PHYSICAL REVIEW A 80, 043611 (2009)
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We calculate the dynamic structure factor S(¢g, ) of a one-dimensional (1D) interacting Bose gas confined
in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D)
motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential.
In the compressible state, we find that the smooth variation in the gas density around the trap center leads to
softening of the singular behavior of S(g,w) at the first Lieb excitation mode compared to the behavior
predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(¢q,w) remains a
nonanalytic function of ¢ and w at the first Lieb excitation mode in the limit of weak trap confinement. The
exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus
bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice
causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(g,w) centered
at the on-site repulsion energy, w=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We
explain the suppression of the dynamic response with entering into the Mott regime, observed recently by
Clément er al. [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.
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I. INTRODUCTION

Experiments with ensembles of trapped cold atoms reju-
venated a number of directions in quantum many-body phys-
ics, posing new problems within that seemingly well-
established field. One of the directions deals with the
properties of interacting bosons confined to a strongly aniso-
tropic “one-dimensional” (1D) trap. The effective repulsion
between bosons is enhanced by making the trap narrower [1]
or by imposing a periodic potential, thus constraining the
kinetic energy of bosons moving along the trap [2].

The increase in the effective interparticle interaction af-
fects the static and dynamic characteristics of the 1D Bose
system. Modification of the one-particle momentum distribu-
tion in the case of interaction enhanced by periodic potential
was observed in Ref. [2]. A similar experiment without a
periodic potential but in a tighter 1D trap was reported in
Ref. [1]. The experimental data are in reasonable agreement
with the predictions of the integrable Lieb-Liniger model [3].
That model allows one to find quantitatively the single-
particle distribution function of 1D bosons at any interaction
strength in the absence of optical lattice and establish the
qualitative features of the distribution in the presence of the
lattice, at least in the limit of small particle density.

The dynamic response of 1D interacting bosons cannot be
derived directly from the thermodynamic Bethe ansatz solu-
tion [3] of the Lieb-Liniger model. Nevertheless, a signifi-
cant progress has been made in finding the universal singu-
larities of the dynamic response analytically [4-7] and
determining the general structure of the response in a broader
range of energies numerically [8], using the ideas of alge-
braic Bethe ansatz. The most suitable experimental method
for investigating the dynamic structure factor S(g,w) is the
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Bragg spectroscopy [9-16]. By a nonlinear mixing of two
laser beams, it allows for an independent control of the wave
vector g and frequency w of the perturbation. Recent experi-
ments [15,16] have demonstrated the use of this method in
1D systems to study effects of interaction and periodic con-
finement.

Possible complications in comparing experimental data
with the theory arise from the deviations of a real atomic
system from the ideal Lieb-Liniger model. Even in most fa-
vorable cases it is impossible to avoid a “soft” confining
potential applied along the 1D trap, which makes the Bose
liquid inhomogeneous. An optical lattice potential, applied in
addition to the trap confinement to enhance the effective in-
teraction between particles, brings in additional complica-
tions. In this paper, we develop the theory of the dynamic
response for an inhomogeneous 1D boson system confined
by a “soft” trap potential, both in the presence and in the
absence of an optical lattice. In the absence of optical lattice,
the system is a compressible inhomogeneous Bose liquid.
The soft confinement modifies the dynamic response as com-
pared to the homogeneous 1D system. For weak interactions,

the density-averaged response S(g,®) of the liquid has an
asymmetric peak as a function of frequency w at the first
Lieb excitation mode &,(g), evaluated at the maximal gas

density in the trap. The general shape of S(g,w) is skewed
toward low frequencies and the peak shape is a power-law
singularity with an exponent dependent on the interaction
strength. For stronger interaction, the maximum shifts below
&.+(q).

In the presence of an optical lattice, the atomic cloud may
become a mixture of incompressible Mott phases in equilib-
rium with Bose liquid. The tight-binding limit of the lattice is
described by the Bose-Hubbard model with an on-site repul-
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sion energy U and an intersite hopping matrix element J. The
dynamic response of the Mott phase is unaffected by the trap
potential and is centered at frequency w= U. The peak has a
semicircular shape, a g-dependent width, and a spectral
weight o(J/U)?. Unlike the Mott phase, the Bose liquid
phase has dynamic response at small frequencies w~.J, and
this response does not vanish in the limit U — . Therefore,
in a mixed state of incompressible and compressible liquids
the largest weight in the dynamic response comes from the
compressible liquid and is at frequencies w~J. We analyze
in greater detail the simplest case, in which one Mott phase
(with site occupancy 1) extends nearly over the entire cloud,
ending with compressible-liquid caps on both ends.

The paper is organized as follows. In Sec. II, we give a
qualitative description of the main effects considered in the
paper. In Sec. III, we calculate the dynamic structure factor
of the homogeneous Mott phase. In Sec. IV, we find dynamic
responses averaged over the trap inhomogeneity. Attention is
given to the inhomogeneous Bose liquid state as well as to a
mixed state of coexisting Mott and Bose liquid phases. In
Sec. V, we discuss ways to measure the dynamic structure
factor, the f-sum rules in the presence of an optical lattice,
and the recent experiments on dynamic response of trapped
atomic systems. Appendix A deals with the finite-size effects
due to the trap confinement. In Appendix B, we study the
effects due to averaging over an ensemble of 1D systems. In
Appendix C, we consider the dynamic response at finite
temperatures.

II. QUALITATIVE CONSIDERATION AND
MAIN RESULTS

Throughout the paper we assume a strongly anisotropic
trap so that the atoms occupy the lowest level of transverse
quantization. Due to the confining potential, the atomic den-
sity varies along the trap. The addition of an optical lattice
with axis along the trap has two major consequences. First, if
the single-atom bands in the optical lattice are narrow, then
the effective interatomic interaction parameter may increase
significantly [2]. Second, the variation in the atomic density
along the trap may lead to coexistence of compressible and
incompressible phases in it.

In this section, we first identify the domain of parameters
where the inhomogeneous cold-atom system consists of no
more than two phases (Sec. II A). Next, we summarize our
main results for the dynamic structure factor averaged over

the trap, S(q,w), at zero temperature (see Secs. II B and
IT C). A pragmatic reader may also start from examining Fig.
1 and reading its caption. The figure contains references to
the graphic representation (Figs. 3—6) of the main results.
We are interested in relatively small numbers of atoms,
N<N,, which may fit in the trap without causing double-
occupancy of any optical lattice site, see Eq. (3). Under this
condition, strengthening of the optical lattice potential (ex-
pressed as the reduction of the ratio J/U) leads first to the
increase in the effective interatomic interaction, while other
effects of the optical lattice are not important. That allows us
to consider the crossover from Bogoliubov to Tonks-
Girardeau limit upon decreasing J/U on the same footing as
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FIG. 1. (Color online) States of the trapped atomic cloud of N
atoms in the presence of optical lattice. Compressible (C) and in-
compressible (I) phases coexist in distinct states, such as CIC, etc.
The solid line serves as boundary between these states. Its first two
segments (denoted by 1 and 2) bound the state CIC, which consists
of an incompressible region in the middle of the trap and two com-
pressible ones at the sides (see Fig. 2). The incompressible region
nucleates at line 1 upon crossing over from state C by decreasing
J/ U or increasing N/ N, [see Egs. (1) and (3) for definitions]. Simi-
larly, traversing line 2 upward leads to a compressible region form
in the trap center, hence the combination CICIC. The small-J as-
ymptotes of lines 1 and 2 are given in Egs. (7) and (57), respec-
tively. The crossover line (dashed) at N/Ny=1 is defined by Eq. (6)
and separates the regimes of weak and strong interactions in the
compressible state. At N/Ny=1, a mixed state with compressible
and incompressible phases forms to the left of the vertical line
(dotted). The compressible phases represent a substantial fraction of
the cloud in the shaded region; its left boundary is given by Eq. (6).
To the left of that line, the cloud is mostly distributed between
incompressible states. We are mostly interested in the evolution of
the averaged over the trap dynamic structure factor S(g,w) upon
decreasing J/ U at small N/N,, (dash-dotted line). The characteristic
features of S(g,w) at marked stages of that evolution are shown in
Figs. 3-6.

in a gas free from the optical lattice but with the properly
adjusted interaction parameter (see Sec. II B). At a suffi-
ciently small J/U, commensurability with the optical lattice
may become important, and a patch of an incompressible
phase is formed in the center of the trap (see Fig. 2). That

leads to observable consequences for S(g,w) (see Sec. I1 C).

A. Phases of cold atoms subject to the trap and
optical lattice potentials

The presence of an optical lattice changes the dispersion
relation of individual bosons. The effect of interactions be-
comes stronger with the narrowing of the single-particle
bands. We consider here the limit of a strong lattice potential,
in which narrow bands are separated by wide gaps. Further-
more, we assume that only the lowest band is populated and
thus concentrate on a one-dimensional Bose-Hubbard model
with intersite hopping matrix element J and on-site repulsion
energy U,

. U
Hgy = —JE (bl b+ b;rbm) + 52 b;bl(b;bz— 1)
I I

+ > [V(al) - ulbjb, (1)
1
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FIG. 2. (Color online) Density profile and energy diagram of an
atomic cloud in the Mott-insulator regime confined in a trap. Upper
panel: energy diagram showing two lowest Mott bands curved due
to the trap potential. The hashed area shows the phase space occu-
pied by atoms below the level of the chemical potential w. To lead-
ing order of perturbation theory the bands are separated (center to
center) by energy U and have widths of 4/ and 8J for the lower and
upper bands, respectively. The state of the liquid depicted here cor-
responds to the state CIC of Fig. 1. Lower panel: density profile
n(x) of the atomic cloud in the trap. The incompressible region with
na=1 occupies the center of the trap for 2/ <u<U-4J at J/U
<1 and it borders with two compressible regions on the sides. The
compressible regions have n(x) given in Eq. (59).

X 2
v(x)=60(—>, =0, x1,x2,.... (2)
a

Here V(x) is the confinement potential, a is the optical lattice
constant, and w is the chemical potential, which depends on
the total number N of atoms in the trap.

In the following, we view N and J as control parameters
(J depends exponentially on the amplitude of the optical lat-
tice potential). It is convenient to introduce the characteristic

scale,
U
N() = -, (3)
€

and measure N in units of Ny, and J in units of U. The
meaning of N, becomes clear from considering the /=0

m
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FIG. 3. (Color online) Dynamic response S(g,w) as a function
of w for an atomic cloud in the Tonks-Girardeau limit (see Sec.
IV C). The nonanalyticities are at w=g(g) with e.(g) given in Eq.
(8). The plot is made using Eq. (13) for the choice of parameters
g=1.2mn,. In the presence of an optical lattice, one replaces m

—m*.
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FIG. 4. (Color online) Dynamic response S(q,®) as a function
of w for an atomic cloud in the Bogoliubov limit (see Sec. IV B). A
square-root singularity occurs at w=¢,(q), where &,(q) is given by
the Bogoliubov spectrum in Eq. (9). The plot is made using Eq. (14)
for the choice of parameters ¢>/2m=mu>. In the presence of optical
lattice, one replaces m —m™* and g— Ua.

limit: 2N, is the largest number of atoms fitting in the trap
without causing double occupancy of any lattice site. In
some of the existing experiments with 87Rb atoms [2,15], the
harmonic trap frequency was typically 27X 60 Hz, the lat-
tice parameter a=~415nm, and interaction U/(2m)
~0.13-2 kHz which corresponds to the value of N in the
range from 7 to 30. For investigating the dynamics of the
compressible phase, it is desirable to raise the value of N,
which may be achieved by reducing the trap frequency. In
the typical conditions of an experiment with multiple 1D
traps [2], this would allow to place more atoms in each of the
traps.

