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Irregular spin angular momentum transfer from light to small birefringent particles
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The transfer of spin angular momentum from photons to small particles is a key experiment of quantum
physics. The particles rotate clockwise or counterclockwise depending on the polarization of the light beam
which holds them in an optical trap. We show that even perfectly disk shaped particles will in general not rotate
with a constant angular speed. The particles will periodically accelerate and decelerate their rotational motion
due to a varying spin angular momentum transfer from the light. Using the Poincaré sphere we derive the
equation of motion of a birefringent plate and verify the results by measuring the time dependent rotation of
small crystals of Hg(I) iodide and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) in the trap of po-
larized optical tweezers. For small ellipticities of the polarized light in the tweezers the plate stops in a fixed
orientation relative to the axes of the light ellipse. We discuss the origin of this halt and propose an application

of small birefringent plates as self-adjusting optical retarders in micro-optics.
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I. INTRODUCTION

In 1935, Beth was the first to show that the spin angular
momentum of light could be transferred to a macroscopic
birefringent plate, which started to rotate in a polarized light
beam [1]. Many years later, Friese et al. [2] repeated the
experiment with microscopic calcite particles held in optical
tweezers. These much smaller platelets rotate fast in the po-
larized laser beam [3,4]. Besides being a key experiment in
physics, the spin transfer has also applications in microfluid-
ics and biophysics [5-7]. There are other ways of rotating a
small particle with the help of light [8—11]. But in contrast to
most of these ways, a rotation driven by spin transfer can be
simply controlled by controlling the polarization of the
tweezing beam. And the amount of spin transfer is a crucial
quantity in many applications of the optical tweezers [6,12].
In this work we present a general theoretical model for the
transfer process of spin angular momentum from light to
rotating birefringent media. The polarization of light and
thus the expectation value of the photon spin can be visual-
ized with the help of the Poincaré sphere [13,14]. It is similar
to the Bloch sphere and is used in commercially available
polarimeters (THOR) to display the polarization state of light.
Each point on the surface of this sphere is the geometric
locus of a certain polarization of the light. In order to track
the polarization changes which the light undergoes through
optical elements, one considers rotations [elements of the
special orthogonal group SO(3)] along small or great circles
on the sphere and then finds the resulting polarization with
the standard formulas of spherical geometry. This method is
equivalent to multiplying Jones matrices [elements of the
special unitary group SU(2)], but it has significant advan-
tages. We also present two results of our investigations: the
transfer of spin angular momentum from photons to a rotat-
ing birefringent particle depends on its actual orientation and
is, in general, not constant. In our experiment we analyze the
time dependence of the rotational speed of the particle and
compare it with a theoretical model using the Poincaré
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sphere. Our results show that only half wave retardation
plates rotate at constant speed in an elliptically polarized
light beam (w,>0). In addition, we found that under certain
polarization conditions a birefringent platelet starts to rotate,
but it then stops with a fixed orientation of its birefringent
axes. The platelet then acts as a pseudo-optically active plate
and the effect can be used to self-adjust small optical parts
on optical microchips.

II. EXPECTATION VALUE OF THE PHOTON
SPIN ON THE POINCARE SPHERE

An arbitrary elliptical state of polarization P on the
Poincaré sphere is given by

P =sin(8/2)exp(+ i@/2)R + cos(82)exp(—i@/2)L, (1)

where R and L are the vectors which represent the normal-
ized right and left circularly polarized light waves in Carte-
sian coordinates,

(2a)

1
L=— i(Qr—k ,
V’zeXp[l( ! Z)](exp(+i7r/2)>

exp(— im/2) ) ' (2b)

We use the “optical convention” where the electrical vector
of a right circularly polarized wave follows a right handed
screw [13,15]. @=2\ is the azimuth or longitude and
90°-6=2w is the altitude or latitude of P on the Poincaré
sphere. A is the tilt angle of the light ellipse with respect to
the x axis and w is the ellipticity tan w= *=b/a, where a, b
are the large and small half axes of the light ellipse and the
P, sign characterizes a left handedness of the elliptical po-
larization P and its locus on the upper half of the sphere [13]
(see Fig. 1).

