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Quantum imaging with a thermal source of fermions is analyzed and compared with that of bosons. Due to
the Pauli exclusive principle and Fermi-Dirac statistics, fermions can manifest antibunching effects in the
second-order correlation function. Our analysis finds that quantum imaging with free fermions can construct
dark patterns against a bright intensity background. This distinguishing feature highlights the quantum nature
of fermions without any classical analog. A scheme of magnifying ghost imaging of an electron microscope is
also proposed.
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I. INTRODUCTION

Quantum imaging has drawn much attention in recent
years �1�. Contrary to conventional optical imaging and in-
terference using coherent light, the quantum image is visible
in spatial intensity correlation measurement but not in the
intensities themselves. In the early studies, the schemes of
quantum imaging, such as “ghost” imaging, ghost interfer-
ence and subwavelength lithography, were proposed by using
an entangled two-photon source generated by spontaneous
parametric downconversion �2–5�. These effects were re-
garded as the evidence of quantum entanglement and nonlo-
cality. However, the understanding was challenged by the
later discoveries �6–10� that a thermal light source can play a
role similar to that of the entangled two-photon source in
those quantum imaging schemes. These effects can be ex-
plained by the spatial intensity correlation of the thermal
light source, which has been known since Hanbury-Brown
and Twiss �HBT� proposed a technique of intensity interfer-
ometry for measuring the angular sizes of visual stars �11�.
Far beyond the astronomical application, the HBT effect in-
volves fundamental arguments regarding, for example, clas-
sical vs quantum interpretation, and one-photon vs two-
photon interference, etc. and some of them is even revived in
the recent debate �12,13�. The HBT effect reflects the nature
of the high-order field correlation, either classical or quan-
tum field. The physics behind is that each point of a spatially
incoherent source produces coherence of the field at two
separate positions, after having traveled different paths, and
the coherent information can be acquired through the inten-
sity correlation measurement.

Since quantum mechanics was established, investigations
on interference and imaging have been extended from pho-
ton source to massive particle sources. In 1961 an actual
double-slit experiment with electrons was first performed by
Jönsson �14�. Since the interference of particles is governed
by quantum field, the experiment opened a gateway to fun-
damental tests of quantum mechanics. The extension also
found wide and powerful applications in electron microscopy

and electron holography. It is noteworthy that, in the first-
order interference and imaging observed by the intensity
measurement �i.e., one-particle detection�, the quantum fields
of bosons and fermions follow the same principle and thus
their basic phenomena behave the same. As for the high-
order correlation of the quantum fields, however, the quan-
tum interference in HBT effect shows bunching for bosons
and antibunching for fermions and has been demonstrated in
the experimental observations �15–19�. The bunching and
antibunching effects manifest the nature of quantum statistics
associated with exchange symmetry of wave function for
identical particles.

In this paper, we study quantum imaging in the intensity
correlation observation by using a thermal fermion source.
This extension is not trivial since, unlike the optical version,
the correlation of fermions concerns quantum nature without
any classical analog. Quantum imaging with fermions differs
from quantum imaging with bosons in that a dark image for
fermions while a bright one for bosons. The dark quantum
imaging may increase the visibility of the interference pat-
tern up to unit, which is not possible for thermal bosons.
Moreover, since the sources of massive particles are not co-
herent, the interference and imaging technique without the
requirement of spatial coherence may be practically useful,
such as for electron microscopy and holography. The paper is
organized as follows. In Sec. II, we recast the first- and
second-order correlation functions of multimode quantum
mixed state for both bosons and fermions. In Secs. III and IV,
the subwavelength interference and ghost imaging of fermi-
ons are discussed, respectively. An application of ghost im-
aging to electron microscope is proposed in Sec. V.

