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Scattering in one dimension of an attractive ultracold bosonic cloud from a barrier can lead to the formation
of two nonoverlapping clouds. Once formed, the clouds travel with constant velocity, in general different in
magnitude from that of the incoming cloud, and do not disperse. The phenomenon and its mechanism—
transformation of kinetic energy to internal energy of the scattered cloud—are obtained by solving the time-
dependent many-boson Schrödinger equation. The analysis of the wave function shows that the object formed
corresponds to a quantum superposition state of two distinct wave packets traveling through real space.
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I. INTRODUCTION

Quantum superposition states are subject of numerous
studies in different branches of physics, touching upon fun-
damental problems of quantum mechanics �1–4�. Practical
realization of these states, in particular for larger systems, is
an experimental challenge because these states are fragile
being sensitive to internal interactions, experimental noise,
and other imperfections. In the context of ultracold Bose
gases several propositions have been made to creating super-
position states �5–11�. These propositions primarily involve
superposition states prepared in a trap. Side by side, much
attention has been paid to dynamics of low-dimensional at-
tractive Bose gases both experimentally and theoretically
�12–19�. Bridging these two subjects of intense activity, we
report below on a completely different physical mechanism
to generate superposition states and a fundamentally new
many-body phenomenon in low-dimensional attractive Bose
gases accessible within present experimental setups. Explic-
itly, we demonstrate by solving the time-dependent many-
boson Schrödinger equation, that scattering of a one-
dimensional attractive ultracold bosonic cloud from a barrier
can lead to the formation of two nonoverlapping clouds.
Once formed, the clouds travel with constant velocity, in
general different in magnitude from that of the incoming
cloud, and do not disperse. The analysis of the obtained time-
dependent wave function shows that it describes a quantum
superposition state of two distinct wave packets traveling
through real space. The structure of the paper is as follows.
We open in Sec. II by reporting on the splitting phenomenon
of a low-dimensional attractive condensate when scattered
from a potential barrier, unveiled by accurate many-body nu-
merical “experiments.” Then, in Sec. III, a detailed analysis
of the splitting phenomenon along with the many-boson
wave function of the system is performed, proving that the
split object is a quantum superposition state. Section IV pre-
sents a discussion of the splitting phenomenon, in particular
in comparison to other split objects reported in the literature.
Finally, we conclude in Sec. V.

II. PHENOMENON: SPLITTING BY SCATTERING

In the present work, we start from an attractive cloud
made of N=100 bosons, prepared in the ground state and

localized around the origin. To scatter it from a potential
barrier we add some initial velocity to the cloud. We use a
Gaussian barrier placed quite apart from the initial wave
packet. The time-dependent many-boson Schrödinger equa-
tion is solved as discussed below for a fixed barrier height
and several different barrier widths. The results of these scat-
tering “experiments” are plotted in Fig. 1; the width of the
barrier increases from left to right panels. It is clearly seen
that the wave-packet dynamics very much depends on the
barrier width. In the left panel the wave packet overcomes
the barrier and continues to propagate further forward with-
out dispersion and losses. In the right panel, the wave packet
is reflected from the barrier and continues to propagate back-
ward without dispersion and losses. The middle panel shows
fundamentally different and unexpected dynamics: the initial
wave packet is split into two parts. One of them is transmit-
ted through the barrier and another one is reflected by the
barrier. After their formation, each of the parts has its own
constant velocity, here smaller in magnitude from that of the
incoming cloud, and continues to propagate without disper-
sion. It will be shown below that this split object corresponds
to a quantum superposition state.

