rely on the use of an optical para-
metric oscillator �OPO� operated below threshold with planar
cavities �5� or with confocal cavities �6–8�, which spatially
filter half of the transverse modes. These proposals predict
the generation of local vacuum squeezing and image ampli-
fication on modes that respect the cavity symmetry only. We
propose here to keep the parametric process to generate non-
classical light and to use a fully transverse cavity, the self-
imaging cavity �9�. This type of resonator used, for instance,
to improve the power of multimode lasers �10�, is in prin-
ciple able to transmit any optical image within its spatial
bandwidth.

The aim of this paper is to demonstrate that the self-
imaging OPO is an excellent candidate to produce local
squeezing, image amplification, and also local EPR beams,
taking into account its physical limitations such as the thick-
ness of the crystal and the finite size of the various optical
beams and detectors. By extension, as in any type of degen-
erate OPO under the oscillation threshold, local squeezing is
linked to local phase-sensitive amplification and therefore
image amplification of any transverse shape.

The following section �Sec. II� describes the experimental
configuration and develops the theoretical model, as well as
the method used to determine the squeezing spectra mea-
sured in well-defined homodyne detection schemes. In Sec.
III, the results for such quantities, respectively, in the near
field and in the far field are given, and we investigate the
generation of EPR beams. Finally, in Sec. IV, we compute
the eigenmodes of the system and show that they are close to
Hermite-Gauss modes.

II. SELF-IMAGING OPTICAL PARAMETRIC
OSCILLATOR

A. Self-imaging cavity

We consider the parametric down conversion taking place
in a self-imaging optical parametric oscillator whose cavity
was depicted in the pioneer article of Arnaud �9�. Such a
cavity is a fully transverse degenerate one, which implies
that all the transverse modes of same frequency resonate for
the same cavity length. From a geometrical point of view, an
optical cavity is self-imaging when an arbitrary ray retraces
its own path after a single round trip. The simplest self-
imaging ring cavity requires three lenses of focal length f i,
i=1,2 ,3 �9�. As depicted in Fig. 1, the ring cavity is self-
imaging provided the distances cij of the image plane of the
lens i and the object plane of the lens j are given by
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FIG. 1. �Color online� Self-imaging OPO scheme in a ring cav-

ity configuration.
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c12 =
f1f2

f3
,c23 =

f2f3

f1
,c31 =

f3f1

f2
. �1�

Let us consider an OPO whose cavity is the self-imaging one
described in Fig. 1 �9�. A type I parametric medium of length
lc is centered on the plane C located at the longitudinal co-
ordinate z=0. The OPO is pumped by a Gaussian TEM00
field Ep of amplitude Ap and frequency �p=2�s. Its waist wp
is located at the plane C. The OPO works in a longitudinal
degenerate operation for which signal and idler have the
same frequency �s. We assume that for the pump wave, all
the mirrors are totally transparent and that for the signal
field, the coupling mirror Mc has a small transmission t; the
other three mirrors being perfectly reflecting.

B. Electric field operator

We will follow an operator-based approach �11� close to
the one developed in the confocal case �12�, and in order to
keep the present paper concise we give only the main steps
of the calculation, as well as the improvement. The intracav-
ity signal field at frequency �s is described by a field enve-
lope operator B�x ,z�. In the self-imaging resonator, at reso-
nance, the field can be decomposed on any transverse-mode
basis �such as the Gauss-Laguerre modes, for instance�. The
field operator becomes

B̂�x,z,t� = �
l

f l�x,z�âl�z,t� , �2�

where âl�z , t� is the annihilation operator of a photon in mode
l at the cavity position z and at time t. f l is the amplitude of
the l mode. This field obeys the standard equal-time commu-
tation relation at a given transverse plane at position z

�B̂�x,z,t�,B̂†�x�,z,t�� = ��x − x�� . �3�

Indeed, contrary to the confocal case �12� or to any partially
imaging cavity case, this operator is the same as the one in
the vacuum as no spatial filtering is induced by the cavity. In
the regime below threshold considered here, the pump is not
depleted, and fluctuations of the pump field do not contrib-
ute, at first order to the fluctuations of the signal.