II. FIRST- AND SECOND-ORDER CORRELATION
FUNCTIONS OF MULTIMODE QUANTUM

MIXED STATES

We consider quasimonochromatic, noninteracting, nonrel-
ativistic, and polarized particles. It has been shown that for
both bosons �20� and fermions �21�, the correlation functions
of partially polarized or totally unpolarized particles can be
described by the correlation functions of polarized particles
and the degree of polarization. The quantum correlation
functions of fermions were theoretically discussed by Silver-
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man �22� and Tyc �23� who assumed a mixture of number
states with a Poissonian distribution of the particle numbers
where each particle has the same momentum distribution.
Here we recast the first- and second-order correlation func-
tions by considering a general multimode mixed state desig-
nated by �=�k�k, where the density operator for the mode
with wave vector k is assumed to be diagonal �k
=�nk

Pk�nk��nk�	nk�, with �nk
→�nk=0

� for bosons and
�nk

→�nk=0
1 for fermions due to the Pauli exclusion prin-

ciple. Pk�nk� is the particle number distribution for mode k.
We express the mixed state as

� = �
k

�k = �
k

�
nk

Pk�nk��nk�	nk�

= �
nk1

�
nk2

¯Pk1
�nk1

�Pk2
�nk2

� ¯ �nk1
,nk2

¯�	nk1
,nk2

¯� .

�1�

Let ak and ak
† be the annihilation and creation operators of

occupation number for mode k, respectively, the commuta-
tion relations are written as

�ak,ak��� = 0, �ak
†,ak�

† �� = 0, �ak,ak�
† �� = �kk�, �2�

where the commutation relation � �− and the anticommutation
relation � �+ are referred to bosons and fermions, respec-
tively. Using Eq. �2�, we arrive at the first-order correlation
function for state �1�

	ak
†ak�� = Tr��ak

†ak�� = �kk�	nk� , �3�

where the average occupation number 	nk�=�nk
nkPk�nk�

describes the power spectrum of the particle source. The
first-order correlation function �3� has the same form for both
bosons and fermions so that they show the same phenomena
in the first-order interference.

Since each mode of fermions has only two occupations,
0 and 1, the number distribution is given by Pk�nk�
= 	nk�nk / �1− 	nk��nk−1. However, bosons are assumed to
be in the thermal equilibrium, and Pk�nk� satisfies the Bose-
Einstein distribution, Pk�nk�= 	nk�nk / �1+ 	nk��nk+1. The
second-order correlation function is thus obtained as

	ak
†ak�

† ak�ak�� = 	ak
†ak��	ak�

† ak�� � 	ak
†ak��	ak�

† ak�� , �4�

where the positive and negative signs imply the bunching
effect for bosons and antibunching effect for fermions, re-
spectively.

We now consider a quantum field traveling along z
axis. In the paraxial approximation the field operator is
described as ��x ,z , t�=��x�exp�i�kz−�kt�� with ��x�
= �1 /
2���a�q�exp�iqx�dq, where k and �k are the carrier
wave number and frequency, respectively. For simplicity,
one-dimensional transverse wave number q and position x
are considered. Similar to a linear optical system, the trans-
mission of quantum field is given by

	�x� =� h�x,x����x��dx� =� h̃�x,− q�a�q�dq , �5�

where ��x� and 	�x� are the source and output fields, respec-

tively; h�x ,x�� is the impulse response function and h̃�x ,q�
= �1 /
2���h�x ,x��exp�−iqx��dx�. When the source is as-
sumed in the multimode state �1� with transverse mode index
q, Eqs. �3� and �4� are fulfilled with q replacing k. Using
Eqs. �3�–�5�, the first-order and second-order spatial correla-
tion functions of outgoing quantum field 	�x� can be ob-
tained to be

G�1��x1,x2� = 		†�x1�	�x2��

=� 	nq�h̃��x1,− q�h̃�x2,− q�dq , �6a�

G�2��x1,x2� = 		†�x1�	†�x2�	�x2�	�x1��

= G�1��x1,x1�G�1��x2,x2� � �G�1��x1,x2��2.

�6b�

In ghost imaging, however, the particles flux is divided into
two by a beamsplitter, each of which travels in individual
path characterized by the impulse response function
hj�x ,x���j=1,2�. Then the cross correlation functions are
written as

Gij
�1��x1,x2� = 		i

†�x1�	 j�x2��

=� 	nq�h̃i
��x1,− q�h̃j�x2,− q�dq,

�i = 1,2; j = 1,2� , �7a�

G12
�2��x1,x2� = 		1

†�x1�	2
†�x2�	2�x2�	1�x1��

= G11
�1��x1,x1�G22

�1��x2,x2� � �G12
�1��x1,x2��2.