The helicity of right (left) circularly polarized light is +1
(=1): §.|Ry=+1#|R) and §,|Ly=—1%|L), which can be inter-

R= Lrexp[i(ﬂt - kz)](
V2
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FIG. 1. Polarization of light on the Poincaré sphere. ¢=2\ is the
azimuth and 90°-6=2w the altitude of the point P. N\ is the tilt
angle of the light ellipse with respect to the x axis; w is the ellip-
ticity tan w= *£b/a. The (%) sign characterizes the handedness of
the elliptical polarization P.

preted as the two spin states of a photon. We then find the
expectation value for the spin angular momentum of a pho-
ton in a light wave with polarization P from Eq. (1),

(P

§|P)=—=% cos §=—1 sin 2w. (3)
This expectation value does not depend on the azimuth. This
is evident since the azimuth angle defines the orientation of
the light ellipse in an arbitrary coordinate system which we
can choose freely. Thus, all polarization states on the same
altitude of the Poincaré sphere have the same expectation
value for the spin angular momentum of their photons. As a
consequence, an optical active plate, which transforms the
polarization only along the altitude, does not change the ex-
pectation value for the spin angular momentum of the pho-
ton. On the other hand, every birefringent plate, which
changes the ellipticity of the light, changes the expectation
value for the photon’s spin angular momentum. This is the
reason why angular momentum can be transferred from light
to birefringent retardation plates, an effect, which we will
study in the following. Note that the expectation value for
the spin angular momentum [Eq. (3)] does not depend on the
energy 7{) of the photon very much in contrast to linear
momentum.

III. ANGULAR MOMENTUM TRANSFER FROM LIGHT
TO BIREFRINGENT RETARDATION PLATES

The conservation of angular momentum is a consequence
of the isotropy of space. If light passes an anisotropic bire-
fringent plate and changes its polarization and therefore its
altitudinal position on the Poincaré sphere, it changes its an-
gular momentum and the plate starts to rotate to conserve it.
The largest spin angular momentum transfer of a single pho-
ton to a birefringent plate is 2% when the photon is right
circularly polarized and passes a A\/2 retardation plate to
become left circularly polarized.
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FIG. 2. Angular momentum transfer from light to a birefringent
plate. The linear birefringent plate, whose fast axis is oriented at the
azimuth angle 2\ with respect to the horizontal of the coordinate
system, transforms the incident polarization state Py(2\g,2wq)
along the arc A into the polarization state P;(2\,2w,) behind the
plate. The length of the arc is given by the retardation A of the
plate.

A most useful property of the Poincaré sphere is the
simple representation of the change in polarization in a linear
birefringent retardation plate. In this plate a polarization P,
is transformed into a polarization P;. The retardation plate is
characterized by its orientation angle 2\ of its fast axis on
the equator of the Poincaré sphere and by its retardation
angle A (Fig. 2). The polarizations Pj,P; now lie on the
beginning and the end of a circular arc of length A around
the position of the fast axis on the sphere, drawn from P in
a counterclockwise sense [13,14]. Usually this arc is part of a
small circle around the point 2\ on the equator.

Linear birefringent half wave plates transfer a polarization
state from an altitude above the equator of the Poincaré
sphere to a polarization state with the same altitude below
the equator and vice versa (2w, =—2wy). This means that the
spin angular momentum transfer to the plate is a constant
regardless of the plate’s orientation and does not change
when the plate rotates [14]. This is not the case for birefrin-
gent plates with other retardations. In general, the drive due
to spin angular momentum transfer varies during the plate’s
rotation and leads to an oscillatory rotational acceleration
and deceleration. In the following we want to calculate the
spin angular momentum transfer from a general incident po-
larization P, to a linear birefringent plate of retardation A
using our tools on the Poincaré sphere.

Figure 2 shows the initial and final polarization states as
well as the evolution between them. The linear birefringent
plate with the azimuth angle 2\ of its fast axis transforms the
incident polarization state Py(2\g,2w,) on a small circle
with radius ¢ on the arc A (its retardation) into the polariza-
tion state P{(2\;,2w,) behind the plate. From the basic equa-
tions of spherical geometry for rectangular triangles the spin
angular momentum transfer to the plate can be calculated.
One first determines sin 2w;=sin(180°~A—-7)sin ¢ and
separates A and 7y by the addition theorem. Then sin vy is
calculated from cos y=tan(2A\y—2\)cot c. After insertion
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one finds that the average spin angular momentum transfer
per photon to a plate with retardation A is

fi sin 2w, — i sin 2w, = A{sin 2wy(cos A — 1)
+cos 2w, sin A sin(2\g — 2\)}.
4)

This angular momentum transfer consists of two terms: the
first one is zero at the equator and extreme at the poles and
does not depend on the orientation of the plate. It is propor-
tional to the expectation value for the spin angular momen-
tum of the incident photons and thus proportional to the el-
lipticity of the polarization. It provides a constant torque on
the plate and drives its rotation.