III. ANALYSIS OF THE SPLITTING PHENOMENON
AND ITS MANY-BOSON WAVE FUNCTION

We recall that in the standard textbook-problem of scat-
tering a single-particle wave packet from a barrier there are
generally transmitted and reflected waves. It is thus antici-
pated that, due to the mutual attraction between the particles,
the ultracold cloud being scattered from a barrier is either
totally transmitted or totally reflected depending on the bar-
rier’s parameters and initial kinetic energy. The left and right
panels of Fig. 1 represent this expected behavior, while in the
middle scenario this picture is violated. To understand this
phenomenon, we begin with the energetics of the simulated
scattering processes. Throughout this work, we use dimen-
sionless units for length, time, and energy, which are readily
arrived at by dividing the Hamiltonian by �2

mL2 , where m is the
mass of a boson and L is a convenient length scale, say the
size of the atomic cloud. The one-body Hamiltonian then
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reads: ĥ�x�=− 1
2

�2

�x2 +V0 exp��x+3�2 /2�2�. The height of the
Gaussian barrier is set to V0=0.4. We employ the commonly
used contact interparticle interaction �0��x−x�� where �0
=−0.04. The energy of the cloud is EGS /N=−0.66. The ve-
locity added to the cloud is v=−0.5, resulting in kinetic en-
ergy of Tkin /N=v2 /2=0.125. Thus, the total energy of the
wave-packets EGS+Tkin and the barrier height V0 are the
same for the three presented simulations. The only difference
between them is the barrier width � used. In the first, full
transmission case �=0.10, in the second scenario where the
initial packet is split �=0.15, and in the third, full-reflection
case �=0.20. As the initial state is the same for all three
scenarios and the barriers’ topology and parameters are also
quite close to each other, one would have expected that the
nature of excitations available for the dynamics in the scat-
tering processes is also quite similar in the three cases.

To better understand the situation, we have to analyze
the quantum nature of the propagated wave packets. For
that, a brief description of the many-body method used is
first needed. To solve the time-dependent many-boson
Schrödinger equation for the scattering problem at hand we
employ the multiconfigurational time-dependent Hartree
method for bosons �MCTDHB� �20�. In the MCTDHB�M�
method the time-dependent many-body wave function ��t�
is expanded by all time-dependent permanents generated by
distributing the N bosons over M time-dependent orbitals.
The orbitals as well as the time-dependent expansion coeffi-
cients are determined according to Dirac-Frenkel time-
dependent variational principle, see �20� for details. We have
found that for the scattering scenarios studied here MCT-
DHB with two orbitals �M =2� accurately describes the
many-body dynamics. This has been verified by carrying out
computations with M =3 and even with M =4 orbitals. For
the sake of comparison, the Gross-Pitaevskii dynamics for a

wide range of parameters has been computed and no splitting
phenomenon was found, i.e., the cloud is either transmitted
or reflected as a whole. We mention that the famous Gross-
Pitaevskii theory is a very particular case of MCTDHB
theory where only a single orbital is present �M =1�.

With the many-boson wave function at hand, we diago-
nalize at each point in time the reduced one-body density
matrix ��x �x� ; t�=�i=1

2 �i�t��i
��x� , t��i�x , t� for the three sce-

narios, where the eigenfunctions �i�x , t� are the natural or-
bitals. In Fig. 2 we plot the obtained eigenvalues �natural
occupation numbers� �i�t� as a function of time. These quan-
tities are very useful for a state characterization because ac-
cording to standard definitions, the system is condensed �21�
if only one natural orbital is macroscopically occupied and
fragmented �22� if several natural orbitals have large eigen-
values, i.e., are macroscopically occupied. Accordingly, the
initial wave packet is condensed, because almost all the
bosons reside in one natural orbital, �1�0�=99.1%. More-
over, till about t=3 the systems evolve without changes in
the occupation numbers, see Fig. 2. This observation to-
gether with the observations seen in Fig. 1 that the systems
are moving with constant velocity and without dispersion
indicate on the many-body level that the propagating state is
a solitonic wave packet. Changes appear when the localized
cloud starts to climb up the potential barrier. In the transmis-
sion and reflection cases, the interaction of the cloud with the
barrier results in a small redistribution of the occupation
numbers during and after the collision with the barrier. We
conclude that in the full transmission and reflection cases the
system remains mainly condensed. In the interaction region,
kinetic energy is transformed to potential energy when the
cloud is climbing up the barrier and transferred back when