�7b�

III. DARK SUBWAVELENGTH
INTERFERENCE FRINGE

Wang and Cao �9� first proposed that when a double slit
was illuminated by a multimode thermal light field, the in-
terference fringe is not visible in the intensity observation
but can be extracted through the spatial intensity correlation
measurement. Similar to an entangled two-photon source, the
fringe exhibits the subwavelength feature. The proposal was
soon demonstrated in the experiments �24,25�. Here we re-
consider this effect by comparing a fermion source with the
boson one.

In the scheme of double-slit interference, a double slit,
described by the transmission function D�x�=rect��x
−d /2� /b�+rect��x+d /2� /b� with slit width b and slit dis-
tance d, is placed at distance z0 from the source and distance
z from the detection screen. In the far-field limit, the impulse
response function of the scheme is approximately given by
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h̃D�x,− q� =
 k

2�iz


exp
i�kz0 + kz −
z0q2

2k
+

kx2

2z
��D̃� kx

z
− q� ,

�8�

where D̃�q�= �2b /
2��sinc�qb /2�cos�qd /2� is the Fourier
transform of the double-slit function D�x�. Substituting Eq.
�8� into Eq. �6a� we obtain

G�1��x1,x2� =
k

2�z
� 	nq�D̃�� kx1

z
− q�D̃� kx2

z
− q�dq . �9�

G�1��x ,x� describes first-order or one-particle double-slit in-
terference for both bosons and fermions. To be specific, we
assume a Gaussian spectrum for the source

	nq� =
	n�


2�w
exp�−

q2

2w2� , �10�

where w and 	n�=�	nq�dq are the spectral bandwidth and the
mean particle number of the source, respectively. In the nar-
row bandwidth limit, 	nq�→ 	n���q�, Eq. �9� has the analyti-
cal form

G�1��x1,x2� =
k	n�
2�z

D̃�� kx1

z
�D̃� kx2

z
� , �11�

which implies the first-order coherence. G�1��x ,x�
� �D̃�kx /z��2 describes perfect interference fringe. Therefore
the quantum mixed state �1� with a narrow bandwidth pos-
sesses good spatial coherence and can carry out the first-
order interference with a high visibility. It is noticeable that
in terms of the first-order interference there is no difference
between bosons and fermions. In the broad bandwidth limit,
however, 	nq�→ 	n� /w, Eq. �9� becomes

G�1��x1,x2� =
k	n�


2�zw
D̃
 k

z
�x2 − x1�� . �12�

The first-order interference disappears owing to G�1��x ,x�
� D̃�0�. Physically, the degradation of the first-order interfer-
ence can be explained by the fact that the multimode quan-
tum field illuminating the double slit propagates in various
directions. Nevertheless, Eq. �12� implicates that the infor-
mation of interference has not been destroyed but preserved
in the spatial correlation of two positions, which is unable to
be observed in one-particle detection.

Two-particle correlation measurement in the observation
plane is proportional to 		†�x1�	�x1�	†�x2�	�x2��. When x1
�x2, the second-order correlation function G�2��x1 ,x2�
�		†�x1�	†�x2�	�x2�	�x1��= 		†�x1�	�x1�	†�x2�	�x2�� is
valid for both bosons and fermions. However, G�2��x ,x� de-
scribes a two-particle absorption intensity distribution for
bosons while G�2��x ,x�=0 for any quantum state of fermions
due to the Pauli exclusion principle. We have demonstrated
that the second-order correlation Eq. �6b� is hold for state
�1�. Therefore, coherence information contained in the first-
order correlation function G�1��x1 ,x2� can be extracted
through the two-particle correlation measurement.

For simplicity, we focus on the correlation between a pair
of symmetric positions, −x and x. In the broad bandwidth
limit we obtain

G�2��− x,x� � D̃2�0� � D̃2�2kx/z�

� 1 � sinc2�b

2

2kx

z
�cos2�d

2

2kx

z
� . �13�

Equation �13� shows that the two-particle interference for the
incoherent fermion source reveals a dark and inverted fringe
in the bright background with perfect visibility 100%,
whereas for thermal bosons, as we have known, it displays a
bright fringe with the maximum visibility 33.3% �9�. Both of
them exhibit subwavelength feature: the spacing of fringes is
the half of that for the first-order interference.