The second term is zero for circularly polarized light (at
the poles) and extreme for linearly polarized light (on the
equator of the sphere). This term describes the torque of an
electric field onto the induced electric dipole moment in the
direction of the slow axis of the plate and inverts its sign at
A=\, [16]. The physical reason of this second term is the
following: the elliptical electric field of the light wave in-
duces an electric dipole in the transparent optically aniso-
tropic plate and causes a torque like the earth magnetic field
on a compass needle or like an electric field on elongated
particles [7]. This torque varies in magnitude and direction
during the rotation of the platelet. Linearly polarized light
will lead to maximum torque and zero rotational drive.

IV. DYNAMICS OF A SMALL BIREFRINGENT PLATELET
IN A POLARIZED LIGHT BEAM

The angular momentum transfer per second is the torque
which acts onto the birefringent platelet. We have to multiply
Eq. (4) with the number N of the photons per unit time and
find the equation of motion,

d’\ ,
@W = N#i{sin 2wy(cos A — 1)

d\
+cos 2w, sin A sin(2\g—2\)} - 7];, (5)

where © is the moment of inertia of the platelet and d’\/dr*
is its angular acceleration. To consider the realistic case, in
which the birefringent platelet is suspended in a viscous lig-
uid, we have subtracted a Stokes friction term 77‘(11—); propor-
tional to the angular velocity of the plate.

We solved Eq. (5) numerically (MATHLAB: ODE23); the
results for a quarter wave plate (A=1r/2) are shown in Fig. 3
and depend mainly on the ellipticity w, of the incident light.
Two typical solutions are found: for large ellipticities the
platelet rotates with periodically varying angular speeds; for
small ellipticities (including linear polarization) it performs
a damped oscillation and then stops at a fixed angle. In
the limiting case, where the incident light has a circular
polarization—with the extreme ellipticity wy=/4—the ro-
tation angle \ of the quarter wave plate increases quadratic
in time until friction compensates the acceleration. After this
transient period the rotation angle increases linearly with
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FIG. 3. Rotation angle of a birefringent platelet A=7/2 versus
time at three different incident states of polarization.

time and the angular velocity becomes a constant, very much
like the linear fall of a mass through the atmosphere in the
gravitational field of the earth. The same linear behavior is
obtained if the platelet is a half wave plate (A=). In this
case, the second term in the acceleration [Eq. (5)] vanishes
and only the pure rotation term persists (see also below). If
the incident light has an elliptical polarization with a larger
ellipticity, an oscillation due to the interaction of the light’s
anisotropic electric field with the induced electric polariza-
tion in the plate (the compass needle effect) is superimposed
on the rotation with constant velocity. From the inversion
symmetry of the platelet and the very high frequency of the
light in the tweezers we expect an oscillation with the period
7. For incident light with a small ellipticity—that is with a
slender light ellipse—this effect overbalances and the plate-
let stops at a fixed orientation angle after a transient damped
oscillation.

This fixed orientation angle can again be illustrated on the
Poincaré sphere [Fig. 4]. If the birefringent platelet stops, the
momentum transfer onto the platelet must be zero. This
means that the incident light P, and the light in the exit P,
have the same angular momentum w,=w; [Eq. (4)] and thus
lie on the same altitude. In principle, there are two possible
positions of the platelet on the equator of the sphere, but the
only stable one is the one where the slow axis lies exactly in
the center of the smaller arc(PyP,). The polarization state
inside the plate now develops clockwise along the arc(PyP,),
which results in a rotation of the light ellipse from the ori-
entation angle A\ to angle \, (Fig. 4). In contrast to a com-
pass needle, which has its potential minimum in the exact
direction of the magnetic field, the slow axis will orient near
the large axis of the light ellipse only if the retardation is
small or nearly 2 or if the incident light is nearly linearly
polarized. With spherical trigonometry we find for the orien-
tation A, of the slow axis of the plate in the halt position,

sin(2A; — 2\() =tan 2w, tan A/2, (6)

a result we would also obtain if we set Eq. (4) equal zero
(Fig. 5).
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FIG. 4. Stationary solution on the Poincaré sphere. The birefrin-
gent platelet stops if the momentum transfer onto the platelet is
zero. Therefore, the incident light P, and the exiting light P; must
have the same expectation value for the spin angular momentum
wp=w; and thus lie on the same altitude. The slow axis of the
birefringent platelet comes to rest exactly in the center of the small
arc(PyP,).