The interaction Hamiltonian of the system, taking into
account the thickness of the crystal and the shape of the
pump, is given by

Hint =
i�g

2lc
�

−lc/2

lc/2

dz�� � d2x��AP�x�,z���B̂†�x�,z�,t��2 − H.c.� ,

�4�

where g is the coupling constant proportional to the second-
order nonlinear susceptibility ��2� and AP�x� ,z�� the pump
field amplitude.

In the following, we will assume that the parametric in-
teraction taking place in the crystal is very weak, which is
the case experimentally when cw pump fields on the order of
100 mW are used. In this case, the field amplitude does not
vary much in a single pass through the crystal. Therefore, the
z dependence of the operators âl can be removed in Eq. �4�.
The longitudinal variation in the signal operator B̂ is then

only due to the diffraction inside the crystal, which is fully
described by the z dependence of the modal functions
f l�x ,z�. This is the central assumption of the present paper,
which enables us to go beyond the usual thin-crystal approxi-
mation.

C. Evolution equation of the field

Using this assumption, we can now investigate the time
evolution of the intracavity signal field in the plane C situ-
ated in the middle of the crystal �z=0� �near-field plane�, and
of its spatial Fourier transform �far field�, taking into account
the effects of the crystal thickness and of the finite transverse
size of the pump beam.

1. Near-field evolution

In the present case of a weak single-pass variation in the
field amplitude inside the crystal, the time evolution of the
signal field B in the near-field plane is

�B̂

�t
�x,0,t� = − ��1 + i��B̂�x,0,t�

+ g� � d2x�Kint�x,x��B̂†�x�,0,t�

+ 	2�B̂in�x,0,t� . �5�

In this equation, the first term describes the effects of cavity
damping and detuning, � being the cavity escape rate and �
being the normalized cavity detuning. The third term de-
scribes the feeding of the cavity through the coupling mirror

MC by the input signal field, B̂in�x ,0 , t� being the input field
operator. We assume here that there is no injected light, so
that the input field is in the vacuum state. The second term
describes the parametric interaction in the presence of dif-
fraction. In the case of exact collinear phase matching
kp=2ks and no walk off, the kernel Kint�x ,x�� is equal to

Kint�x,x�� = Ap
x + x�

2
,z = 0���x − x�� . �6�

This kernel appears also in the description of spontaneous
parametric down conversion: it is in this case the two-photon
wave function of the pair of signal photons generated in the
down-conversion process. Kint is the product of the pump
amplitude in the near-field plane taken at the average trans-
verse position z=0 and of a function � describing the dif-
fraction effects inside the crystal, equal to

��x� =
iks

4�lc
�

−lc/2

lc/2 dz�

z�
e�iks/4z���x�2, �7�

where ks=ns�s /c is the field wave number, and ns is the
index of refraction at frequency �s. � can be expressed in
terms of the integral sine function Si�x�=0

x sin udu
u ,

��x − x�� =
ks

2�lc
��

2
− Si
 ks�x − x��2

2lc
�� . �8�

As expected, in the thin-crystal case �lc→0� the function �
tends to the usual two-dimensional Dirac � distribution.
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In the confocal cavity case, the interaction kernel is the
even or the odd part of this one. Indeed, the confocal cavity
will filter only the even or the odd part of the spatial modes.
The more general coupling kernel of the self-imaging case
enables less coupling between modes and therefore twice
more transverse modes to be excited.

In the thick-crystal case, the parametric interaction mixes
the operators at different points of the transverse plane, over
areas of finite extension given by the spatial extension of the
kernel Kint. This extension is characterized by the width of
the sine function, which define a coherence length

lcoh =	 �lc

�ns
. �9�

When �x−x��	 lcoh, � and therefore the kernel Kint take neg-
ligible values, there is no coupling between these two posi-
tions. On the other hand, when �x−x��
 lcoh, the coupling
mixes the fluctuations. Thus, we can define lcoh as the quan-
tum resolution of our system.