Let us consider first N/Ny<<1 and see the effect of de-
creasing J/U on the state of atomic cloud in the trap. At a
sufficiently large J/U, the dimensionless interaction param-
eter, U/Jna, is small throughout the trap (here n is the
position-dependent atomic density). Using the weak-
interaction limit for the n dependence of the chemical poten-
tial, w=Una, and the Thomas-Fermi approximation, we find
for the density n, at the center of the trap,

3
=
0 @ e

FIG. 5. (Color online) Sketch showing the singular behavior of

S(g,w) in Eq. (15) at the Lieb I mode. The choice of parameters
corresponds to the regime of “large ¢ and arbitrary 7’ considered in
Sec. IV D 1. The dynamic response diverges at the Lieb I mode
e,(q) (solid line) and is strongly suppressed away from e,(g) at
distances exceeding vg (dotted line). The solid line is plotted using
Eq. (88) with the choice w;=0.8; the dotted line is hand drawn and

illustrates the qualitative behavior of S(g, ) away from the Lieb I
mode.
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FIG. 6. (Color online) Dynamic response S=5S;,.+ 2§comp as a
function of w for an atomic cloud in the Mott regime, featuring a
square-root singularity at frequency w,=4J sin(ga/2) and a semi-
circular peak at w=U. The plot is made using Egs. (16)—(18) with
the parameters values g=/a, U=10J, and €,N>=10J.

3N 2/3
nya = (——) . 4)
4N,
For reasons which will become clear later we refer to this
limit as the Bogoliubov limit. The crossover from the weak-
to strong-interaction limit occurs at the periphery of the
cloud if J is large and moves toward the center with the
reduction of J/U. At N<N,, the entire cloud enters the
strong-interaction limit before the Mott phase nucleates. The
strong-interaction limit, U/Jna> 1, is described by the so-
called Tonks-Girardeau gas, for which the analog of Eq. (4)

reads

o2 A\ V2[ g\ 14

n0a=—<—) (—) , nga<<l. (5)
T J

The crossover between the Bogoliubov and Tonks-Girardeau
limits occurs at U/Jnga~ 1. Using the estimate for n, [either
Eq. (4) or (5)], we find for the crossover line

32
2 (9) . ©)
Ny \J

[Here we dispensed with the numerical factors present in
Egs. (4) and (5), as Eq. (6) defines a crossover rather than a
transition.]| The crossover line is shown in Fig. 1 (see dashed
line at N/N,=<1). Further decrease in J (moving along the
dash-dotted line in Fig. 1) eventually allows one to reach the
boundary between the Tonks-Girardeau gas and the Mott
phase. The nucleation of the Mott phase occurs in the center
of the trap once the condition N=(8/)\J/ €, is reached; in
dimensionless variables, the latter condition reads

N 8/ J 172
Ly
N() m\U

The corresponding boundary is shown in Fig. 1 by the solid
line (segment 1). Under the condition N/N,<1, the Mott
phase occurs [17] at J/U<< 1. The advantage of a small num-
ber of particles in the trap, N << N, is that there is at most one
domain of the trap occupied by the Mott phase (see Fig. 2).

For a large number of atoms, N> N,, the composition of
the atomic cloud in the trap may become more complicated.
Upon the reduction of the bandwidth, the first incompressible
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phase appears [19,20] at J/U=<0.28 (see dotted line in Fig.
1). Further reduction in the bandwidth brings an increasing
number in Mott phases corresponding to various integer val-
ues j of the filling, n(l/)a=j. Incompressible phases nucleate
around multiple points in the trap, where the condition J/U
~1/j is satisfied [21]. Once the bandwidth is reduced to
satisfy the condition J/ U~ (nya)~", a major part of the cloud
belongs to the incompressible phases. The value of nya is
estimated by Eq. (4) both in the limits of weak (J/U> 1) and
strong [J/U<(nga)~'] interactions, where the equation of
state for incompressible phases is applicable. Using Eq. (4),
we may rewrite the condition J/U=(nga)™' separating
“mostly compressible” state from the “mostly incompress-
ible” one in the form of Eq. (6).

We summarize the important for us features of the phase
diagram for the trapped cloud subjected to the optical lattice
potential in Fig. 1. Reducing the parameter J/U at N/N,
<1 allows one to investigate the gradual increase in corre-
lations due to interactions in the liquid phase as well as the
formation in a single Mott-phase domain in contact with the
Bose liquid (see Fig. 2). In the next section, we review the
manifestation of such an evolution of the state of the cloud in
the dynamic structure factor.

B. Average dynamic structure factor in the absence
of optical lattice

In a homogeneous 1D system with contact interaction
g0(x;—x;) between bosons (Lieb-Liniger model [3]), the dy-
namic response depends on the dimensionless interaction
constant y=mg/n. In this section, we analyze the density-
averaged dynamic structure factor for a gas in a trap.

The dynamic structure factor at zero temperature is de-
fined as S(g,w)=Im{p(x,)p(0,0)), ., Where p(x,7) is the
density fluctuation operator. Lieb has identified two charac-
teristic modes in the excitation spectrum of the model [3],
know as Lieb I and II modes with the dispersion relations
e+(p). In the Lieb-Liniger model [3] the dynamic structure
factor has a power-law divergence [4,5] at the Lieb T mode
[3], w=¢&,(q), and vanishes at the threshold determined by
the spectrum of the Lieb II mode: S(g,w)=0 at o <e_(gq).

The full form of S(¢,w) can be found analytically in the
limit of infinitely strong contact repulsion between the
bosons (y> 1, limit of the Tonks-Girardeau gas),

S(q.0) = ga(w —£.(q)0(e(q) - 0).

g 4>

m  2m

e+(q) = : (8)

If y<<1, then the dispersion of Lieb I mode approaches the
Bogoliubov spectrum,

q2 2
&.(q) = (vq)2+<2—), )
m

with the collective velocity v=+gn/m. As one may expect,
S(q,w) approaches a & function,
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me.(q)

S(g,w) = w—-&,(q)), (10)

in this limit [4]. The Lieb II mode in the y<¢1 limit corre-

sponds to the gray solitons spectrum [22]. The spectral

weight near e_(g) is, however, extremely small [23] at any q.
At arbitrary vy, the general form of S(g,w) is [4,5]

M

% " o(s, - )+ mBlw—2)],

m
S(q,w) ~ —‘
C] w

oy

(11)

with the exponent x; and asymmetry factor v; depending on
momentum ¢ and density 7.

All the above forms of S(g, ) were derived for a spatially
homogeneous Bose liquid. How one may compare the theory
for a homogeneous system with measurements performed in
the presence of a trap? We consider here the most favorable
case of a smooth longitudinal potential confining the 1D
bosons, whose confinement energy w, is negligibly small
(not resolved on measurement scale). Due to the interaction
between bosons, the system length 2L is usually much larger
than the quantum length scale N\ of the confinement, allowing
for independent (unaffected by interference) probing of dif-
ferent parts of the system. Provided the system is probed at a
sufficiently large momentum, ¢> 1/\, one may regard por-
tions of length A ~ 1/\mw, as homogeneous and responding
independent of each other. Then the dynamic structure factor
can be approximated by the density-averaged one,

L

_ 1
S(g,w) = 3L dxS(q,w;n(x)). (12)
L

The confinement affects the dynamic response through the
variation in the density profile n(x). The averaged structure

factor S(¢q, ) may differ considerably from S(g,w) of a ho-
mogeneous system. We note that the accuracy of the density-
averaged approximation applied to a smooth trapping poten-
tial was checked in the limit y—o and yielded excellent
results [24] (error less than 5%). Constraints on the applica-
bility of Eq. (12) may arise in some cases due to quantum
corrections to the dynamic response originating from mo-
mentum uncertainty on the scale A\=!. We defer the analysis
of this “finite-size” effect to Appendix A.

For definiteness, we assume here a parabolic confinement
[see Eq. (2)]. However, our main conclusions require only
the existence of a smooth maximum in the density profile,
while the specific form of the n(x) dependence is not impor-
tant. For the parabolic confinement, averaging of Eq. (8)
over the proper density profile yields [24]

m2

S(g, ) = [V(e.(q) - 0)(e_(q) + w)

7Ti’l0q2
— 0(e_(q) - o)V(,(q) + @) (s_(q) - w)]
X 0(e. (q) - w),
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y> 1, (13)

where for brevity we included only interval of wavevectors

q=<2m (see Sec. IV C for larger ¢). The  dependence of

S(g,w) in Eq. (13) for a fixed value of g is shown in Fig. 3.
Similarly, averaging of Eq. (10) yields

gy w° — (g*2m)?

mo’q \el(q) - o’

S(g, ) = 0(e,(q) — ) 6w — g*12m),

y<1. (14)

The dependence of S(g,w) in Eq. (14) on w is shown in Fig.
4. The parameters n and v in the dispersion relation &,(q),
entering Egs. (13) and (14), correspond to the maximal den-
sity, n=n,y. While the full form of the averaged structure
factor substantially uses Eqgs. (8) and (10) and assumes the

parabolic confinement, the behavior of S(¢, ) near the upper
edge, w—¢,(g), is universal and relies only on the form of
the corresponding singularity in S(g, w) before the averaging,
and on the existence of quadratic maximum in the function
n(x). Tuning of the interaction strength from weak to strong
may be performed, for example, by decreasing the number of
atoms in the trap, which reduces n,. The response should
then cross over from the one with divergence at the upper
edge &,(q) [see Eq. (14) and Fig. 4] to the one with a
nonanalytic point at w=¢&,(¢) and maximum below &,(q)
[see Eq. (13) and Fig. 3].

At arbitrary interaction, §(q,w) demonstrates a nonana-
lytical behavior in the vicinity of w=g,(g) of the general
type,

Se m=1/2
w-g.(q)

X[Ab(e,(q) - w) + B w—2,(q))]+ C, (15)

S(g.w) ~

with a g-dependent exponent w; evaluated at maximum den-
sity n=ny; constants A, B, and C are given in Sec. IV D. We

illustrate the singular behavior of S(g,w) at u,>1/2 and

v;=1 in Fig. 5. The divergence in S(g,w) disappears at i,
< 1/2, but the point w=¢,(g) remains nonanalytic.

C. The dynamic structure factor in the presence
of optical lattice, N/Ny<<1

In the above consideration, we assumed no optical lattice
so that the dispersion relation of 1D bosons is quadratic. The
presence of an optical lattice changes the dispersion relation
of individual bosons; sufficiently strong lattice potential re-
sults in narrow bands of allowed energies. Equations
(13)—(15) remain true even in that case, provided N<N,, and
J/U>(N/2N,)? [see Egs. (6) and (7)] and assuming ga<1.
In the narrow-band limit, the free-particle mass m in Eqs.
(13)—(15) must be replaced by 1/2Ja?, where 4J is the band-
width of the lowest allowed energy band. The general form
of the singular contribution [Eq. (15)] is applicable also in
the crossover regime specified by Eq. (6).

The condition J/U> (N/2N,)?* ensures small occupation
of the lattice sites, nga<<1, which allows one the use of
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parabolic dispersion relation for bosons. A reduction in the
bandwidth eventually leads to occupation nga=1/2 in the
center of the trap [see Eq. (5)]. Under this condition, the
inflection points in the full dispersion relation for a narrow-
band spectrum become important, leading to specific singu-
larities in the dynamic structure factor. These singularities,
associated with symmetric configurations of excited particles
and holes, where studied for the homogeneous case in the
context of spin chains [25-27], and we will not dwell on
them here.