FIG. 1. �Color online�. Scattering of a solitonic wave packet
initially located at x=0 and moving with a constant velocity from
Gaussian barriers of different widths � centered at x=−3. Shown is
the density as a function of time. Left panel: full transmission case.
Right panel: full reflection case. Middle panel: formation of a su-
perposition state of two distinct wave packets traveling through real
space with constant velocity smaller in magnitude from that of the
incoming cloud. See text for more details. All quantities are
dimensionless.
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FIG. 2. �Color online�. Natural occupation numbers �i�t� in
% during the scattering processes of Fig. 1. At t=0 all initial
wave packets are the same and condensed: �1�0�=99.1% and
�2�0�=0.9%. Until t=3 the systems propagate without dispersion,
reflecting the solitonic character of the initial wave packet. In
the full reflection ��=0.10� and transmission ��=0.20� cases the
systems remain mainly condensed all the time. In the split case
��=0.15�, after interaction with the barrier, the system evolves into
a twofold fragmented state with essentially time-independent occu-
pation numbers �1=59.5% and �2=40.5%. All quantities are
dimensionless.
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the system is sliding down. In other words, the internal state
of the cloud is only slightly affected during the evolutions. In
the split case, however, the situation is very different, as one
can see from Fig. 2. During the interaction of the wave
packet with the barrier, �2�t� grows until it reaches some
macroscopic value and saturates around it for long propaga-
tion times when the cloud is split. We have found that for the
whole range of 0.125	�	0.16 the splitting phenomenon
occurs, with macroscopic occupation of �2�t�. We conclude
that in the split case, due to interaction of the atomic cloud
with the barrier, the system becomes twofold fragmented and
stays fragmented afterwards. In this case, the initial kinetic
energy is transformed to potential energy which then changes
the quantum state of the system. Furthermore, note that the
final velocities of the two split clouds are smaller in magni-
tude from that of the incoming cloud’s velocity �see Fig. 1�.
Because of conservation of total energy, one expects the dif-
ferences in kinetic energy to be absorbed as internal energy
of each of the two split clouds. Our analysis of the many-
body wave function indeed shows that this is the case, i.e.,
that the internal energy of the clouds is larger than that of the
initial wave packet.

Let us pose for a moment and summarize our main find-
ings so far. It has been shown that scattering a one-
dimensional attractive bosonic cloud in its ground state from
a potential barrier can lead to a formation of a twofold frag-
mented state. Once formed, the fragmented state is dynami-
cally stable, i.e., it retains its properties in time. The mecha-
nism involves transformation of kinetic energy to internal
energy of the scattered atomic cloud due to interaction with
the barrier. What is the nature of this fragmented state in the
attractive Bose system?

To get a deeper insight into the physics of this
fragmented-split case, we investigate the many-body struc-
ture of the evolving wave packet in more details. In the
present study, the total many-body wave function reads
���t��=�n=0

N Cn�t��n ,N−n ; t� where Cn�t� are the expansion
coefficients and �n ,N−n ; t� are the configurations. This
ansatz makes the condensed and all possible twofold frag-
mented states available for the dynamics. The configurations
are defined with respect to the natural orbitals and expressed
in coordinate space as follows: �x1 , . . . ,xN �n ,N−n ; t�
= Ŝ�1�x1 , t�¯�1�xn , t��2�xn+1 , t�¯�2�xN , t� where Ŝ is the
symmetrization operator. Thus, to prescribe the many-body
wave function at a given time it is sufficient to specify the
natural orbitals �1�x , t� ,�2�x , t� and respective expansion co-
efficients Cn�t�. This allows one for a graphical representa-
tion and analysis of the whole many-body wave function. In
Fig. 3 we analyze the fragmented–split case. The natural or-
bitals in coordinate space before �t=0� and after �t=20� the
scattering process are plotted in the right panels of Fig. 3.
The left part of Fig. 3 depicts the evolution in time of the
corresponding expansion coefficients in Fock space, spanned
by the �N ,0� , �N−1,1� , . . . , �1,N−1� , �0,N� configurations
�for brevity we do not indicate the dependence of configura-
tions on t here and hereafter�. For convenience, the time-
dependent probabilities �Cn�t��2 are plotted.