Because of the finite size of the pump, the kernel will take
negligible values for x+x��wp. Therefore, we can define
the number of transverse modes excited by the parametric
process inside the cavity, as the ratio between the size of the
pump, and the area defined by lcoh,

b =
wp

2

lcoh
2 . �10�

This definition relies on the classical imaging properties
of the system. We will show in the last section of this paper
that it is consistent with the computation of the eigenmodes
of the system.

2. Far-field evolution

Let us introduce the spatial Fourier transform of the signal
field envelope operator �12�

B̂̃�q,z,t� =� d2x

2�
B̂�x,z,t�e−iq·x. �11�

Equation �5� becomes

� B̂̃

�t
�q,0,t� = − ��1 + i��B̂̃�q,0,t�

+ g� d2q�K̃int�q,q��B̂̃†�q�,0,t� + 	2�B̂̃in�q,0,t� ,

�12�

where the coupling Kernel K̃int�q ,q�� is the Fourier trans-
form of the kernel �6� with respect to both arguments.
Straightforward calculations show that

K̃int�q,q�� = Ãp�q + q��sin c� lc

2ks
�q − q�

2
�2� , �13�

where Ãp is the spatial Fourier transform of the Gaussian

pump profile, i.e., Ãp�q�=
wp

2

2 Ap exp�−�q�2
wp

2

4 �.
The sinc term in the coupling kernel of Eq. �13� is the

Fourier transform of the � terms in Eq. �6� and correspond to

the limited phase-matching bandwidth of the nonlinear crys-
tal. For a thin crystal, phase matching is irrelevant and there
is no limitation in the spatial bandwidth of down-converted
modes, whereas for a thick crystal, the cone of parametric
fluorescence has an aperture limited to a bandwidth of trans-
verse wave vectors �q�1 / lcoh�1 /	�lc. In the self-imaging
geometry, the cavity ideally transmits all the Fourier modes,
so that the spatial bandwidth is only limited by the phase
matching along the crystal. Finally, we have to notice that in

the far-field configuration, the Ãp�q+q�� couples different
q-vectors modes within the finite width of the pump.

D. Input/output relation

In order to calculate the noise spectrum of the outgoing
field, an input/output method is used. The input field is sup-
posed to be in a coherent state and the fluctuations at the
output can be inferred. The relation linking the outgoing
fields Bout�x , t� to the intracavity and input fields at the cavity
input/output port �13� is

B̂out�x,t� = 	2�B̂�x,t� − B̂in�x,t� . �14�

The evolution equation of the field, either in the near or in
the far field, can be solved in the frequency domain by in-
troducing

B̂in/out�x,� =� dt
	2�

B̂in/out�x,t�e−it,

which lead to the input/output relation, linking B̂in�x ,� and

B̂out�x ,�.
In the case of a thin crystal in the near field �8�, this

relation describes an infinite set of independent optical para-
metric oscillators. In this case, the squeezing spectrum can
be calculated analytically. More generally, this relation in
near field links all points in the transverse plane within the
coherence area. In order to get the input/output relation, we
have to invert the input/output relation by using a numerical
method used in �12�.

E. Homodyne detection scheme in the near field and far field

In the following sections, we calculate the noise spectrum
at the output of the OPO as a function of the detected trans-
verse mode selected by a homodyne detection scheme �14�.
By mixing it with a coherent local oscillator �LO� of various
shape on a 50% beamsplitter �reflection and transmission
coefficients r= 1

	2
and t= 1

	2
�, one can measure the fluctuations

on any transverse mode of the output of the self-imaging
OPO by measuring the photocurrents difference. The two
identical detectors of different size and position are supposed
to have a perfect quantum efficiency. All the fields are evalu-
ated at the beam-splitter location, and the z dependence is
omitted in the following.