Equation (6) can have interesting consequences for the
active orientation of small birefringent plates with the help of
the incident polarization of light [17]. If we change the el-
lipticity wy of the incident light, the plate will adjust its ori-
entation according to Eq. (6). At the same time the exiting
light ellipse, which has passed the platelet, will take on the
orientation A\;=2A;—\, and maintain the ellipticity o, of the
incident light. The birefringent platelet acts like an optically
active plate in this case, e.g., a quartz plate cut perpendicular
to the optical axis. Fluctuations of the incident ellipticity can
be translated into fluctuations of the orientation of the light
ellipse in the exit. For 2wy,>90°-A/2 the plate starts to
rotate permanently (Fig. 5).

final orientation angle (degrees)

incident ellipticity (degrees)

FIG. 5. The orientation \;—\, of the slow axis of the plate in
the halt position versus ellipticity w, of the incident polarization
for various phase shifts A. From left to right: A=A/2.1,A/2.5,
A/3,A/4(solid curve),A/6,A/8,A/12,A/20,A/50, where A is
the wavelength of light. The plate starts to rotate permanently for
2mwy>90°-A/2.
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FIG. 6. (Color online) Birefringent platelets were held in optical
tweezers and filmed with a video camera. The tweezing light from a
HeNe laser was polarized with a polarizer and a rotatable quarter
wave plate. The beam was focused via a gold mirror and the high
aperture microscope objective onto the object slide with the sample
suspension of the microcrystals in water.

V. EXPERIMENTAL RESULTS
A. Setup

To demonstrate the periodically varying angular speed of
birefringent platelets in polarized light, we held them in op-
tical tweezers and filmed their rotation. Our apparatus (Fig.
6) was strongly influenced by the work of Bishop et al. [7],
Smith et al. [18], and Bechhoefer and Wilson [19]. A HeNe
laser with 40 mW at 632.8 nm was linearly polarized with
a polarizer and the optics in the beam was arranged so that
this linear polarization was maintained throughout the
reflections at mirrors. A gold mirror reflected the red laser
light into the microscope. It also allowed viewing and film-
ing of the sample with a digital video camera from above
because it transmitted the shorter visible wavelengths of the
halogen light which illuminated the sample from below. A
quarter wave plate was inserted in front of the microscope
objective. This quarter wave plate was rotatable about the
beam axis [7]. At an angle of 45° with the incident linear
polarization, the quarter wave plate transforms the exiting
light into circularly polarized light. By decreasing this angle,
polarizations with smaller ellipticities can be produced. The
beam was then focused by a high aperture objective
(63 X ,numerical aperture=0.85) onto the object slide with
the sample. The power at the focus was only 26 mW mainly
due to reflection losses at the gold mirror. The beam waist
radius was about 0.9 um. This beam held the platelet in the
focus of the objective and transferred its spin angular mo-
mentum to it.

As birefringent materials we used Hg,I, [Hg(I) iodide]
[20] and  3.4,9,10-perylene-tetracarboxylic-dianhydride
(PTCDA) crystals levitated in water. Both materials are
known to have a high birefringence. At 632.8 nm Hg,I, and
PTCDA have birefringences of An=1.48 and An=0.87, re-
spectively, which are much higher than that of calcite (An
=0.17) or quartz (An=0.09) [21-23]. Since we can only ro-

043801-4



IRREGULAR SPIN ANGULAR MOMENTUM TRANSFER FROM...

-3 : s : s ? : : 7 : F : -1080
-1440
-1800

-2160

Rotation angle (2~)
Rotation angle (degrees)

-2520

I R I ON O S D DO O UL I OO O e
15 16 1.7 18 19 20 21 22 23 24 25 26 27

Time (s)

FIG. 7. Periodically varying rotational speed of a small platelet
of PTCDA in elliptically polarized (wy=-30° *=2°) optical twee-
zers. The orientation of the PTCDA particle was traced frame by
frame with a software program (LOGGER PRO). It rotates clockwise
with a frequency of about 3 Hz. The steplike structure should be
compared with the curve of the elliptical polarization in Fig. 3.

tate small crystals, a high birefringence is essential. The
shape of the microcrystals must also be optimal for rotation,
so crystal cleavage is important. We obtained microcrystals
(diameter between 1 and 3 wm) by crushing larger ones in a
mortar and then suspended them in water. Hence, only a
small portion of the crystals actually displayed rotation;
these were later found by trial and error during the experi-
ment. We placed a droplet of the suspension between a mi-
croscope slide and a cover glass. The digital video camera
observed this sample and also some of the backscattered la-
ser light which passed through the gold mirror.