Further decrease in the bandwidth results in the formation
of an incompressible Mott phase in the center of the trap at
noa=1. The Mott phase turns, on both sides, into compress-
ible regions. In these compressible caps, the concentration n
drops from n=1/a to zero continuously (see Fig. 2). The
dynamic response is, therefore, equal to the sum of contribu-
tions of the Mott phase (incompressible) and two caps (com-
pressible),

5(61’(‘)) = Sinc(q’ w) + 2‘§com(q’w) . (16)

Here, the response is averaged over the trap with an appro-
priate density profile (see Fig. 2), which accounts for the
presence of the compressible and incompressible parts. At
J/U<(N/2N,)?, the Mott phase extends almost over the en-
tire cloud, with the caps constituting a small part of the sys-
tem. To the leading order in J/U <1, the Mott phase contri-
bution is given by

_ 64J7 sin’(ga/2) B (w— U)2
Sncld-) == o N ) - 7

where W,(q)=2J\V1+8 cos*(ga/2) and we assumed one
atom per site (N<<N,) (see Sec. III B for details). Thus, at
the leading order of J/U, the Mott phase produces a semi-
circular peak of width 2W,(q), centered at w=U. The contri-
bution of the liquid caps at frequencies w= U can be safely
neglected since it is small by a factor AN/N<<1, where
AN=4]/ €N is the number of atoms in the caps. At much
smaller frequencies, w~J, the dynamic response is solely
due to the caps. The contribution of one cap to Eq. (16) is

2w O(w)6(4J sin(gal2) — w)
a€N* \ [4J sin(ga/2)? — w*

ECOIH(Q’ w) = (1 8)

(see Sec. IV E). Here, the divergent contribution at the
threshold frequency comes from parts of the trap with occu-
pation na=1/2 and has the origin in the particle-hole sym-
metry [25-27] mentioned above. The total dynamic response
in the Mott regime is shown in Fig. 6 and is plotted using
Egs. (16)—(13).

The dynamic response S(g,w) in the Mott regime
(J<U) is peculiar, featuring a hierarchy of weights at differ-
ent frequencies. The smallest frequency scale is w~J, where
the dynamic response is independent of interaction at large
U. The other frequencies are integer multiples of U, w= U,
where the dynamic response vanishes with increasing U as
«(J/U)¥ for j=1,2,..., as long as the applicability of the
Bose-Hubbard model holds. Ignoring for simplicity the fine
structure of the peaks (each peak width is proportional to J),
we represent the dynamic structure factor as
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- . ‘ J\Y
S(g.0)=~2 a, sin”(’)(qa/Z)(E) 8w -Q(g), (19)
ajzo

where ¥(0)=1 and v(j>0)=2, Qy=4Jsin(ga/2) and Q-
=jU, and a; are numerical coefficients.

A possible way to tune between different states of a 1D
Bose system is provided by control of the optical lattice po-
tential. Typically [2] the crossover between the limits of
weak and strong interaction occurs for a sufficiently strong
optical lattice potential, allowing one the use of the tight-
binding approximation for the single-particle spectrum and
of the 1D Bose-Hubbard model for the description of the
interactions. The increase in the optical lattice potential leads
chiefly to the decrease of the single-particle band width 4J,
while the on-site repulsion U changes little. Narrowing of the
bandwidth 4/ leads to the evolution of the dynamic structure
factor. This evolution allows for a clear interpretation at N
<N, (see Sec. IT A). We will follow the changes in the dy-
namic response accompanying the reduction in the J/ U ratio
at small N, e.g., along the dash-dotted line in Fig. 1.

The evolution between the regimes of weak interaction,
strong interaction in the compressible phase, and the regime
of coexistence of compressible and Mott phases is best illus-
trated by the integral characteristics of the dynamic response.
For the weakly interacting gas at ga<<1, we find

do— 31/377 N 1/3 J 172
[5zsem= (i) (5] e e

while after the crossover to the Tonks-Girardeau limit one
obtains

dog _4
JZTrS(q’w)_Zﬂ" (21)

The above two estimates match each other at the crossover
line in Eq. (6). Remarkably, in the Tonks-Girardeau limit the
integral intensity of the dynamic response is independent of
the parameters of the system.

Upon further bandwidth reduction, the Mott phase is
formed, and at J/U<<(mN/8N,)?, it occupies the most part
of the trap, in which case

d J\?
fﬁSinC(q,w)=4<l—]) ag®, qa<l, (22)
do 4 N0>2J
—28...(q,0)=—| —| =q. 23
sz com(¢> ®) W<N 1T (23)

Note that Egs. (21) and (23) match each other (up to a nu-
merical factor) at the transition line in Eq. (7). Comparing
Eqgs. (18) and (23) with Egs. (17) and (22), respectively, we
make two interesting observations. First, at J/U<(N/N,)?
the responses of the compressible and incompressible parts
of the cloud occur at well-separated intervals of w. Second,
the total weight of the response of the Mott phase is smaller
by the factor m(N/N,y)*(J/U)(aq) than the weight provided
by the compressible phases, although the latter occupy only a
small fraction of the atomic cloud.
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The decrease in the integral intensity in the Mott phase
does match the experimental observations and does not con-
tradict sum rules (see Sec. V B). Indeed the major part of the
spectral weight in the presence of the lattice is shifted to
higher frequencies associated with the transitions from the
lowest to higher single-particle bands.

III. DYNAMIC STRUCTURE FACTOR OF THE
HOMOGENEOUS MOTT PHASE

In this section we consider the Mott phase of the Bose-
Hubbard mode and evaluate the dynamic response to leading
order of perturbation theory in J/U<€1. The trap potential
V(x) causes no inhomogeneity of the Mott phase and affects
only the length over which the Mott phase extends. Consid-
ering here a macroscopically large Mott phase (extending
over many lattice sites), we omit the trap potential V(x) from
Eq. (1) and separate the Hamiltonian into a main part (H,)
and a perturbation (H,) as follows:

HBH=H0+H1’ (24)
U
Ho=—>2 (bjb, = 1%, (25)
!
(26)

Hy=—J2, (b}, ,b;+bb,,).
1

Here, 7 controls the occupancy of a lattice site and is related
to the chemical potential w in a linear fashion, n=1/2
+u/U.

Upon raising the chemical potential w the lattice begins to
be occupied at w=-2J, and up to wu=2J[1-2J/U
+0((J/U)?)], the state of the lattice is compressible, turning
as next into a Mott-insulator state with site occupancy one.
The Mott-insulator state turns to a compressible state at u
=U-4J[1+0(J/U)] and emerges again at u=U+4J
[1+0(J/U)] with site occupancy two. We shall be interested,
in this section, in any Mott-insulator state, which amounts to
choosing values of 7 away from half-integers by a value
~J/U. More precisely, to leading order in J/ U, the state of
the cloud is a Mott insulator if

|w—vU|>2(v+1)J (27)

for all »=0,1,2.... The integer v for which left-hand side in
Eq. (27) takes the smallest value gives the site occupation
number,

1 1
p=v+ =+ =sgn(u-vU). (28)

2 2
The dynamic structure factor for the Bose-Hubbard model
is defined as follows:

1 * -
S(q,w)=;2 f dre' ™1 p/(7)po), (29)
1 —o0

where p;=b;b,—(bb)) is the deviation of the occupation
number of site / from its average value and p,(7) denotes the
Heisenberg representation of p.
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Before going into the details of a rigorous derivation of
the peak structure of S(g,w) at w=U, we outline first a
simpler derivation which gives the correct spectral weight of
the peak. The derivation of the peak shape is deferred to Sec.
I B.

A. Spectral weight at o=U

For a Mott-insulator state, the ground state in perturbation
theory reads

~ H
\DE (1 - j) W)+ O(HY), (30)
where |W,) stands for the unperturbed ground state
b))
(&) 31)

[woy = [T —=10),
N

with p being the Mott-state occupation number. Note that the
form of Eq. (30) is owing to the fact that H, acting on | W)
creates only one kind of excitations. The excitation energy is
approximately U and each excitation is represented by a
particle-hole pair with hard-core interaction between the par-
ticle and the hole.

Since here we are interested only in the spectral weight of
S(q,w), it suffices to write down a complete set of states
spanning the space of all excitations with energy w=U in
the lowest order of perturbation theory. Orthogonality with
respect to Eq. (30) implies

- (WolH[W,,,) 5

(W) 1) = W) + [ Wo)——————+O0(H), (32)
172 172 U

where |‘I’,1 ,2) stands for an unperturbed excited state with a

particle at site /; and a hole at site [, # [,

;)= . b71b12|\1'0> (11 # 1y). (33)

=
pp+1)
Evaluating first the matrix elements

JNp(p+1)

\TRIATRLT, _
CBolbjb|T) ==

(01, ye1+ 00,4101, = B11y)s

(34)

we obtain for the dynamic structure factor in Eq. (29) the
following result:
2
S(q,w) = ML(’”])G) sin2(ga/2)dw—U). (35)
a U
Note that the peak weight increases with p like p? and is
suppressed at small J by the factor (J/U)>. By generalizing
the above derivation, it becomes clear that there exist also
peaks in S(q,w) at frequencies equal to integer multiples of
U, ie., w=jU; however, the weight of those peaks is
suppressed as (J/U)?.
The & function in Eq. (31) comes from the fact that we
neglected the dispersion relation of the excitations, assuming
that they all have energy w=U. As a matter of fact, account-
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ing for the dispersion relation of the excitations results only
in a broadening of the & peak, without changing its spectral
weight (see next section).

B. Semicircular peak at w=U

The states in Eq. (32) span the space of all excitations at
energy w= U. However, they are not eigenstates of Hamil-
tonian (24), not even at zeroth order of J/ U. Below, we build
up the eigenstates of Hamiltonian (24) by a suitable linear
combination of the states (32). In order to do so, we first
consider the two-body problem that represents the excitation.
We solve this problem by going to the center-of-mass and
relative-motion coordinates. Then, having proper states at the
zeroth order of J/ U, i.e., analogs of Eq. (33), we repeat the
steps in Sec. IIT A to obtain the dynamic structure factor.

To simplify our notations in this section, we set the lattice
spacing to unity (a=1) and agree to denote any coordinate
dependence by a subscript and momentum dependence by a
superscript. Our starting point are the states in Eq. (33) and
the matrix elements of Hamiltonian (24) in the space
spanned by these states. The interaction part Hy is already
diagonal

U
<\PP1P2|H0|\P1112> = 5P1115P212ly+ EEZ (P - U)Z] > (36)

and moreover, it is proportional to the unity matrix and thus
is invariant under unitary transformations. We leave H,, aside
for the time being and focus on the tunneling part

(O, p [ H ) = = J(p+ 18, (8, 1 o1+ 8 41)
+p5plll(5p2,l2+l + 6172,12—1)]' (37)

We decouple the motion of the center of mass [28] of the
excitation by the following transformation:

1 .
[Py = — > P ) (38)
\rZ’]TlE[r
where r=*1, 2, =3,..., the sum over [ runs over all in-

tegers of the same parity as r (hence the notation / € I,), and
% € [—,]. The states in Eq. (38) are normalized as usually,

(W W) = 8,1,80¢' = ). (39)

In the new basis, the center-of-mass motion decouples and
the matrix becomes diagonal in the momentum »,

(W5 H W) =H, () 8= o). (40)
The resulting relative-motion problem reads
Hr’r(%) == Txar’,r—l - T::gr’,Hl’ (41)

where r',r=*x1,+x2,%x3,...
amplitude is given by

and the effective tunneling

T,=J(pe ™+ (p + 1)e?). (42)

The momentum »x enters in Eq. (41) as a parameter. Note that
the range of values of ', r in Eq. (41) does not include zero.
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We can, therefore, split H,, into two semi-infinite chains,
H,,=H, +H,, , where Hir is given by Eq. (41) with solely
positive or negative values of r’,r. Each of the semi-infinite
chains can be solved easily by fictitiously including zero into
the domain of values of r’,r, but requiring that the wave
function vanishes at site r=0. The solution then reads

2w -
[ Wy = \/;2 ¢TI x sin(kr)|[ W7 ), (43)
r=1

were k € (0, ) and the sign index * stands for the right/left
chain. The phase ¢, originates from T,=|T,|e!?* with

|T,| =J\N1+4p(p+1)cos?(x/2). (44)

The states in Eq. (43) are normalized as follows:
WO |y = 5, 8k - k) S5 = ). (45)

Taking into account the part H,, we obtain that the particle-
hole excitation has the dispersion relation

£ (k,x) = U —=2|T,|cos(k), (46)

with |T,| given in Eq. (44).