We use two different configurations: near field �x-position
basis� and far field �q-vector basis�. The complete detection
scheme is schematically shown in Fig. 2 and 3. In the near-
field configuration, the imaging scheme is composed of a
two-lens afocal system �focal length f�, which images the

MULTIMODE QUANTUM PROPERTIES OF A SELF-… PHYSICAL REVIEW A 80, 043816 �2009�

043816-3



crystal/cavity center plane C onto the detection planes D and
D� �near-field planes�. In the far-field configuration, a single
lens of focal length f transforms its focal object plane C into
the image focal detection plane D. Any image in the object
plane C is transformed into its Fourier transform in the plane
D �far-field plane�.

For near-field imaging, the local oscillator can be ex-
pressed as �L�x ,z�= ��L�x ,z��ei�L�x,z�. The difference photo-
current is a measure of the quadrature operator,

B̂H�� = �
det

dx�B̂out�x,��L
��x� + B̂out+�x,− ��L�x�� ,

�15�

where det is the image of the photodetection region at the
crystal plane C and assumed to be identical for the two pho-
todetectors. The quantum efficiency of the photodetector is
assumed to be equal For far-field imaging, the lens provides

a spatial Fourier transform of the output field B̂out�x ,�, so

that at the location of plane D the field B̂D
out�x ,� is

B̂D
out�x,� =

2�

�f
B̂̃out
2�

�f
x,� . �16�

In this plane, B̂D
out�x ,� is mixed with an intense stationary

and coherent beam �LO
D �x�= 2�

�f �̃LO� 2�x
�f ,�, where �L�x� has

a Gaussian shape, with a waist wLO. The homodyne field has
thus an expression similar to the near-field case, where func-
tions of x are now replaced by their spatial Fourier trans-
forms,

B̂H�� = �
det

dq�B̂̃out�q,��̃LO
� �q� + B̂̃out+�q,− ��̃LO�q�� .

�17�

In near and far field, the fluctuations �ÊH�� of the homo-
dyne field around steady state are characterized by a noise
spectrum

V�� = �
−�

+�

d���ÊH���ÊH���� = N + S�� , �18�

where ÊH is normalized so that N gives the mean photon
number measured by the detector

N = �
det

dx��L�x��2. �19�

N represents the shot-noise level, and S is the normally or-
dered part of the fluctuation spectrum, which accounts for
the excess or decrease in noise with respect to the standard
quantum level �S=0�. One should note that there is a com-
plete equivalence between a setup with a finite and flat local
oscillator and infinite detectors and a flat and infinite local
oscillator combine with finite-size detectors. We will often
use the configuration with finite-size photodetectors in the
following.

III. NONCLASSICAL PROPERTIES

We present here the main properties of the fields emitted
by the subthreshold self-imaging OPO. We will first consider
the squeezing in the near field in a very similar manner as
what was done for a confocal OPO. Then we will study the
far-field properties and demonstrate local EPR correlations,
which did not exist in the confocal case.

A. Squeezing in the near field

As the self-imaging cavity does not exert any spatial fil-
tering on the fields, the nonclassical properties are very simi-
lar to those observed in the single-pass configuration. We
will here show the main squeezing predictions for such a
device, taking into account the thickness of the crystal.

The results of this section are more general than the
squeezing properties of the confocal OPO. In fact, the con-
focal case only allows us to perform homodyne detection
with symmetrical detectors. The OPO in a self-imaging cav-
ity allows us to extend these results to any type of detection.

Let us first consider the case of the thin-crystal approxi-
mation, where no characteristic length is introduced in the
model. We consider a thin-crystal self-imaging OPO pumped
by a Gaussian beam. We look at the output quantum fluctua-
tions with a pixel-like detector whose position is varied. In
Fig. 4, the squeezing is plotted as a function of the detector
distance from the optical axis for different mean powers of
the pump �Ap=1 corresponding to the threshold on the axis�.
The squeezing is maximum when the detection is centered
on the pump beam and tends to zero far from the center.
Figure 4 shows that the squeezing increases with the total

FIG. 2. �Color online� Balanced homodyne detection scheme in
the near field. Two matching lenses of focal f are used to image the
cavity center C at the detection planes D and D�.