For the source with the spectral distribution �Eq. �10��,
using Eqs. �6�, �8�, and �9�, we calculate the second-order
correlation function G�2��−X ,X� of the normalized transverse
position X=xkb / �2�z�. Figure 1 shows the two-particle in-
terference patterns of fermions �left column� and bosons
�right column� for different spectral bandwidths. When the
normalized bandwidth is large, i.e., W�wb /2�=2.5, the in-
terference fringe of the fermions �Fig. 1�a�� is a “dark” one.
This phenomenon is particularly interesting since it implies
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FIG. 1. Subwavelength interference patterns of a double-slit il-
luminated by a thermal fermion source in �a�–�d� and a boson
source in �e�–�h�. The multimode thermal source has the Gaussian
spectral distributions with different normalized bandwidth W
=wb / �2��. X=xkb / �2�z� is the normalized position in the detec-
tion plane, and the double-slit parameters are taken to be b=d /3.
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that the second-order interference can exhibit both wave and
particle natures. The interference reflects the wave nature,
while the bunching or antibunching effect in two-particle in-
terference basically can be regarded as the particle nature.
In the second-order correlation the near-degenerate particles
contribute to the constructive interference, resulting in the
maximum for bosons and the minimum for fermions due
to the Pauli exclusion principle. As the bandwidth is de-
creased, e.g., W=0.5, the intensity distribution �the first term
of the right part in Eq. �6b�� exhibits the bright fringe,
and the second-order interference fringe for fermions varies
from dark to “half bright” in Fig. 1�b�. Furthermore, in the
narrow bandwidth limit, both the terms of the right part

in Eq. �6b� are closer to D̃2�kx /z�. As a result, their sum
�for bosons� gives the fringe as the first-order one, while
their difference �for fermions� keeps the subwavelength fea-
ture �see Figs. 1�h� and 1�d��. We now survey this effect by
evaluating the normalized correlation function g�2��−X ,X�
=G�2��−X ,X� / �G�1��−X ,−X�G�1��X ,X��, as shown in Fig. 2.
We can see explicit bunching and antibunching feature in the
interference: the bright fringes for bosons �dashed lines� and
the dark fringes for fermions �solid lines�. When the band-
width is very small such as W=0.0002 in Fig. 2�d�, it has
g�2��−X ,X��0 for fermions and g�2��−X ,X��2 for bosons,
verifying that the two terms of the right part in Eq. �6b� are
equal.

IV. DARK GHOST IMAGING

Ghost imaging, as one of the most important aspects in
quantum imaging, manifests prominent spatial correlation
feature. In ghost imaging for thermal light �7,8,10,26–29�, a
source beam is divided into two parts: one illuminates an
object �the test beam� and the other travels freely �the refer-
ence beam�. Though the intensity of each beam is homoge-
neously distributed, the coherent information of the object
can be extracted through the intensity correlation measure-
ment of the two beams in such a way that the spatial reso-
lution measurement is performed in the reference beam
rather than in the test beam. By analyzing different correla-
tion features between entangled photon pairs and thermal

light, in Ref. �26�, Cao et al. first pointed out that thermal
light can perform ghost imaging without using any lenses.
The lensless ghost imaging effect was later demonstrated ex-
perimentally �27–29�. Lensless imaging is phase insensitive
and occurs at near field, i.e., the distance from source to
image to be detected is the same as that from source to ob-
ject. However, the far-field diffraction pattern of an object
may contain its complete information including both ampli-
tude and phase modulations. Bache et al. �30� observed ex-
perimentally correlated imaging of a pure phase object with a
pseudothermal light source. This technique is of particular
significance for microscopy using massive particle sources,
such as electron microscopy, since these sources are incoher-
ent.