The next step would be to correct the states |\If'f:"> in per-
turbation theory to the first order of J/ U and thus obtain the
analog of the states in Eq. (32). This can be done straight-
forwardly, and for reference, the result reads

—
B4 = [ty 2J\Np(p+1)

sin(k) ()| Wo).  (47)
It is, however, not necessary to repeat the same steps as in
Sec. III A—remarkably, all those steps can be comprised in a
single formula and one can use the bare states |W**) to evalu-
ate matrix elements. We use the following expression, which
turns out to be a considerable shortcut in the calculation,

= e
(Wolbjb | P = 5<‘I’o|~71|‘l'lg>’ (48)

where 7 is the current operator J,=i[H,b]b,] which reads
explicitly

Ji=iJ(bjby = b}, \b) +iJ(bjb_; —b]_b).  (49)

Equation (48) holds for the considered model to first order in
JIU.

Using Eq. (48) or repeating the steps in Sec. IIT A, we
finally obtain

—_—
2J\p(p + l)eii¢%+i%l

(Wo|bjb | ¥ = =
imU

sin(k)sin(5¢/2).
(50)
With the help of the matrix elements in Eq. (50) and the

dispersion relation in Eq. (46), the dynamic structure factor
in Eq. (29) evaluates to
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20(p+1)[47\? 1
204D S )L
a U

Slg.w) = W, (@

=)
)
(51)

Here, we have reintroduced the lattice spacing a and denoted
the width of the peak by 2W,(¢), where

W,(q) =2J1 +4p(p + 1)cos*(qal2). (52)

This completes the derivation of Eq. (17), which is readily
obtained from Eq. (51) by specifying the value p=1 for the
Mott lobe occupancy. Note also that the spectral weight of
S(g,w) in Eq. (51) is equal to the spectral weight of S(g,w)
in Eq. (35), as expected from our discussion in Sec. IIT A.

Finally, we note that the same problem was studied in
Ref. [29] in the limit p> 1 using a combination of perturba-
tion theory and periodic boundary condition on the wave
function. The result of Ref. [29] for S(g,w) represents a se-
ries of closely spaced & spikes located in the neighborhood
of w=U. These spikes become increasingly denser and can
be replaced by a continuous curve in the limit of large period
of the boundary condition. In order to compare our result
against the result of Ref. [29], we replace the sum in Eq. 9 of
Ref. [29] by an integral (an extra factor of 1/2 is needed to
account for the sparse summation in the sum). After integra-
tion, we recover a semicircular peak in S(g,w) centered at
w="U. The width of the peak agrees with our result for width
in the limit p cos(ga/2)> 1; the prefactor of S(g,w) agrees
as well, provided differences in the definition of S(g,w) are
taken into account.

IV. AVERAGED DYNAMIC STRUCTURE FACTOR

In this section, we study the effect of inhomogeneity of
the atomic cloud on the dynamic structure factor S(g, ). The
inhomogeneity is caused by the trap potential V(x) [see Eq.
(2)]. The characteristic length over which the atomic density
n(x) varies along the trap is usually much larger than the
quantum length scale N\ of the longitudinal trap confinement.
For such “soft” confinements, we employ the density aver-
aging in Eq. (12). We first find n(x) in the regimes of interest
using the Thomas-Fermi approximation and then evaluate
the dynamic structure factor averaged over the trap inhomo-
geneity.

A. Atomic density profile in a 1D trap

Here, we consider a 1D Bose gas subjected to the poten-
tials of a harmonic trap and an optical lattice. We assume that
the lattice potential is strong enough to justify our use of the
Bose-Hubbard model in Eq. (1). As a limiting case of the
Bose-Hubbard model (continuum limit), we recover the
model of 1D Bose gas subjected to only a harmonic trap
potential (see end of this section).

For a soft trap confinement, the density profile n(x) is
commonly found using the Thomas-Fermi approximation.
The trap potential V(x) is treated classically and taken into
account through the local electrochemical balance,
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o€
—+ V() =pu, (53)
on

where &£ is the ground-state energy (per unit volume) of a
homogeneous system of density n. In calculating &, energy
should be measured with respect to the chemical potential.
The profile n(x) is found by solving Eq. (53) for n. This
approximation yields n(x) accurately for the most part of the
cloud, with exceptions being the phase boundaries (points at
which na=0,1,2,...), where the approximation works only
qualitatively. For the purpose of calculating the dynamic re-
sponse of the whole cloud Eq. (53) is sufficient because only
the gross features of n(x) matter.

For weak interaction U/Jnga<<1 (Bogoliubov limit), due
to the bosonic nature of the problem, the resulting density
profile is due to the balance between mean-field interaction
energy and external harmonic trapping. It is convenient to
measure energies from the bottom of the band, introducing
p=pu+2J. The density profile is then given by

— 2
n(x)=MU—‘;(x)=n0{1—<%) ], (54)

where no=u/Ua is the atomic density at the trap center, and
2L is the cloud length, with L=aVu/€, For the Bose-
Hubbard model (1), Eq. (54) is obtained from Eq. (53) in the
limit J/U> 1 using perturbation theory in the interaction. At
smaller bandwidth, J/U=<1, Eq. (54) continues to describe
the gross features of n(x), as long as U/Jnya<<1 (see discus-
sion in Sec. IIT A). The equation of state (relation between
and N) is obtained from Eq. (54) by integration, i.e., impos-
ing the normalization condition on the density profile, N
=J%,n(x)dx, yielding

4
NINy = g(ﬁ/U)M, (55)

where N, is defined in Eq. (3). Upon substitution of i
=ngaU in Eq. (55), we recover Eq. (4).

In the opposite limiting case U/Jnga>1, the Thomas-
Fermi approximation is equivalent to the original Thomas-
Fermi approximation for fermions, except for the fact that
several layers of atoms can be added on top of each other at
the price of raising the chemical potential by about U for
each layer. For example, the second layer of atoms begins to
form in the center of the trap when the following condition is
satisfied (retaining leading order in J/U<<1):

U—-4J = ¢(N/2)?, (56)

where 4J represents half of the width of the second Mott
band (see Fig. 2) and N/2 represents L/a at the leading order
of J/U. In terms of the total number of atoms N and in the
limit J— 0, the second layer starts forming with increasing N
at N=2N,. In this section, we will consider not more than a
single layer of atoms in the trap, which can be rephrased,
with the help of Eq. (56), as follows:

NINy < 2\1-4J/U = 2(1 - 2J/U). (57)

Precisely this linear dependence of the maximal N/N, on
J/U is displayed in Fig. 1 at small J/ U (see line 2). Note that
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Eq. (57) is accurate only to first order of J/U because we
used leading-order expressions for the Mott bandwidth and
atomic cloud length in Eq. (56).

At J/U<1 (Tonks-Girardeau limit), the solution can be
found by mapping the bosons onto noninteracting fermions,
where the repulsive on-site interaction can be accounted for
by the Pauli exclusion principle. The atomic density n(x) in
the compressible region is then found from

2J{1 = cos[man(x)]} + V(x) = i, (58)

where we have used the tight-binding expression for the
chemical potential of a homogeneous system of noninteract-
ing fermions. In the incompressible region, Eq. (58) does not
hold and n(x) is trivially given by n(x)=1/a. From Eq. (58),
we find the well-known expression for the atomic density

n(x) = ia arcsin | ﬁ;—r(x) (59)

As before, the equation of state is found by integrating n(x)
over x. At 0<u<<4J, the atomic cloud consists of a single
compressible phase (state C in Fig. 1). From Eq. (59), we

obtain
4 [4]-p u u
N=2+/ “F(_“ )_K(_L)] (60)
T € n—4J n—4J

where K(m) and E(m) are the complete elliptic integrals of
the first and second kind, respectively. At 4/<u<U-4J, a
Mott phase is present in the middle of the cloud (see Fig. 2).
Adding the contributions of the Mott phase and two com-
pressible caps to the total number of atoms, we obtain

ANE(Y) g
TN € \u
At the lower limit of applicability of Eq. (61), m=4J, a Mott
phase nucleates in the center of the trap; with E(1)=1 in Eq.
(61), one obtains Eq. (7) for N.

In the low-filling regime u<<4J we recover the con-
tinuum limit. An arbitrary interaction strength can be ac-
counted for within the Lieb-Liniger model [3] for bosons
with effective mass defined by optical lattice. In this limit, all
atoms reside at the bottom of the band, na<<1, and one can
approximate the tight-binding dispersion relation as follows:

2

e(k)=2J[1~-cos(ka)] = Py

(62)

where m*=1/2Ja” is the effective mass in the continuum
model. In the weak interaction limit, n(x) is given by Egq.
(54). At strong interactions, U/Jnga>1, one obtains from
the fermionic representation of the model that

X

2
n(x)=ng\/1 - (Z) , (63)

where ny=(1/ma)\iu/J and L=a\ i/ €. In both cases, n(x)
is quadratic in x around the trap center—a feature that also
persists through the crossover regime [30]. The equation of
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state is obtained by integrating n(x). At U/Jnga> 1, integra-

tion of Eq. (63) yields

_ Iz
2\/]_60'

N (64)

Upon substitution iz=J(mnya)? into Eq. (64), we recover Eq.
(5). We note that Egs. (63) and (64) are applicable at arbi-
trary ratios J/ U, as long as U/Jnga>1, which means x/J
<min{1,(U/J)?}.

Having discussed the continuum limit of lattice bosons, it
is easy to adapt Egs. (54), (55), (63), and (64) to the case of
confined bosons without an optical lattice. It is achieved by
the replacement: m*—m and Ua — g.

B. Dynamic structure factor in the continuum limit:
Bogoliubov regime

For sufficiently small values of U, the interaction strength
is small, U/Jnga<<1, and the chemical potential lies within
the lower parabolic part of the spectrum in the Bose-Hubbard
model, ©<<4J. Considering also small transition freg_uencies
w< i], we may take the continuum limit, a~1/\J~1/U
~\gy—0, in the Bose-Hubbard model and match it with the
model for the Bogoliubov sound in 1D, with the only differ-
ence being the presence of the trap potential V(x). Hamil-
tonian (1) can thus be represented by

R
H= f dxd)‘(x)[— T +V(x) - | p(x)
bt J ' (1) (2) () bLv), (65)

where 1/m*=2Ja” and ¢(x) is a boson field operator normal-
ized as [(x), ¢ (x')]=8(x—x"). The model in Eq. (65) coin-
cides with the model we discussed in Sec. II B, up to obvious
notational differences: m+«m™ and g« Ua.

In the homogeneous case [ V(x)=0], the dynamic structure
factor at small U is sharply peaked at the frequency of the
Bogoliubov spectrum [see Egs. (9) and (10)]. In order to
understand the limit in which Eq. (10) is valid, one should
imagine taking U— 0 while maintaining & (i.e., Una) con-
stant. Then, Eq. (10) is exact. In practice, Eq. (10) is a fairly
good approximation to the dynamic structure factor at finite
U for small U/Jna<<1 since a weak interaction only broad-
ens the & function in Eq. (10) to a power-law singularity (see
Sec. IV D).