FIG. 3. �Color online� Balanced homodyne detection scheme in
the far field. A matching lens of focal f is used to obtain the far-field
image of the object plane C at the detection planes D and D�.
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pump power and depends critically on its local value. In the
thin-crystal case, the kernel Kint depends only on the local
pump amplitude and on the transverse coordinate. Hence,
any transverse position on the crystal acts as an independent
OPO, and the nonclassical properties then only depend on
the local pump power at that position.

In a more general realistic study, we have to take into
account the finite size of the crystal. For a thick crystal, the
coherence length lcoh introduced in Eq. �9� has to be taken
into account. On transverse size smaller than this coherence
length, fluctuations are mixed inside the crystal.

In Fig. 5, we represent the quantum noise as a function of
the detector size for different pump waist �normalized to the
coherence length�. For detectors smaller than the coherence
area, the quantum noise goes to shot noise whatever the size
of the pump is. As explained in the last paragraph, at that
scale the OPO can be considered as locally single mode and

no squeezing can be obtained. For detectors whose size is
close the coherence area one, squeezing is obtained. Never-
theless, this squeezing degrades for a given pump waist
when the size of the detector increases. For a given pump
size, when the detector becomes larger than the excited sur-
face, vacuum fluctuations are coupled to the detected signal
and the squeezing degrades. In the same way, for a given
detector size, the squeezing decreases with the waist of the
pump. In fact, a finite pump size limits the number of excited
modes. Increasing the pump size increases the number of
excited modes and improves the squeezing.

The graphs correspond to a pump power at threshold.
However, the fluctuations never reach zero �corresponding to
infinite squeezing� because the measured mode does not
match the mode that is perfectly squeezed. Section IV will
answer this question, giving the eigenmodes of the system.

B. Entanglement in the far field

In the far field, the analysis has to be performed not in
crystal plane �near-field plane� but in its Fourier plane �far-
field plane�. Squeezing can be observed in the far field when
using a symmetrical detector. Indeed, contrary to the near-
field case, in the far-field configuration the down-conversion
process couples two symmetric k vectors. Thus, in order to
recover the squeezing, one needs a symmetric detector rela-
tive to the optical axis of the imaging system. The results
obtained are therefore the same as those in the confocal cav-
ity, both with a plane pump and with a finite pump. Corre-
sponding calculations are also available upon request to the
authors.

The advantage of the self-imaging cavity is that it does
not couple the two symmetrical k vectors. Therefore, one
expects correlations between two symmetrical areas in the
far field, as it will be shown in the following.

In order to characterize the correlation level between sym-
metrical parts of the beam, we compare the quadrature field
fluctuations on two symmetrical pixels. In order to get this
quantities, we use the homodyne detection scheme �Fig. 6�
proposed in �14�, where two symmetrical sets of two detec-
tors measure a quadrature of the field at two symmetrical
positions.

Let us consider a pixel-like detector with finite detection
area �� j; according to Eq. �17� the detected field quadrature
is given by

FIG. 4. �Color online� Quantum noise of the squeezed quadra-
ture, normalized to the shot noise at zero frequency and for a pixel-
like detector located in the near-field plane, as a function of the
pixel distance from the origin s, normalized to the waist of the
pump �s= �

wp
� and for different pump values.
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FIG. 5. �Color online� Quantum noise of the squeezed quadra-
ture normalized to the shot noise at zero frequency and in the thick-
crystal case, as a function of the radial size of the detector scaled to

lcoh, plotted for several values of the parameter b=
wp

2

lcoh2
.