In ghost imaging using a particle source, the flux of par-
ticles is divided into two parts by a beamsplitter, for ex-
ample, diffraction from thin crystal lamellae offers a good
beam splitting mechanism for electrons �31�. One flux pen-
etrates through an object, described by the transmission func-
tion T�x�, which is placed at distances z2 and z3 from the
source and the detection plane in the test arm, respectively.
The other flux travels freely a distance of z1 before arriving
at the detector in the reference arm. In the paraxial approxi-
mation, the impulse response functions for the reference and
test arms are written as

h̃1�x1,− q� =
1


2�
exp
i�kz1 + qx1 −

z1q2

2k
�� , �14a�

h̃2�x2,− q� =
 k

2�iz3
exp
i�kz2 + kz3 −

z2q2

2k
+

kx2
2

2z3
��



1


2�
� T�x�exp
− i�k

x2

z3
− q�x + i

kx2

2z3
�dx ,

�14b�

respectively.
We first consider the broadband limit, 	nq�→ 	n� /w,

for which the analytical solutions can be acquired. Using
Eqs. �7a� and �14�, we obtain G11

�1��x1 ,x1�= 	n� / �2�� and
G22

�1��x2=0 ,x2=0�= k	n�
2�z3w�dx�T�x��2. Thus the first term in Eq.

�7b� contributes a constant background independent of x1.
However, the first-order cross-correlation function is ob-
tained as

�G12
�1��x1,0��2 =

k	n�2

8�3z3w2�� � dqdx


exp
i
�z1 − z2�q2

2k
− iq�x1 − x��T�x�


exp
i
kx2

2z3
��2

. �15�

If z1=z2, Eq. �15� is reduced to
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FIG. 2. Normalized second-order correlation functions
g�2��−X ,X� corresponding to Fig. 1. Solid lines and dashed lines are
for the fermion source and the boson source, respectively.
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�G12
�1��x1,0��2 =

k	n�2

2�z3w2 �T�x1��2, �16�

where lensless ghost imaging occurs for an amplitude object.
Otherwise, Eq. �15� becomes

�G12
�1��x1,0��2 =

k2	n�2

4�2z3�z1 − z2�w2�� T�x�


exp
− ik
x1x

z2 − z1
− i

kx2

2zef f
�dx�2

, �17�

where the effective diffraction length is defined as zef f
=z3�z1−z2� / �z3+z2−z1�. If the two detectors have the same
distances from the source, z1=z2+z3, the quadratic phase fac-
tor in the integration disappears, and we obtain

�G12
�1��x1,0��2 =

k2	n�2

2�z3
2w2�T̃�−

kx1

z3
��2

, �18�

where T̃�q� is the Fourier transform of T�x�. Using the effec-
tive diffraction length zef f, we may define the effective
Fresnel number Fef f =R2 / ��zef f�, where R is the size of the
object. When Fef f 
1, the quadratic phase factor can be ne-
glected and the Fraunhofer diffraction pattern appears in the
intensity correlation measurement. However, the Fresnel
number in the test arm F=R2 / ��z3� could be very different
from Fef f so the interference pattern in ghost imaging will
not be the same as that for coherent imaging in the test arm.

For the general spectral distribution �Eq. �10��, the
analytical solutions are unavailable. Then we calculate the
normalized second-order correlation function g�2��x1 ,0�
=G12

�2��x1 ,0� / �G11
�1��x1 ,x1�G22

�1��0,0�� numerically. As an ex-
ample for fermions, we consider an electron imaging system,
where the source consists of nonrelativistic electrons of en-
ergy 1 keV, corresponding to the wavelength �=0.0388 nm.
The object to be imaged is a double slit with b=0.6 �m and
d=1.8 �m. The divergence angle of the electron beam 2�
is assumed to be 10−3 rad. It follows that the transverse
coherence length can be obtained by ls=� / �2��=3.88

10−2 �m �32�, and the normalized spectral bandwidth of
the electron source is thus W=wb / �2��=b / �2�ls��2.5.
Since the transverse coherent length is much smaller than the
size of the double slit, the interference will not occur in the
intensity measurement. In the above ghost imaging scheme,
we set z2=50 mm and z3=50 mm and present g�2��X1 ,0�
versus the normalized position X1=x1kb / �2�z3� in Fig. 3.
We can see that, for the fermions, the images are the dark
patterns against bright background. As z1 is changed from
100 mm �z1=z2+z3� to 50 mm �z1=z2�, the patterns in the
intensity correlation measurements exhibit the conversion
from the Fraunhofer diffraction pattern �Fig. 3�a��, through
the Fresnel diffraction pattern �Fig. 3�b��, and finally to the
image �Fig. 3�d�� of the double slit, in agreement with the
analytical result in the broadband limit.