B. Experiment

We trapped a microcrystal with a circularly polarized
tweezing beam. When we detected a platelet that rotated
smoothly and relatively fast (>6 Hz), we switched the he-
licity of the tweezing light by rotating the quarter wave plate
by 90° around the beam axis and observed whether the par-
ticle switched its rotation direction accordingly. We also veri-
fied whether it still showed smooth rotation at approximately
the same angular speed as before. We did this to ensure that
the rotation was caused by spin angular momentum transfer
and not by some angular momentum due to linear momen-
tum transfer from the light beam. After we confirmed that we
were observing spin angular momentum transfer we reduced
the ellipticity of the light by slowly reducing the angle of the
quarter wave plate from 45° to 0° and then to —45° and
filmed the motion: the rotation of the particle began to stut-
ter. This behavior was often more dominant at small elliptici-
ties where the particle almost seemed to flip between two
orientations. The rotational speed of the observed particles
was most of the time well below the frame rate (~30 Hz) of
our recording system. We traced the orientation of a PTCDA
particle frame by frame with a software program (LOGGER
PRO) by observing the orientation of the backscattered asym-
metrical diffraction pattern of the laser light. Figure 7 shows
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FIG. 8. Angular velocity of the PTCDA platelet. The data points
are retrieved from the curve in Fig. 7; the line is the derivative of
the theoretical solution \(7) from Eq. (5) for wy=30.51° and A
=A/3. The platelet accelerates and decelerates periodically; it al-
most seems to stop in intervals of one half revolution (180° or
T/2~0.16 s) which is due to the 7 symmetry of the light ellipse.

the time dependence of the rotation angle in a typical time
sequence where the ellipticity of the tweezing light was set
to wy=-30° =2°. In this sequence the particle seemed to
stop at an angle of approximately 45° and at the opposite
side at approximately 225°.

The steplike function of the rotation angle versus time
comes from the periodic acceleration of the platelet due to
Eq. (5) and should be compared with the “elliptical” curve of
Fig. 3. Two steps per one full 360° rotation of the particle are
expected from Fig. 3 and are due to the 7 symmetry of the
light ellipse. Counting the number of steps in a fixed time
interval yields the rotation frequency of the particle, which is
about 3 Hz (Fig. 7). The same behavior was observed at
wo=+30° =2° in the counterclockwise rotation. When dif-
ferentiating the curve, we obtain the angular velocity of the
platelet (Fig. 8). The graph shows the periodic acceleration
and deceleration and the nearly stopping of the platelet after
one half revolution, which takes about 7/2~0.16 s.

VI. DISCUSSION

Small birefringent particles in optical tweezers can be
used to drive micropropellers, microcentrifuges, and micro-
hydraulic pumps [5]. The great advantage of spin angular
momentum transfer over momentum transfer from light is
that it is possible to switch from clockwise to counterclock-
wise rotation by simply changing the helicity of the light
beam. A further step in micromanipulation is the fabrication
of heterogenic microstructures by self-adjustment of the con-
struction elements. This can be achieved, for example, by
using the halt of a retardation plate in an elliptically polar-
ized light beam to orient it in front of a polarization main-
taining optical fiber. Other small optical components can also
be oriented by this method if they are attached to an appro-
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priate birefringent particle made, e.g., from a high birefrin-
gent plastic. Such a self-adjustment of optical parts can be
useful in the production of optical microchips.

An interesting application of rotating halting platelets lies
in optical measurement techniques: for a limiting ellipticity
w, of the light in the tweezers, a birefringent platelet will
stop rotating in its trap at the orientation angle \, [Eq. (6)].
The large aperture objective of the optical tweezers usually
allows viewing the birefringent platelet and it is then pos-
sible to determine the difference A\,—\, from the conoscopi-
cal image of the platelet and the known orientation angle \,
of the incident light ellipse. It is advantageous for this mea-
surement to use a weaker light source with another frequency
to avoid reorientations. The retardation A of the platelet can
then be calculated from the parameters \,—\, and w, with-
out knowledge of its birefringence and its thickness. If the
birefringence n,—n, of the material and its approximate
thickness are known, its exact thickness is found with d
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=mAA/2m(ns—ns), where A is the wavelength of light and
m is an integer that reflects the approximate thickness of the
platelet. This method of measuring retardations of small
crystals needs no knowledge of material and particle data in
contrast to a measurement using interference colors. The de-
termination of the thickness of a small particle with size of
the order of the wavelength of light can be achieved in this
way and would be much easier than with a reticle under the
light microscope.
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