Next, we average Eq. (10) with the help of Eq. (12) using
the Thomas-Fermi density n(x) in Eq. (54). We express the
result through the parameters at the trap center and, to avoid
double notations, we redefine now v as follows: v
=vngaU/m*. The atomic density at the trap center n is
given in Eq. (4). We obtain Eq. (14), with m— m*.

As mentioned above, the Bogoliubov limit is the limit of
small U. The requirement U/Jnya<<1 can be rewritten using
the crossover boundary in Eq. (6) as
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U\32
J
whereas the requirement u<<4J can be rewritten using Eq.
(55) as
J 3/2
N < NO(U) . (67)

The two requirements can be met only if J/U> 1. Further-
more, in order to justify the use of Eq. (12), we have to
require that the size of the cloud be much larger than the
quantum length scale associated with the motion of a band
atom in the trap potential. This imposes a condition on N
which becomes more rigid and replaces Eq. (66) at U

= t3/46(l)/4,
1 (J>3/4
VNo\U )

We summarize here our result: the singular dependence of
S(g,w) on w, present at weak interactions in the 1D model, is
smeared out towards lower frequencies. Thus, the S-function
divergence present in Eq. (10) is weakened to a square root
divergence as shown in Eq. (14).

N> (68)

C. Dynamic structure factor in the continuum limit:
Tonks-Girardeau regime

Next we consider the limit of strong interaction, U/Jnga
> 1, and, for simplicity, restrict our consideration to small
energies, u,w<<4J. Following the same steps as in Sec.
IV B, we arrive at Hamiltonian (65) in the continuum limit.
In the limit of strong interaction, Hamiltonian (65) maps
onto a free fermion model (Tonks-Girardeau gas),

1 &

H= f dw*(x){— i g2 PV ). (69)
where i(x) is a fermion field operator normalized as follows:
{(x), " (x")}=8(x—x"). Note that the interaction parameter
U is not present in Eq. (69) because the effect of the repul-
sive interaction is accounted for by the fermionic nature of
(x). The correspondence between ¢(x) and the bosonic field
¢(x) in Eq. (65) involves a nonlocal phase factor. However,
the latter cancels out in quantities which do not involve per-
mutation of particles. In particular, the phase factor cancels
out in the dynamic structure factor since for the density op-
erator we have ¢'(x)p(x)=f(x)(x).

For a noninteracting model, the dynamic structure factor
can be easily calculated for an arbitrary V(x). However, since
we are interested here in the limit of weak trap confinement,
we employ nevertheless the density averaging in Eq. (12). In
the homogeneous case [V(x)=0], the dynamic structure fac-
tor is given by Eqg. (8), with m—m* and mn=ky=\V2m*
=(1/a)Vm/J. We note that Eq. (8) is exact in the limit
U/Jna— o and it is a fairly accurate approximation at any
finite but large interaction strength U/Jna> 1, provided the
considered momenta are small g<<kp(U/Jna) (see Sec.
IV D).
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Averaging Eq. (8) with the help of Eq. (12) and using n(x)
in Eq. (63), we find S(g,®) and express it through the pa-
rameters at the trap center. To avoid double notations, we
redefine now ky to refer to the trap center, kp=mn;. The
averaged dynamic structure factor is then given by Eq. (13)
for g=<2mn,. At larger momenta, g >2mn, a similar expres-
sion reads

#*2

V(e (q) - 0)(@-2_(q))

S(g.w)=—
Wnoq

X 0(e,(q) — ) 0w —&_(q)).

The Tonks-Girardeau limit is the limit of small densities.
The requirement U/Jnga>1 can be rewritten using the
crossover boundary in Eq. (6) as

U 3/2
N<N07 N

whereas the requirement i <<4J (or equivalently nga<<1) can
be rewritten using Eq. (64) as

J 172

This condition is compatible with the condition of having no
Mott phase in the trap [see Eq. (7)]. Additionally, in order to
justify our use of Eq. (12) in the Tonks-Girardeau limit we
need to require that N> 1, which guarantees that the length
of the atomic cloud is much larger than the trap quantum
length.

Next we analyze Eq. (13) in the limit of small momenta,
q<<kp. In this limit the change due to the averaging is dra-
matic. The spectral weight of S(g,w), contained before the
averaging within e_(q) <w<e,(q), is nearly fully pushed
out into the region 0 <w<e_(g). We compare the spectral
weights in the two regions in what follows. To leading order
in g/kp<<1, Eq. (13) reads

(70)

(71)

(72)

2m*ew q

krq

i (73)

_ m*
S(Q»Q)) = — 2 -
q
for |w—kpq/m*|<q*/2m*, and

- 2m*%w mtw |12 m*w q
S(gw)="5—|1+ - — 4L
krq krq krg — 2kp

me Lr
krq 2k

+1/1- (74)

for 0< w<kpq/m*—q*/2m*. The net spectral weight in Eq.

(73) is given by
“do q [2q
J S 5(qe0) = 2L
21T 37 NV kp

&e_

(75)

To the same order in g/kp, the net spectral weight in Eq. (74)
reads
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~dw q q [2q
—S(g,w)=——-—1\[—. 76
J 27T (g,©) 27 37 N kg (76)

0

Comparing Egs. (75) and (76) to each other, we find that the
spectral weight remaining in the region e <w<g, consti-
tutes only a small part ~vq/ky of the total weight g/21r.
Note that the total weight before averaging is also g/2m.
This behavior can be described on a simpler level as follows.

Let us ignore the structure of the (rectangular) peak in Eq.
(8) and replace it by a & function with the same weight,

S(g,w) = q8(w—kpg/m™). (77)

This approximation can be rigorously justified in the limit
g — 0 because the peak width tends to zero faster (g?) than
the frequency at which the peak is centered (°cg). Carrying
out the averaging for S(¢g,w) in Eq. (77), we obtain

_ m* w

N gy
Equation (78) coincides with Eq. (74) to leading order in
q/ kr in the whole range of w, except for the neighborhood of
w=kpg/m*. A more precise condition for the validity of Eq.
(78) reads |w—kpq/m*|>q*/m*. Equations (77) and (78) ex-
plain the gross features of the redistribution of the spectral
weight present in Egs. (73) and (74). Note that the square-
root singularity present in Eq. (78) resembles the one ob-
tained for the Bogoliubov limit in Eq. (14). Although the
qualitative behaviors of Egs. (14) and (78) are similar, the
Bogoliubov and Tonks-Girardeau limits can be distinguished
from each other at small g by the w dependence in the nu-
merators of Egs. (14) and (78).

We summarize here our results. The steplike behavior of
S(q,w) at o=g,(q) present in the homogeneous system is
smeared to a square-root dependence *ve,—w, with &,(g)
evaluated at the density of the trap center. The step at w
=&_(q) is smeared in the same way (\Vw—g_) for ¢=2kj. For
q <2kp, the smearing leads to nonzero spectral weight in the

region 0<w<g_(g); the behavior of S(g,®) at w=¢_(q) re-
mains nonanalytic, with a diverging derivative on the lower
frequency side.

D. Dynamic structure factor in the continuum limit:
At arbitrary interaction strength

In the limits of weak and strong interaction, the dynamic

structure factor S(g, ) turns to zero if w exceeds the Lieb I
frequency e,(q;n,), corresponding to the maximal density
in the trap (see Secs. IV B and IV C). Contrary to this lim-

iting behavior, at intermediate interaction strength, g(q,w)

#0 at w>e,(q;np). Such behavior of S(g,w) for trapped
atoms reflects the evolution of S(g,w), with the interaction
strength, in a homogeneous system.

In the Bogoliubov limit, a homogeneous system is char-
acterized by a S-function response [see Eq. (10)]. Deviations
from that weak-interaction limit leads to a replacement of the
S-function singularity by a power-law divergence [4,5] with
an exponent u; <1 [see Eq. (11)]. The singularity remains
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nearly symmetric in w—¢&,(¢g) and the exponent close to one
if the interaction parameter,

mg/n without optical lattice
Yo (79)

m*Ua/n with optical lattice,

is small, y<<1. Upon increase in 7, an asymmetry develops
in the peak structure [the higher frequency part, w>e,(q),
becomes suppressed], and w, is decreasing toward zero. At
y>1 (Tonks-Girardeau limit), the shape of S(g,w) ap-
proaches 6(s,—w) [see Eq. (8)].

In the following, we study how the singular behavior of
S(g,w) at Lieb T mode changes due to averaging over the
density n(x) of the atomic cloud. Our basic assumption is
that n(x) is a smooth function of x and can be approximated
around its maximum at the trap center by a quadratic expan-
sion

—~ 1 " 2
n(x) = ng+ 2n (0)x=, (80)

where ny=n(0). We note that this assumption about n(x)
agrees with the numerical analysis of Ref. [30].

The behavior of S(g,w) at Lieb I mode is summarized in
Eq. (11) (see also Refs. [4,5]). We find that the divergence in
S(¢g,w) at Lieb I mode is weakened due to averaging over the
trap. We average S(¢,w) in Eq. (11) using n(x) in Eq. (80)
and obtain S(g,w) in Eq. (15) with the coefficients

2 A

A= m[COS(Wﬂl) -],

TV A

cos(mu,)’

V]A

= , 81
—2a, (81)

Here, the common factor A reads

Seng ]1/2
b

_ @{_ 52)
gL | 2Ag[n"(0)]

where ¢=\m/T(1+u)T(3/2=pu,) is a factor order unity
(1<c<2.2) and Ag is a scale defined below Eq. (86). The

nature of nonanalytic behavior of S(g,w) is established by
Egs. (15), (81), and (82) for arbitrary . Next we provide a

more detailed form of S(g, ), which can be matched to the
results of Secs. IV B and IV C.
1. Limit of large q and arbitrary y

Here, we consider g > ¢g,, with
m*v, y=1
qo= (83)
Ykp, y=1.

In this limit, the dynamic structure factor close to Lieb I
mode is given by [4,5] [cf. Eq. (10)]
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w-¢
€y
where K=mn/m*v is the Luttinger liquid parameter, u,;=1
—1/2K, and 5.x)=(€/2)|x|!. Note that lim_,, 5.(x)=&(x).
The Luttinger liquid parameter K is a function of y only and,
for the Lieb-Liniger model, it has the asymptotes [3]

-

/Ny, <1

_{ ™Y Y (85)
1+4/y, y>1.

The equality sign in Eq. (84) holds for the Bogoliubov limit
v—0, whereas at finite y Eq. (84) gives S(¢, ) by order of
magnitude in a finite range around Lieb I mode,
=uvgq. Note that at y> 1, parameter K— 1 and v — mn/m*.

Substituting Eq. (84) into Eq. (12) and using Eq. (80) we
arrive at

vgq

=172 \/7—TF</.L1 )
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novq
PRI i
S(g.0) ~ de,L N 2[n"(0)|Ae ),

where Ae=ng(de,/dny) and W=(w-¢e,)/vg. In obtaining
Eq. (86), we linearized the n dependence of the Lieb I mode,

M

. (86)

W+§

&.(q.no) + (n —ny), (87)

8+(q’n) =~ +&(q’n0)

and retained n-dependence only in the position of the singu-
larity in Eq. (84). The upper limit of integration is taken to
infinity since keeping it finite goes beyond the accuracy of
these approximations. Equation (86) gives the leading diver-
gence (at u>1/2) in S(g, w) at W— 0. All parameters in Eq.
(86) refer to the trap center.