V. ELECTRON MICROSCOPY USING GHOST IMAGING

In traditional transmission electron microscope �TEM�,
an object of transmission function T�x� is placed close to

the front-focal plane of the objective lens, and its Fourier

diffraction power spectrum �T̃�kxf / fo��2 can be recorded in
the back-focal plane, where fo is the focal length of the lens
and xf, the transverse coordinate in the back-focal plane �33�.
The diffraction pattern can be further magnified by following
lenses. To obtain the sharpest diffraction pattern, the con-
denser system is adjusted to illuminate the specimen with
a parallel beam of electrons, satisfying better spatial coher-
ence. For example, the beam is effectively a parallel one
if its divergence angle 2� is smaller than 10−4 rad after col-
limation �34�. Both the transverse coherence length ls and
the intensity j of the beam are related to the beam diver-
gence angle 2� as ls=� / �2�� and j=�B�2, respectively,
where B is the beam brightness. Since B is constant in any
cross section of an electron beam �32�, there is a conflict
between the transverse coherence length and the beam inten-
sity. In ghost imaging, however, the transverse coherence
length of the beam can be arbitrarily small so the conflict can
be avoided.

In the electron microscopy, electron flux can readily pen-
etrate through specimens so the specimens are regarded as
essentially phase objects �35�. Ghost imaging for a phase
object has been studied in Refs. �30,36,37�, in which the
diffraction pattern of the phase object is recorded. For a prac-
tical electron microscope, the diffraction pattern must be fur-
ther magnified by a lens system. In the following, we pro-
pose an electron microscope sketched in Fig. 4 and discuss
its feasibility. In the traditional TEM, the Fourier spatial-
frequency spectrum of an object is performed through an
objective lens. However, the objective lens can be saved in
the present scheme, as long as z1=z2+z3 is satisfied. In fact,
the lens in Fig. 4 plays the role of magnifying the diffraction
pattern. Let U and V be the object and image distances of the
magnifying lens, respectively. For an ideal lens, the impulse
response function from the object plane to the imaging one is
given by
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FIG. 3. Normalized second-order correlation functions
g�2��X1 ,0� in ghost imaging of a double-slit using a thermal electron
source. X1=x1kb / �2�z3� is the normalized position in the detection
plane. The normalized bandwidth of the source is taken as
W=2.5.
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where xo and xm are the transverse coordinates in the object
and imaging planes, respectively. As shown in Fig. 4, both
the reference and test beams share the same lens. Taking into
account the impulse response functions of the two arms in
Eq. �14�, we obtain the two new ones from the source to the
detection plane
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In the broadband limit, we obtain G11
�1��x1 ,x1�= 	n� / �2�M�

and G22
�1��x2=0 ,x2=0�= �k	n� /2�z3wM��dx�T�x��2, where M

=V /U represents the magnification. Hence the intensity dis-

tributions of the two beams are homogeneous. The first-order
cross-correlation function is

�G12
�1��x1,0��2 =

k2	n�2

2�z3
2w2M2�T̃� kx1

Mz3
��2

, �21�

where z1=z2+z3 is used. In comparison with Eq. �18� the
size of the diffraction pattern is magnified by M times.

As an example, we consider a phase double-slit as the
object, whose transmission function is given by

Tph�x�

=�exp�i�� , x � 
−
d + b

2
,−

d − b

2
�,
d − b

2
,
d + b

2
�

1, x � �−
d − b

2
,
d − b

2
�

0, others.
�

�22�

The Fourier transform of the phase double slit is written as

T̃ph�q� = 1/
2���d − b�sinc��d − b�q/2�

+ 2b exp�i��sinc�bq/2�cos�dq/2�� . �23�

When d=3b, one obtains T̃ph�0�=0. Unlike the interference
fringe of an amplitude double slit, the interference minimum
appears at the symmetric center of the pattern. Hence we
take b=0.6 �m and d=1.8 �m for the phase double slit in
the numerical simulation.