FIG. 6. �Color online� Homodyne detection scheme for the mea-
surement of the quadrature components of the output field on two
symmetrical pixels: pixel 1 and pixel 2.
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Ê�L

�j� �� = �
��j

dq�B̂̃out�q,���L�q��e−i�L

+ B̂̃out+�q,− ���L�q��ei�L� , �20�

where we have introduced explicitly the phase of the local
oscillator. To compare the fluctuations of the field quadrature
measured in two symmetrical pixels j=1 and j=2, we com-
pare the sum and the difference of these quantities

Ê�L

����� = Ê�L

�1��� � E�L

�2��� . �21�

In order to evaluate the degree of correlation or anticorrela-
tion, we introduce the corresponding fluctuations spectra

V�L

����� = �
−�

+�

d��Ê�L

�����Ê�L

������� . �22�

Straightforward calculations show that

V�L

�−��� = V�L+�/2
�+� �� . �23�

It results that the correlation between Ê�L

�1� and Ê�L

�2� is the
same as the anticorrelation between the corresponding or-

thogonal quadrature components Ê�L+�/2
�1� and Ê�L+�/2

�2� . In or-
der to calculate Eq. �22�, we develop the expression, so as

V�L

����� = �
−�

+�

d��Ê�L

�1���Ê�L

�1�����

+ �
−�

+�

d��Ê�L

�2���Ê�L

�2�����

� �
−�

+�

d��Ê�L

�1���Ê�L

�2�����

� �
−�

+�

d��Ê�L

�2���Ê�L

�1����� . �24�

The terms −�
+�d��Ê�L

�i� ��Ê�L

�i� ���� correspond to the result
of the fluctuation spectra of a homodyne detection scheme
using a single pixel. The other terms are cross correlation
terms, so that

V�L

− �� = V�L+�/2
+ �� . �25�

When these variances are below one, EPR beams are ob-
tained at the output of the self-imaging cavity. One should
note that these variances correspond to the fluctuation spec-
trum obtained performing a homodyne detection in the far
field with symmetric detectors: the usual connection between
squeezing and quantum correlations is exhibited, both side of
the same phenomenon �15�. More specifically, the spatial en-
tanglement in the far field arises from the correlations be-
tween the modes âq�eiq.x and â−q�e−iq.x. As âq and â−q are
EPR entangled beams, it is well know that the combination
of modes

âq + â−q

	2
� cos�q . x� ,

âq − â−q

	2
� sin�q . x� , �26�

will be squeezed with respect to two orthogonal quadrature
components. The modes proportional to cos�q .x� are the
even modes: using an even detection scheme, it is possible to
see squeezing, as already found in the previous section. Note
that if we use an odd detection scheme �symmetrical detec-
tors with an odd local oscillator�, it will be also possible to
see squeezing in the far field, but on the orthogonal quadra-
ture.

In order to ascertain the inseparable character of this
physical state, Duan et al. �16� showed that one needs to
make two joint correlation measurements on noncommuting
observables on the system. They have shown that in the case
of Gaussian states, there exists a criterion of separability in
terms of the quantity S12, which we will call “separability,”
and is given by

S12�� =
1

2
�V�L

− �� + V�L+�/2
+ ��� . �27�

The suddicient Duan criterion for inseparability is given by

S12�� � 1. �28�

First, we can perform a joint correlation measurement us-
ing two split detectors of same but variable size as depicted
in Fig. 7. Figure 8 shows the evolution of the separability at
zero frequency S12�0�=S12 for different b parameters, in
function of the detector radius scaled to lcohf =�f /2�wp �12�.
Notice that results are the same as a local squeezing mea-
surement using a circular detector of variable radius �� cen-
tered on the optical axis.

Figure 9 shows the results obtained in the case of two
symmetrical pixels �pixel of size equal to the coherence
length lcohf�, for different b values, in function of the distance
between the two pixels �.