Performing the integration in Eq. (86), we obtain

S(q.w) ~

q [ Novq
de L N 2|n"(0)|Ae

w-¢g,

The last term in Eq. (88) is an additive constant and can be
omitted at finite u;—1/2>0. However, in the limit g,
— 1/2, which corresponds to y>1, the last term plays an
important role. In this limit, Eq. (88), as well as Eq. (15) with
coefficients defined in Eq. (81) yield

*
_ln
q

ng/m*

S(g, ) ~ (89)

w-¢g,

In Fig. 5, we show the singular dependence of S(g,w) on w
as given by Eq. (88).

Next we compare Eq. (88) to Eq. (14) in the limit y<<1.
We use the Bogoliubov spectrum (9) for the Lieb I mode and
expand it for ¢=>m*v,

(90)

eu(g) = P
Substituting here v=+vnal/m* and differentiating &,(q) with
respect to n, we obtain the characteristic scale Ae=nyaU
=m*v%. Thus, one should expect that Egs. (88) and (14) co-
incide at |w—e,|<m*v?. Taking the limit u; — 1 in Eq. (88)
we obtain

— ny
S(q.0) = 7\ —
(q.w) = Ua

On the other hand, the same result is indeed obtained from
Eq. (14), after expanding the right-hand side in terms of w

&, retaining the leading order term, and taking the limit
q>m*v.

1/2

! e, — w). 91)

w-g,

()

)
2 [tan(%)0(8+—w)+0(w—s+) -% . (88)

Ml—E

We summarize here our result: the exponent w; of the
power law divergence of S(g,w) at Lieb I mode, predicted in
Refs. [4,5], is reduced by 1/2 due to averaging over the trap.

2. Limit of strong interaction y=>1 and arbitrary q

In this limit, the peak is asymmetric [4,5],

e IR LS
+(1+p)l(e, — w)]. (92)

Here, 0= pu;<1/2 and 0= v=<1 are given by

2 1
uy=—|1-—arctan Q |arctan Q, (93)
o v
_ 1 TH
v=—tan| — |, (94)
(0] 2

with Q=q/m*Ua=1mq/kry. Note that here we use a slightly
different parametrization of the peak asymmetry than in
Refs. [4,5]. The Lieb modes at strong interaction assume the
expression in Eq. (8). Equation (92) gives S(g, w) by order of
magnitude in a frequency range around Lieb I mode,
-g,|<e,—e_. The equality sign in Eq. (92) holds for the
Tonks-Girardeau limit (Q<<1) [cf. Eq. (8)].

We proceed in the same fashion as in Sec. IV D 1, substi-
tuting Eq. (92) into Eq. (12) and using Eq. (80), and arrive at
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}’10(8+ —)f
\/2|n”(0)|As o VE

(1+)o(-W-9]1, (95

My

S(g,w) ~ e g

><[(1—17)0(W+ &+

where Ae=kpq/m* and W=(w-¢,)/(e,—&_). In Eq. (95),
the parameters are taken at the trap center and the approxi-

g, —€&_

INO7)

w—g,

m* | n0(8+ - 8—)
S(st) 2qL 2|n”(0)|A8

We retained here an additive constant (last term) to ensure
proper behavior of Eq. (96) in the limit u;— 1/2, in which
Eq. (96) takes the form of Eq. (89). In Fig. 7, we show the

nonanalytic behavior of S(¢,w) of Eq. (96) at the Lieb I
mode.

At Q<1, Eq. (96) agrees with the Tonks-Girardeau limit
[see Eq. (70)]. Indeed, substituting u,=~2Q/7 and v=1 in
Eq. (96), we obtain

172

_
’12 *
il e, - o). (97)

w-¢,

Ae

S(g,w) ~

On the other hand, expanding S(g, ) in Eq. (70) in terms of
w—¢g,, we obtain the same result.

To conclude, the singular behavior of S(g,») at o
=¢g,(q) is owing to the weak (quadratic) dependence of n(x)
on x in the trap center. More generally, the exponent wu; of
the singular dependence changes compared to the homoge-
neous case like pu;— u;—1/d, where d is the power of the
subleading order expansion of n(x) in terms of x around its
maximum. Normally, n”(0) # 0, i.e., d=2, which is the case
assumed in Eq. (80).

E. Dynamic structure factor of the compressible caps
of the Mott phases

In the Mott-insulator regime the atomic cloud consists of
compressible and incompressible regions. Here, we evaluate
the density-averaged dynamic response of a compressible re-
gion as well as its relative contribution to the total response
mentioned in Sec. IT C [see Eq. (18)]. The dynamic response
of an incompressible region has been considered in Sec. III.

We consider the simplest case illustrated in Fig. 2, where
the center of the cloud is incompressible, with na=1, and the
ends are compressible, with n(x) given in Eq. (59). We as-
sume J/U<<1 and agree to measure the chemical potential
from the middle of the first Mott band at x=0. The length of
one compressible region AL is then given by

— 1
w-172 \"WF(IU“I - _> -7
—2{(1 _Dhw—s,)+ {tan(%) - é} oe. - w)} + 11
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mations made here are the same as in Sec. IV D 1. In con-
trast to the case of Sec. IV D 1, the integral here does not
diverge at W=0 if u; <1/2. Nonetheless, Eq. (95) gives the
leading order term of the nonanalytic part of S(g,w) at Lieb

I mode. The analytic part of S(g,w) is not known at this
order of the asymptotic expansion in W< 1. Performing the
integration in Eq. (95), we obtain

5— M1
(96)
[
AL \//L+2J \/M—z./ 2J
—= - =~ +0((1p)Y).
a € € \’%
(98)

We further assume that the trap potential is sufficiently weak,
such that the compressible region is macroscopic, AL/a>1,
allowing us to use Eq. (12).

In order to calculate the dynamic response, we map the
Bose-Hubbard model in Eq. (1) onto a fermionic model in
the strong interaction limit J/U<<1 and at restricted site
occupancy na =< 1, obtaining

H=-J2, (Flafi+ fifien) + > (&l - wWfifs  (99)
] /

where f; is a fermion annihilation operator, {f, f;,}: Syr. As
usually, f; faithfully represents b; in the low energy subspace
(o< U) up to a nonlocal phase factor. The phase factor, how-
ever, cancels out in the density operator, resulting in b] 1D
_f 1

In the homogeneous case (€,=0), the dynamic structure
factor reads [25,26]

a'Flg,w)
S(g.) = , (100)
\[4J sin(ga/2)* - ?
where
7:(61, w) = 0(Q++) 0(_ Q+—) + G(Q—+) 0(_ Q ),

QO =+ 2sJ cos(gal2)cos ¢y +s' /2. (101)

Here, s,s'==*1 and
ho = arcsi ( 2 ) (102)

=arcsin| ———— |.
0= A 4 T sin(qar2)

It is convenient to relate averaging over the density profile
in Eq. (59) to an averaging over chemical potential in expres-
sions for the homogeneous case,
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S(q,w)

w

FIG. 7. (Color online) Sketch of the dynamic response S(g,®)
as function of w in the regime of “strong interaction and arbitrary
q” (see Sec. IV D 2). The response has a nonanalytic point (circle)
at Lieb I mode £,(g) (solid line) and is strongly suppressed away
from e,(g) at distances exceeding &,—e€_ (dotted line). The solid
line is plotted using Eq. (96) with the choice Q=1, corresponding to
wm1=0.375 and v=0.67; the dotted line illustrates the qualitative
behavior of E(q,w) away from the Lieb I mode. The scale of the
ordinate axis is arbitrary.

(103)

2J ’ ’
S a S(g, w;u")dp
S(q, w3 p) = f

2L ) Ne(p—-p')
Here, we assumed that 2/ < u<U-4J.

Next, we average S(g,w) in Eq. (100) using Eq. (103) and
obtain that S(g,w) is given by the right-hand side of Eq.
(100), but with F(q, ®) — F(q, ), where

—~ (~
VO, = VO, _+ VD, — VO

Flg,w) = (104)

\"/,LL +2J - V’,u, -2J
Thus, we have obtained the dynamic structure factor of a
compressible region, normalized to its length. It is conve-
nient next to expand Eq. (104) for u>J, which corresponds
to the compressible region occupying only a small portion of
the cloud, AL<<L. To leading order, the dependence on u
drops out and we obtain

1

S(g) = —

, (105)
2Ja \[4] sin(qa/2) P - w?

with the support 0 < w<4J|sin(ga/2)|. We note that this re-
sult could also be obtained by making a linear approximation
for V(x) over the size of the compressible region, which is
compatible with our assumption AL<<L.

Finally, we are in the position to obtain Eq. (18) for the
contribution of one compressible region relative to the total
length of the cloud. We need only to multiply Eq. (105) by

AL/2L, where
+2J
L:a\/'u—%a\/ﬂ.
€ €

Expressing u via N with the help of Eq. (61), u=€,N*/4 at
w>J, we obtain that AL/2L=4J/€,N* and multiplying it in
Eq. (105) we arrive at Eq. (18). We remark that Eq. (104)
holds also in the fully compressible regime —2/<u<2J,
provided the square roots are assumed to vanish for negative
arguments, i.e., redefining \x:= 6(x)\x.

(106)
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V. DISCUSSION
A. Ways to measure dynamic structure factor

Bragg spectroscopy [9-16] allows one to excite the
atomic cloud with a scalar potential of the form

o(x,1) = Re[cpoei(‘f"‘“’[)], (107)

with @ and ¢ tunable independently of each other. The con-
trol of amplitude ¢, ideally, is independent of @ and g. The
effective interaction of the atoms with the Bragg probe reads

Hip = f dxp(x)e(x,1).

(108)
The linear response of the atomic cloud to such a perturba-
tion is characterized by the dynamic structure factor studied
in this paper.

One way to measure the dynamic structure factor is to
perform calorimetric measurements on the system after ex-
posing it to the driving potential ¢(x,#) for some time. The
energy gained by the system per unit time is [31]

dE
— = wley*Sy(g, ), (109)

dt
where Sy(q,w)=~2LS(q,w) is the (unnormalized) dynamic
structure factor of the system.
In the experiment of Ref. [15], Bragg scattering was used
to excite the atomic cloud at a fixed momentum ¢ and a
variable frequency w for a fixed duration of time. The re-
sponse of the atomic cloud to the excitation was observed as
a smearing of interference pattern of the atomic density at the
final stage of experiment, when the atomic cloud was left to
expand freely without confinement. Establishing a relation
between the smearing of the interference pattern of the mat-
ter waves and the amount of absorbed energy goes beyond
the purpose of this paper. Here, we discuss qualitatively only
the limiting case, in which the system reaches thermal equi-
librium before the trap confinement is released. In this case,
one expects that the broadening of the interference pattern is
proportional to the temperature of the system, which has
been “heated up” by the Bragg excitation. The frequency and
momenta at which the system was excited enter in the result
only through Eq. (109), and thus, one may take the quantity
wSy(q,w) as a measure for the calorimetric response.

B. f-sum rules in the presence of optical lattice

The response wSy(q,w) features several properties which
we would like to mention.

(1) Complete f-sum rule. Regardless of the interaction
strength, trap potential, and optical lattice, the particle num-
ber conservation for atoms imposes the constraint

“dw Ng*
— wSy(q, 0) = ——,
jo 2770’ (g, ) m

(110)
where m is the bare atomic mass. According to Eq. (110), the
net spectral weight of the calorimetric response is conserved
and can change only with particle number N and probe mo-
mentum gq.
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(2) Partial f-sum rule I. A similar sum rule to the one in
Eq. (110) can be formulated in the continuum limit of the
optical lattice problem. For the cases considered in Secs.
IV B-1V D, the partial f-sum rule reads

47 2
dw Ng

—wS\(q,w) = .
fo 2’7Tw Ma.@) 2m*

(111)

Equation (111) is valid for ¢<#/a and provided that &,U
<4J. This allows us to choose the upper limit of integration
to be on the order of the bandwidth 4/ and to use the effec-
tive mass m*. The remaining spectral weight o(1/m
—1/m*) is distributed between higher energy bands, at fre-
quencies above the recoil energy Ex=17/2ma’. The interac-
tion affects the shape of the integrand in Eq. (111) but does
not affect the net weight as long as interband matrix elements
of the interaction can be neglected. One may check that
Sy(g,w) evaluated with the help of Egs. (13), (14), and (70)
satisfies the rule in Eq. (111).