First we discuss the real-space dynamics of the many-
body wave function, i.e., the behavior of the natural orbitals.

As seen in Fig. 3, initially both natural orbitals are localized
around the origin. The first natural orbital ��1�0�=99.1%�
has no nodes and the marginally occupied second natural
orbital ��2�0�=0.9%� has one node. After the collision with
the barrier and splitting of the cloud, at, e.g., t=20, both
natural orbitals are localized and have a very similar one-
hump-no-node shape, see Fig. 3. It is also important to notice
that their profiles �widths� resemble the shape of the prima-
rily occupied natural orbital of the initial state.

Now, we analyze the dynamics of the respective prob-
abilities �Cn�t��2 in Fock space. As shown in Fig. 3, the initial
state is described by a very narrow distribution of the expan-
sion coefficients with maximal contribution provided by the
single configuration �N ,0�. This picture remains unchanged
until t=3, where the solitonic many-body wave function
starts to interact with the barrier. From Fig. 3 we also see
that, during this process, more and more configurations be-
come involved in the dynamics, which is reflected in drastic
changes to the overall pattern in Fock space. After the split-
ting, the pattern of the distribution of the expansion coeffi-
cients again becomes relatively simple—there are mainly
two dominant configurations, �N ,0� and �0,N�, augmented by
small contributions from a few respective neighboring
configurations.

Let us now combine both observations. The initial wave
packet is mainly described by the configuration �N ,0�,
whereas the split object is formed by a superposition of
mainly the �N ,0� and �0,N� configurations. The shapes of the
occupied orbitals in both cases are very similar and, most
importantly, for the split object the orbitals are localized in
different regions of space. Remembering that each of �N ,0�

FIG. 3. �Color online�. Proof that the split object corresponds to
a superposition state of two distinct wave packets. Left panel: evo-
lution of the expansion coefficients in Fock space spanned by the
�N ,0� , �N−1,1� , . . . , �1,N−1� , �0,N� configurations. The probabili-
ties �Cn�t��2 are plotted as a function of time. The initial wave
packet is described essentially by �N ,0�. Right upper and lower
panels: natural orbitals ��i�x , t��2 �upper two curves of each of the
right panels, in green and blue; normalized to 1� and densities
�lower curve of each of the right panels, in red� at t=0 and t=20.
The barrier is also shown �indicated in black and localized around
x=−3�. Mainly the �N ,0� and �0,N� configurations contribute to the
split object. All quantities are dimensionless.
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and �0,N� is moving with a constant velocity, we can con-
clude that the split object is a realization of a quantum su-
perposition state, which travels through real space.

IV. DISCUSSION

Several remarks are in order. First, the most important
observation is that the split object is formed, and once
formed it is stable in time. Second, this split object is not the
“perfect” superposition state �N,0�+�0,N�

	2
. One can see from Fig.

1 that the density of the left split part is smaller than the
density of the right part. The quantitative characterization of
this “asymmetry” can be obtained from Fig. 2, where we see
that the natural occupation numbers saturate at 59.5% and
40.5%, accounting thereby for 59.5% �right part� and 40.5%
�left part� of the total density, respectively. Finally, our nu-
merical calculations show that a variety of quantum superpo-
sition states can be obtained, depending on the barrier shape,
particle number, and interparticle interaction strength.

It is instructive to contrast the superposition states re-
ported here with the fragmented states reported previously in
�19� called “fragmentons.” The fragmenton is a dynamically
stable fragmented object which is described essentially by a
single configuration �N /2,N /2� built upon overlapping delo-
calized orbitals �19�. As the fragmenton, the quantum super-
position state is also twofold fragmented but, in contrast, a
two-configurational many-body state formed as a linear com-
bination of �N ,0� and �0,N� built upon nonoverlapping lo-
calized orbitals. Clearly, the quantum superposition states
and fragmentons are of a very different but complimentary
physical nature that can be explained in terms of localization
and delocalization in real space and Fock space. The frag-
mentons appear due to delocalization of the orbitals in real
space and localization of configurations in Fock space, while
the quantum superposition states are formed due to delocal-
ization of the expansion coefficients in Fock space and local-
ization of the orbitals in real space. An important physical
distinction between these two classes of dynamically stable
excitations in attractive low-dimensional Bose gases is their
energetics. The quantum superposition states lie much lower
in energy than fragmentons �19�, as is also reflected in the
finding that their orbitals are essentially of the same shape as
the ground-state orbital �see Fig. 3�.