For the general spectral distribution �Eq. �10��, we calcu-
late the normalized second-order correlation function
g�2��X1 ,0� for different spectral bandwidths and plot them in
Fig. 5, in which we take �=0.0388 nm, z1=100 mm, z2
=50 mm, z3=50 mm, and the magnification of the lens sys-
tem M =1000. As indicated above, the normalized spectral
bandwidth W=2.5 in Fig. 5�a� corresponds to the beam di-
vergence angle 2��10−3 rad, much larger than that in the
traditional TEM. Figure 5�a� shows the Fraunhofer diffrac-
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FIG. 4. Scheme of transmission electron microscope using ghost
imaging. A possible beamsplitting device is sketched in the inset,
where incident beam can be split by two crystal foils C1 and C2

through Bragg reflection, and aperture A picks out two outgoing
beams.
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FIG. 5. Normalized second-order correlation functions
g�2��X1 ,0� in the ghost imaging scheme of Fig. 4 for a phase double
slit. W is the normalized spectral bandwidth of the thermal electron
source, and X1=x1kb / �2�z3� is the normalized position in the de-
tection plane.
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tion pattern of the phase double slit, in a good agreement
with Eq. �23�, where q=2�X1 / �Mb�. As expected, the dif-
fraction pattern is upside down with respect to that for ther-
mal light. The spacing of the two minima is �X1=500, cor-
responding to a magnified spacing �x1=Mz3� / �2b��1.6

10−3 m in the real coordinate. As the bandwidth is de-
creased, the diffraction fringes degrade gradually. In Fig.
5�d�, where W=0.04 corresponds to 2��1.6
10−5 rad and
ls�2.4 �m, the coherent length of the source ls is about the
same order as the object size, that is, the object is illuminated
coherently. As a result, the two beams in the scheme are not
correlated and the correlated diffraction fringe disappears.

VI. DISCUSSION AND CONCLUSION

The theoretical discussion above is concentrated on the
spatial aspect of quantum imaging by neglecting the effect of
temporal correlation and detection system. We have shown
that, in this ideal case, the maximum visibility of quantum
imaging for thermal fermions is 100% while it is 33.3% for
thermal bosons. It is worth noting that it has taken nearly 50
years from the original HBT experiment �11� to the recent
anticorrelation experiment for free electron �18�. One of the
technical barriers to experimentally observing HBT effect for
fermions comes from their very short coherence time. For
example, the coherence time Tc for free electron is of the
order of 10−14 s in the experiment of Ref. �18�. The time
resolution Tr of the fastest detectors available are about a
thousand times greater than Tc. This will greatly decrease the
visibility of quantum imaging. Under the assumption of
cross-spectral purity, the average rate of coincidence counter
can be obtained as �20,38�

Rc � 1 � �Tc/Tr��g�1��x1,x2��2, �Tc 
 Tr� , �24�

where the normalized first-order correlation function
is g�1��x1 ,x2�=G�1��x1 ,x2� /
G�1��x1 ,x1�G�1��x2 ,x2�. Accord-
ingly, the visibility of quantum imaging decreases about
Tc /Tr.

The average occupation number of particles in the same
quantum state, 	nk�, which is also called the degeneracy,
plays an important role in particle correlation experiments
�38,39�. It is clear that 	nk��1 for fermions. Mandel and
Wolf �20� arrived that the normalized fluctuation correlation
registered by two detectors is proportional to the beam de-
generacy when it is low. For a realistic fermionic source the
degeneracy is very low so that the observation of anticorre-
lation signal is difficult. The degeneracy is proportional to
the source brightness �38,39�. With the advance of high-
brightness field electron sources in recent years, the experi-
mental observation of anticorrelation of free electrons be-
comes feasible. Likewise, the way to realize dark quantum
imaging is opening.

In summary, we have shown that fermions and bosons
behave the same phenomena in the first-order spatial inter-
ference and the different ones in the second-order spatial
interference. As one-particle effect, the first-order interfer-
ence reflects mainly the wave nature. However, the quantum
statistical property of particles has been involved in the
second-order interference. The antibunching effect and Pauli
exclusion of fermions make coherent information in the
second-order field correlation embedded in the intensity
background, resulting in dark image. In this sense, quantum
imaging for fermions is particularly interesting to manifest
both wave and particle nature simultaneously. Furthermore,
quantum imaging of massive particles is valuable since their
coherent sources are unavailable. In light of this, we pro-
posed a magnifying ghost imaging for electron microscopy,
which can release the requirement of coherence in the tradi-
tional TEM.
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