(3) Partial f-sum rule II. Within the Bose-Hubbard
model, following the standard derivation of f-sum rule [31],
one finds

“d
f 22 wSy(q, @) = = 2 sin*(ga/2)(H,), (112)
0 2m

where H, is the tunneling Hamiltonian in Eq. (26) and aver-
age (---) is taken over the ground state. The upper limit of
integration in Eq. (112) is formally infinity for the Bose-
Hubbard model. For an optical lattice in the tight-binding
limit J, U<<Ey, the upper limit of integration can be replaced
by Eg. Equation (112) can be considered as a generalization
of Eq. (111), to which it reduces in the limit ¢<7/a and
i, U<4J. We remark that the following inequality —(H;)
<2JN holds for arbitrary occupation na<<1 in the Bose-
Hubbard model. Therefore, the spectral weight is bounded
from above as follows:

f 22 0Sy(g, @) < 4JN sin*(qal2). (113)

0 2m

The latter equation shows that the dynamic response in the
low-frequency range w € [0, E] is suppressed at least as ocJ.
A suppression that is only proportional to J (or 1/m*) is due
to the optical lattice and is present also for noninteracting
atoms. The interaction leads to an additional suppression
when entering into the Mott regime.

(4) Suppression of dynamic response in the Mott regime.
In the Mott phase the tunneling is quenched to first order of
J, ie., (H;)=0(J?). At the second order of J, we find (H,)
=2NAE,, where AE;<<0 is the correction to the ground-state
energy per atom due to tunneling. Thus, for the Mott phase
we have according to Eq. (112)

Er g
f —wwSN(q,w) = 4|AEY|N sin*(ga/2).

114
o (114)

Evaluating A&, by perturbation theory, we find A&y=-2
(p+1)J?/U, where we kept for generality an arbitrary Mott
occupation number p. One may check that Sy(g,w) evalu-
ated with the help of Eq. (51) satisfies the rule in Eq. (114).
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wS(gq,w) [a.u.]

w/2r [kHz]

FIG. 8. (Color online) Attempted comparison of a theory for a
single tube at 7=0 with experiment for the case without an optical
lattice. Experiment: The data points (X) are taken from Fig. 1(c) of
Ref. [15]. Theory: several limiting cases are shown. The solid line
shows the dynamic response in the Tonks-Girardeau limit (y— )
given by Eq. (13). The dashed line shows the response evaluated in
the Bogoliubov limit [see Eq. (14)] at the value of mv>=~3.2 kHz.
The dotted line shows the response of noninteracting bosons
(y=0) given by Eq. (A3).

Since |A&y| <J, a natural question arises: How does the sup-
pression of dynamic response occur with entering into the
Mott regime? To answer this question, it is instructive to
consider a homogeneous compressible liquid in the limit
J/U<1. Considering na<1, we obtain from Eq. (112)

sin(mna)

Er dw 5
— wSy(q,w) =4JN sin“(ga/2) (115)

0 2m

Here, the factor sin(wna)/mna, which vanishes at na— 1,
has at its origin the phase space restriction imposed by the
interaction. This factor governs the transition between the
upper bound in Eq. (113) and Eq. (114) with entering into
the Mott regime. Finally, we remark that Eq. (115) is gener-
alized to larger occupations p<na<<p+1 by replacing
J— (p+1)J and na— na-p, where p is a positive integer.

C. Relation to the experiment of Ref. [15]

In this section, we turn to a discussion of the dynamic
response measurement reported in Ref. [15]. At first, we con-
sider the case without optical lattice, namely, the case of Fig.
1(c) of Ref. [15]. The dynamic response is a single broad
peak centered at w/27=5 kHz with a full width at half
maximum of about 7 kHz (see Fig. 8). The response comes
from an array of 1D tubes loaded with 87Rb atoms, with N
~250 atoms in the central tube and with a longitudinal trap
frequency of wy/2m=~43 Hz. The system is probed at g
~7.3Xx10° m~'. In Fig. 8, we compare the predictions of our
theory against the experimental data. The solid curve shows
the dynamic response in the Tonks-Girardeau limit (see Sec.
IV C) and is plotted using Eq. (13) with 7mny=kp= \,'%
and Z=Nwy. The dashed curve in Fig. 8 shows the dynamic
response in the Bogoliubov limit (see Sec. IV B) and is plot-
ted using Eq. (14) with my*>~3.2 kHz. We explain below
how we determine the value of the interaction energy muv? in
this limit. The dotted line in Fig. 8 shows the dynamic re-
sponse in the limit of non-interacting bosons (see Appendix
A) and is plotted using Eq. (A3). Unlike the previous two
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results, the result shown by the dotted line takes into account
the “quantumness” of the trap potential (see Appendix A).
Note that we used no fit parameters in Fig. 8, except for
rescaling all curves to have the same area to obey the f-sum
rule.

The value of interaction energy mv? in the Bogoliubov
limit was determined as follows. Using expressions for weak
interaction, we relate & to N and g, obtaining

{ 3 }2/3
p=mv’=| —=\Vmgw,N| . (116)
442

The coupling constant g can be extracted from the experi-
mental data in the Mott regime. In particular, we consider
Figs. 1(f)~1(h) of Ref. [15] and single out a series of peaks
which do not shift toward lower energies with increasing the
height of the optical lattice potential. These peaks are attrib-
uted to the dynamic response occurring at multiples of U in
the Mott regime. In the case of Ref. [15], we were able to
identify the peaks occurring at w/27=2 and 4 kHz with the
expected dynamic response at U and 2U, respectively. Our
identification of peaks agrees with the one reported in Ref.
[15]. Having the value of U/27=2 kHz at a height of the
lattice potential of approximately 13Ej [see Fig. 1(g) of Ref.
[15]], we evaluate g using tight-binding theory,

2
g= \/js_l/4Ua,
T

where s is the potential height (s=13) measured in units of
Eg=m/2ma*. The lattice potential is assumed to be V(x)
=sEp sin’(mx/a) and the lattice constant in the experiment is
a=415 nm. With this information, we obtain the value of
mv?=~3.2 kHz. We note that this value of interaction energy
corresponds to a value of the dimensionless interaction
strength of y=~0.32. This agrees by order of magnitude with
the value of y=0.6 reported in Ref. [15]. The discrepancy
may stem from a different definition of 7y, which involves
averaging over an ensemble of 1D systems [32]. Our defini-
tion of vy refers to a single 1D system and it is as follows:

(117)

y=—" (118)

no

where ng is the density in the trap center. With this definition,
one can estimate 7y as

7=min{7<7y>}’ (119)
[~ 2/3
4\2 mg?
y<={——g] : (120)
3 woN
m
=g/ i 121
y> 7Tg 2(1)0N ( )

where y_(7y~) is y obtained using the expression for ng in
the Bogoliubov (Tonks-Girardeau) limit.

Next, we return to the comparison made in Fig. 8. We
note that the measurement data in Fig. 8 display a much
broader maximum than the one predicted by the weak-
interaction (dashed) or free-boson (dotted) theory. The maxi-
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FIG. 9. (Color online) The same as in Fig. 8, but with averaging
over a 2D array of 1D bosonic systems with different particle num-
ber N (see Appendix B). The solid line (Tonks-Girardeau limit) is
plotted using Eq. (B7) and the dashed line (Bogoliubov limit) using
Eq. (B5). The dotted line (noninteracting bosons) is insensitive to
averaging over N at zero temperature.

mum predicted by the strong-interaction theory (solid) is suf-
ficiently broad, but it is offset by a large energy (=5 kHz)
away from the position of the measured data. In order to gain
an insight into the origin of the discrepancy we verify two
hypotheses: (i) averaging over the array of 1D traps is re-
sponsible for the broadening of the peak and (ii) finite tem-
perature is responsible for the broadening of the peak. We
carry out the averaging over the two-dimensional (2D) array
of 1D systems in Appendix B. We take into account the fact
that different 1D systems may have different particle number
N using the probability distribution P(N) in Eq. (B1) taken
form Ref. [2]. The distribution P(N) depends only on the
particle number N, in the central tube of the 2D array. We
take Ny,,=250 and plot our results of Egs. (B7) and (B5) in
Fig. 9. Averaging over the 2D array modifies the analytic
properties of Sy(g,w) at the Lieb modes (see Appendix B).
The peak shape has changed significantly for the Bogoliubov
and Tonks-Girardeau limits as compared to the case of a
single 1D system. Nonetheless, the width of the peaks is
unaffected by the averaging. This can be easily understood
by recalling that the 1D system with the largest particle num-
ber N has the largest dynamic response (see f-sum rules in
Sec. V B). Thus, the dynamic response in a 2D array of tubes
is dominated by the tubes close to the central tube, which
have about the same number of atoms N~ N,,.. We con-
clude that averaging over N in the 2D array cannot explain
the discrepancy seen in Fig. 8.

Secondly, we verify hypothesis (ii) and analyze the effect
of finite temperature in Appendix C. We find that already
noninteracting bosons at high temperature would yield a
spectral function with a width of the order to the one mea-
sured in the experiments (see Fig. 10). This fact is not sur-
prising since the momentum ¢ at which the system is probed
is sufficiently large (a) to cause a sizable broadening of the
free-boson peak (see dotted line in Fig. 8) and (b) to increase
the exponent u; of the power-law singularity of S(g,w) at
Lieb I mode in the homogeneous Lieb-Liniger model. De-
spite the fact that effect (b) refers to the homogeneous case,
the physical picture behind it applies to any system: interac-
tion effects are less pronounced at large momenta of the
probe. In particular, for the Lieb-Liniger model at y# 0 the
exponent u; increases monotonically from ;=0 at g=0 to
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FIG. 10. (Color online) Dynamic response of free bosons at a
finite temperature (see Appendix C). Data points (X) are the same
as in Figs. 8 and 9 and are taken from Ref. [15]. The solid line
shows the dynamic response of noninteracting bosons in a single
ID trap at T=4.2 kHz (least-squares fit) and N=250. Dashed line
shows the response of an ensemble of such 1D systems with N
distributed according to Eq. (B1) and with N,,,,=250. Temperature
is kept at T=4.2 kHz to illustrate the broadening of the peak due to
ensemble averaging. The dotted line (close to solid line) shows the
ensemble-averaged response at T=3.3 kHz (least-squares fit). All
curves are rescaled to have equal areas in accordance with the
f-sum rule.

mi=1-1/2K at ¢> q,, where gy~ max(mv,mg) is the mo-
mentum scale defined in Eq. (83). At ¢>¢,, a quantum
(g, w) of the probe excites single bosons projectively rather
than exciting many bosons collectively via processes involv-
ing interaction. For reference, we note [33] that at y=0.6 the
exponent u;=0.2 at ¢g=0.17n, and w,;=0.8 at g=n,.
Similarly, effect (a) becomes pronounced with increasing g;
the width of the peak scales as dw~ g/m\ (see Appendix A),
making any interaction-induced broadening difficult to ob-
serve at large momenta (g/m\>mv?). Finite temperature
complicates the distinction between the interaction and quan-
tum finite-size effects. In Fig. 10, the solid line shows the fit
to the experimental data of the free-boson theory for a single
ID trap (see Appendix C); the best fit is obtained at T
=4.2 kHz. A characteristic sharp peak of width dw~g/m\
with long tails extending over dw~ g\T/m is indicative of
the regime of high temperatures, wy<<T<wyN/In N. In the
very-high temperature regime, 7> w,N/In N, the sharp peak
is absent and the dynamic response is a single broad peak. In
Fig. 10, the temperature is intermediate between “high” and
“very high,” T~ woN/In N, which explains the peculiar
shape of the peak. In contrast to the case of T=0 (cf. dotted
line in Fig. 9), ensemble averaging affects the free-boson
dynamic response at 7# 0. Using the probability distribution
in Eq. (B1), we carry out the averaging over N and show the
result in Fig. 10 (dashed line); note that T for the dashed line
was kept at the same value as for the solid line. Not unlike
the results of Fig. 9, ensemble averaging does not lead to
substantial broadening of the peak (width increases by factor
order unity). Taking into account the ensemble averaging in
our fit, we obtain a smaller value of temperature, 7
~3.3 kHz (see dotted line in Fig. 10). Since we neglected
interactions, this value of temperature is an upper bound on
the temperature in the experiment.