Finally, we discuss experimental observability of the
quantum superposition states reported here. As shown in the
above detailed analysis, the superposition states are frag-
mented objects, consisting of two spatially nonoverlapping
clouds. This suggests that measuring the first-order correla-
tion function g�1��x� ,x ; t�
��x �x� ; t� /	��x �x ; t���x� �x� ; t�,
which quantifies the system’s degree of spatial coherence,
would provide an experimental tool to identify them. Con-
cretely, g�1��x� ,x ; t� is essentially zero for all x, x� and at all
times t, except for the two moving-in-time regimes localized
around the diagonal x=x�, for which the two nonoverlapping
clouds of the quantum superposition state are momentarily
localized in space. Furthermore, we have checked and found
that disturbing one cloud does not influence the other one.
For instance, we scattered the right cloud off a potential wall.
The cloud totally bounced back from the wall and the many-

body state remained a superposition state. Due to this robust-
ness, we expect the quantum superposition states in low-
dimensional attractive Bose gases reported here to be
relatively protected against decoherence.

For completeness, we discuss how can one distinguish the
superposition state, which is a fragmented object, from the
familiar two-hump soliton with one cloud traveling to the left
and the other to the right, which is a condensed object. First
of all, the superposition state consists of a linear combination
of two dominant permanents, �N ,0� and �0,N�, built upon
two localized orbitals. In contrast, the wave function of a
two-hump soliton is comprised of only a single permanent
built upon a single delocalized orbital. It is thus a totally
different quantum state of the many-boson system. There are
at least three more possibilities to distinguish between super-
position states and two-hump solitons. �i� Correlation func-
tions. Since the two-hump soliton is a condensed object, its
first-order correlation function is flat, i.e., g�1��x� ,x ; t�=1 for
all x, x� and at all times t, in sharp difference to g�1��x� ,x ; t�
of the quantum superposition state discussed above. In fact,
all correlation functions of a two-hump soliton are flat,
whereas those of quantum superposition states will be struc-
tured. �ii� Energetics. The total energy of a two-hump soliton
is much higher than the total energy employed in our work to
generate quantum superposition states. Namely, if one keeps
the total energy below the threshold energy for a two-hump
soliton formation, the split phenomenon cannot be explained
at all in terms of solitons. �iii� Clouds’ widths. For N attrac-
tive bosons with interaction strength �0, the width
1 /
superposition of each of the two clouds in a quantum super-
position state is the same as the width of the ground state,
i.e., 
superposition���0��N−1� /2. In contrast, the width
1 /
soliton of each of the two clouds in a two-hump soliton is
twice as large, i.e., 
soliton���0��N−1� /4.

V. CONCLUSIONS

A one-dimensional attractive ultracold bosonic cloud be-
ing scattered from a potential barrier can form two nonover-
lapping clouds traveling with constant velocity, in general
different in magnitude from that of the incoming cloud, and
without dispersion. Due to the interaction with the barrier,
the initial kinetic energy of the cloud’s wave packet is trans-
formed to potential and internal energies, resulting in forma-
tion of two not-exact replicas of the original wave packet
augmented by small excitations of the local densities. As a
result of the scattering process, the initially condensed state
is transformed to a fragmented state. By analyzing the com-
puted time-dependent many-boson wave function it has been
shown that the object formed corresponds to a quantum su-
perposition state of two distinct wave packets traveling
through real space. The present work demonstrates that low-
dimensional attractive Bose gases are rich with novel many-
body phenomena. We hope that our work will stimulate
experiments.

Note added in proof. Recently, two related works ap-
peared �23,24�.
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