FIG. 7. �Color online� Detection scheme for the inseparability
measurement.
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IV. PIXEL-BASED MODEL FOR THE SELF-IMAGING
OPO

We have so far described the nonclassical properties of
the self-imaging OPO using a detection-based geometry,
very appropriate to describe actual experiments. One can use
another approach based on the spatial properties of the para-
metric process itself, which gives a different insight into the
physics of the system. This powerful technique was first used
in �17,18�, in the context of bipartite spontaneous parametric
down conversion, to characterize and optimize the entangle-
ment between the signal and idler photons using a Schmidt
decomposition approach based on the singular value decom-
position of the interaction Hamiltonian. The technique has
been recently extended by �19� to characterize the quantum
properties of a single highly multimode quantum system,
namely, the frequency comb generated by a synchronously
pumped optical parametric oscillator, made of thousands of
different frequency modes around the subharmonic fre-
quency, which cannot be unambiguously separated into two

parts: the signal modes and idler modes. In this paper, we
extend the technique to the case of a multitransverse-mode
frequency degenerate OPO.

Let us pixelize the transverse space with pixels much
smaller than lcoh and develop the OPO equations onto the
pixel operators. To simplify the system, we can first consider
a one-dimensional pixelization. Let L be the size of the pix-
elized zone and N be the number of pixels. The pixel i is
defined as the zone of size L

N near the abscissa xi= i L
N , with i

ranging from −N /2 to N /2. The pixel operator is therefore

B̂i = �
Si

dxB̂�x� . �29�

The pixel size must be chosen small enough to ensure the
constant value of Ap and Kint on every pixel. In this case, the
Kernel can be written as

Kint�i, j� = Kint�xi,x j� �30�

and the evolution equation �Eq. �5�� at zero frequency then
becomes

− �B̂i +
gL

N
�

j

Kint�i, j�B̂j
† + 	2�B̂i

in = 0. �31�

To solve these N-coupled equations, one must find the
eigenvectors and eigenvalues of the symmetric matrix
Kint�i , j�. The K matrix and its spectrum are represented on
Fig. 10 in the case of lc=1 cm and wp=300 �m. Its diago-
nalization gives a set of eigenmodes with corresponding ei-
genvalues. Some of these eigenmodes are represented on
Fig. 11; they are very close to a set of Hermite-Gauss poly-
nomials shapes whose characteristic waist is imposed, in our
case, by the pump waist.

These modes form a basis of uncorrelated modes of the

emitted light. Indeed, let us call Ĉk the eigenmode of eigen-

value �k. As Kint�i , j� is both self-adjoint and real, �k and Ĉk
components are all real. In this basis, Eq. �31� can be rewrit-
ten as set of equations, one per mode

− �Ĉk +
gL

N
�kĈk

† + 	2�Ĉk
in = 0. �32�

These equations can again be decoupled, using the
quadrature operators,

Ĉk+ = Ĉk + Ĉk
†, �33�

Ĉk− = − i�Ĉk − Ĉk
†� . �34�

The final set of equations is now given by

− �Ĉk+ +
gL

N
�kĈk+ + 	2�Ĉk+

in = 0, �35�

− �Ĉk− −
gL

N
�kĈk− + 	2�Ĉk−

in = 0. �36�

In this basis, using the input/output relations �Eq. �14��,
we can calculate the squeezing properties of the modes Ĉk�

out,

FIG. 8. �Color online� Inseparability at zero frequency, and at
resonance, as a function of the radial amplitude of the detector ��
�scaled to the coherence area lcohf�, in the finite pump regime and
far-field approach and for different values of b.

FIG. 9. �Color online� Inseparability at zero frequency, and at
resonance, as a function of the distance between the two pixels �
�scaled to the coherence area lcohf�, in the finite pump regime and
far-field approach and for different values of b.
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in the near field of the z=0 plane. Using the same method as
in �19�, the fluctuations at zero frequency of the quadratures

of the eigenmode Ĉk�
out, normalized to the shot-noise level, are

given by

Vk� = �k
� =

1 � r
�k

�max

1 � r
�k

�max

, �37�

where r is the pump power normalized to the threshold and
�max=maxk �k is the highest eigenvalue of Kint. �max is of

special interest since it is related to the pump power at
threshold and Cmax is the corresponding lasing mode. One
can see in the previous equation that for each mode, whose
eigenvalue is different from zero, one of its two variances is
bellow one, implying that it is nonclassical. However, for
eigenvalues very small compared to �max, the squeezing is
negligible. Thus, one can compute the number of relevant
mode of the system, for instance, using a threshold eigen-
value �about 10% of the maximum eigenvalue�. Another pos-
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FIG. 10. �Color online� �a�

Coupling matrix Kint between two
points of the crystal. �b� Spectrum
of this matrix.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (mm)

S
0

(u
.a

.)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (mm)

S
1

(u
.a

.)

(b)(a)

FIG. 11. �Color online� Shape
of the two first eigenvectors of
matrix Kint �red, plain line� for the
two highest positive eigenvalues
compared to the one of the pump
�blue, dotted line�.

LOPEZ et al. PHYSICAL REVIEW A 80, 043816 �2009�

043816-8



sibility is to calculate the cooperativity �17� defined from the
eigenvalues of the matrix

� =
���k

2�2

��k
4 . �38�

The obtained number of modes is very close to the one
defined in Eq. �10� in a one-dimensional case. For example,
using typical experimental values �1-cm-long crystal and a
300 �m pump at 532 nm, which are the values considered
on Figs. 10 and 11�, we find b=

wp

lcoh
=7.5 and �=6.8. This

means that in the two-dimensional case, our self-imaging
OPO can potentially excite 50 modes.

One should note that from these eigenmodes, it is possible
to find the noise properties of the pixel operators Bi

out after
the cavity, in the near field of the crystal, by inverting the
Kint matrix, which gives

B̂i�
out = �

k

VikĈk�
out = �

k

Vik�k
�Ĉk�

in , �39�

=�
kj

VikVjk�k
�B̂j�

in . �40�

If we inject this OPO with an image of any transverse
shape, this expression shows that through the decomposition
of the input image on the eigenmodes, one can have image
amplification.

Using these expressions, we can calculate the measured
fluctuations of the quadratures on a detector with an arbitrary
shape,

Vdet� =

�
ij�det

�B̂i�
outB̂j�

out�

�
i�det

��B̂i�
out�2�

. �41�

These numerical simulations show the exact same results as
the analytical results presented in Sec. III.

We thus have shown two ways of solving the problem,
each having different physical significance. Indeed, in the
approach of Sec. III, we have seen that the system has a
coherence area that defines the smallest mode having non-
classical properties. This is relevant of quantum imaging ap-
plications as it gives which pixel size one can address with

quantum techniques. In the present section, we have shown
that a proper description of the system consists of an eigen-
modes decomposition, modes that have Hermite-Gauss shape
and whose squeezing decreases with the mode number. How-
ever, these modes shape are complex to measure experimen-
tally.

V. CONCLUSION

In this paper, we have investigated the quantum properties
of a self-imaging OPO below threshold. We have shown that
it is a more efficient quantum resource than the confocal
OPO: it generates a multimode squeezed vacuum both in
near-field and far-field configurations, which can be mea-
sured using a local oscillator, which is not necessarily sym-
metric. In addition, the self-imaging OPO generates beams
that are EPR entangled in the far field, which is not the case
for the confocal OPO. We have outlined the important role of
the coherence length lcoh of the system, which gives the size
of the independently squeezed zones of the transverse plane.

We have also defined and characterized the eigenmodes of
the system. This allows us to determine the precise shape of
the spatial modes, which are independently and optimally
squeezed. Their number is roughly equal to the parameter
b=wp

2 / lcoh
2 encountered in the first part of the paper, which is

a kind of Fresnel number setting the number of spatial
modes, which can be independently excited in the system.

Self-imaging OPOs are therefore ideal devices to be used
in various quantum imaging procedures �2�, for example, for
parallel quantum information processing of complex images
or for the improvement of the extraction of information from
images beyond the standard quantum limit.
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