In the following, we briefly discuss the case with an op-
tical lattice. At sufficiently strong binding of the optical lat-
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tice, the atomic cloud enters into the Mott regime [see Figs.
1(f)=1(h) of Ref. [15]]. As mentioned above, we can identify
here several peaks which do not shift to lower frequencies
with increasing the optical lattice amplitude. These peaks, in
particular, the two peaks occurring at frequencies =~2 and
~4 kHz, can be attributed to excitations of the Mott phase
occurring at frequencies U and 2U, respectively. At even
lower frequencies, the peaks are most probably associated
with the response of compressible domains (see Sec. IV E) at
w=<4(p+1)J, with p being the underlying occupation num-
ber [see Eq. (28)]. At low temperatures (7<<U), the main
contribution to the peak at w=U comes from the incom-
pressible phases. According to Egs. (17) and (18), the con-
tribution of the compressible phases at w~J and incom-
pressible ones at w= U into the f-sum rule are of the same
order [34] at g~ m/a and N~ N,. This is in a qualitative
agreement with the experiment, in spite of the fact that prob-
ably T~ U in the experiment. The spectral weight of the
peak at w=2U is by ~(J/U)? smaller than that of the w
=~ U peak [see Eq. (19)]. The tendency of the decrease in
w=2U peak weight is seen in Figs. 1(f) and 1(g) of Ref.
[15].

The dynamic response measured in Ref. [15] features a
strong suppression in the range of frequencies 0 < w<Ejy as
the system enters into the Mott regime. Such a suppression is
to be expected from the f-sum rule in Eq. (112).

CONCLUSION

We considered the effect of a smooth trap potential on the
momentum-resolved inelastic light scattering off a one-
dimensional interacting atomic gas. Cases with and without
optical lattice superimposed on the trap potential are ana-
lyzed in detail. The singularities in the scattering cross-
section associated with the excitation of collective modes
persist, though in a modified form, even upon the averaging
over the varying along the trap gas density. Rounding of the
singularities due to the confinement occurs only at the small-
est momentum transfers ¢ of the order ¢ ~ 1/ Vmw,, where m
and o, are, respectively, the mass and oscillation frequency
for an atom in a trap. Another source of smearing, apparently
dominant in the current experiments [15], is the finite tem-
perature of the gas.
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APPENDIX A: QUANTUM FINITE-SIZE EFFECT

In the bulk of the paper, we consider the effect of a vary-
ing atomic density n(x) on the dynamic response by employ-
ing Eq. (12). There exists a competing effect to the one ac-
counted for by Eq. (12). The competing effect stems from the
finite size of the atomic could and it is most vividly seen in
the noninteracting limit. In that limit, the averaging in Eq.
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(12) has no effect because the Lieb I mode is trivially equal
to £,(q)=¢*/2m and thus is independent of n. In what fol-
lows, we consider the example of noninteracting bosons and
determine the magnitude of the competing effect.

For noninteracting bosons, the dynamic structure factor
can be calculated directly,

o (gN)*
Sylg,w) = ZWNE i ¢

NS (- Cwy), (Al

where A=1/ \s"m—wo is the quantum length scale of the trap and
wq is the trap frequency related to €, in Eq. (2) by w,
=(1/a)v2€y/m. For simplicity, we consider the case without
an optical lattice. It is convenient to replace the sum over the
discrete & peaks in Eq. (A1) by a continuous envelope func-
tion. Taking the continuum limit of ¢ in Eq. (A1), we obtain

2 2\ wlwy _ 2/2
S(q.0) =N+ /_W(q_) exp(u _
wwy \ 2mw N
(A2)

Furthermore, since we are interested in small w,, we may
take the limit ¢?/mw,>1 in Eq. (A2) and obtain for the
leading order asymptotic term,

217 (w—g*12m)*
SN(q,w)=N\/—exp{——2 . (A3)
ww woq-/m

In the limit wy,—0, Eq. (A3) becomes Sy(q,w)=27NS
(w—g*/2m) as expected for the case without a trap.

We summarize the previous paragraph as follows. The &
peak in S(g,w), occurring at frequency &,(q)=q*/2m for
free noninteracting bosons, is broadened by dw=¢g/mN\ due
to the quantumness of the trap potential. The width dw can
be rewritten in a more general way

de,

ow= Z&], (A4)

which holds also in the presence of an optical lattice. Here,
dq is the momentum uncertainty in the ground state due to
the zero-point motion in the trap. For the case of optical
lattice, £,(q) is the band dispersion relation and &g~ 1/\¥,
where \* is the characteristic extension of the ground state
wave function. For wy<<4J, the length A\* is given by the
expressions above, with m— m™.

For interacting bosons, both the momentum uncertainty
and the density variation affect S(¢,w). Equation (A1) gives
the limiting behavior of the dynamic structure factor for non-
interacting bosons (or extremely weakly interacting, & << w,)
and Eq. (12) gives the limiting behavior for a nearly classical
(“soft”) trap potential. The crossover between the two limit-
ing cases has a governing parameter, which involves the in-
teraction strength, curvature of the trap potential, and the
momentum ¢ at which the system is probed. To determine
this parameter, we add to Eq. (A4) a term representing the
smearing due to the density averaging employed in Eq. (12),
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de, de,
ow=—bn+—40q,
aq

(A5)
where on is on the order of n, and represents the density
variation in the trap. The governing parameter is obtained by
taking the ratio of the two terms in Eq. (A5). As an example,
let us consider the limit of weak interactions and a suffi-
ciently large ¢, such that we may use Eq. (90) for the Lieb I
mode. We obtain from Eq. (A5) that Sw=u+q/m*\*. Thus,
the density averaging prescription of Eq. (12) is valid for

q < Em*\*. (A6)

This condition is compatible with the requirement ¢g>1/\
(see Sec. I B) if > w. Similar (but not identical) criteria
as in Eq. (A6) can be worked out using Eq. (A5) for each
limiting case in which e,(g) is known.

A different (though related) finite-size effect is the dis-
creteness of energy levels in the trap given by the trap fre-
quency . This discreteness introduces a “coarse graining”
of the dynamic response along the frequency axis. In prac-
tice, wy is negligibly small. In the main text of this paper, we
assumed that both w, and the temperature are the smallest
energy scales in the problem and neither of them is resolved
on the scale of w.

APPENDIX B: AVERAGING OVER AN ARRAY
OF 1D SYSTEMS

Here, we consider an ensemble of 1D systems with dif-
ferent number of atoms N. We average our results with the
following probability distribution [2],

2 1
= §N2/3 N3

max’

P(N) < Ninax (B1)
where N, is the maximal number of atoms per 1D system
found in the ensemble. The probability distribution in Eq.
(B1) describes a situation typically realized in the experi-
ment [1,2,15,16]. Namely, a large number (10°-10%) of 1D
systems form out of a three-dimensional (3D) Bose-Einstein
condensate after an exponential ramp up of a 2D optical
lattice potential. The distribution of atoms over the array of
1D systems is obtained as a snapshot of the original 3D
density profile (assuming that the atoms had no time to mi-
grate between the 1D systems). For a 3D Bose-Einstein con-
densate in a spherically symmetric harmonic trap, the num-
ber of atoms per 1D system at position (i,/) in the 2D array
is given by [2,35]

(- +

27TNm . 3/2
M) (B2)
SN3p

Ni,ijmax|:] -

where N3p is the total number of atoms loaded into the 3D
trap. The distribution in Eq. (B1) is readily obtained from
Eq. (B2), after counting the number of 1D systems with
N;j=N for a large 2D array.

We start with the Bogoliubov limit analyzed for a single
1D system in Sec. IV B. We express the unnormalized dy-

namic structure factor Sy(g,w)=2LS(g,w) explicitly though
the number of atoms N in the 1D system. Using Egs. (4),
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(14), and (55) as well as L=a\ i/ € and ey=mwia’/2, we
obtain

2V2 7w =g 12m

—_— (B3)
wog 4 Ve, (q) — o’

SN(qv (1))

for ¢*/2m < w<e,(q), and Sy(q,w)=0 otherwise. The struc-
ture factor in Eq. (B3) depends on N only through the speed
of sound v entering the expression for &,(g) in Eq. (9). The
speed of sound v depends on N as follows:

113
b= (%’T()g) N3

(B4)
4N2m

We average Sy(g,w) in Eq. (B3) over N with the probability
distribution in Eq. (B1) and obtain
B 252, 7
Svg.w)=—5—| o’ - Nelg)—w*  (BS)
q v w8 2m

for ¢?/2m<w<e,(q), and Sy(g,®)=0 otherwise. Here, we
replaced N,,,— N after performing the averaging. We con-
clude that averaging over an array of 1D systems modifies
the analytic behavior of Sy(¢,w). The one-over-square-root
singularity present in Sy(q,w) before the averaging is re-
placed by a square-root nonanalyticity after the averaging.
The averaging does not change the width of the peak of
Sy(g,w) versus w, provided we agree to compare the aver-
aged response against the response of a 1D system with N
=N Next, we turn to the Tonks-Girardeau limit analyzed
for a single 1D system in Sec. IV C. Using Egs. (5), (13),
and (64), we obtain

23/2ml/2 (w_ q2/2m)2
Swmg.w)=—5" | \|IN-———5—
qow 2wyq°/m

0

2 2
+q°/2
_ /N—M]
2wyq°/m

where the square roots are redefined as V= 0(x) Vx. Averag-
ing the dynamic response in Eq. (B6) over N with the prob-
ability distribution in Eq. (B1), we obtain

9312, 127112 [ ( (w— q2/2m)2>

Sn(g,0) =
Ma.) c]a)(lJ/2 2woNg*/m

( (w+ qZ/Zm)2> ]
s 2woNg?/m '

where the function f(x) is defined as follows:

f(x):ixv'm{l—zﬂ(l,l,é,l—x)}, (BS)
7 X

(B6)

(B7)

32

with ,F,(a,B,7.z) being the hypergeometric function and
the square root (re)defined as before. Not unlike the previous
case, the averaging does not change the peak width in
Sy(g,w) versus w. The nonanalytic properties of Sy(g,w) are
altered by the averaging, making the nonanalyticities at w
=g.(g) less pronounced. We note that f(x)=(4/9)(1-x)*?
at x—1.
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APPENDIX C: DYNAMIC RESPONSE AT FINITE
TEMPERATURES

In the bulk of the paper, we were considering dynamic
response at zero temperature. Many of the peculiar features
of S(¢, ) vanish gradually with increasing the temperature.
The temperature can usually be regarded as the low-energy
cutoff limiting the observability of the singular and nonana-
lytic behaviors of S(g,w). A generalization of our theory to
finite temperature is possible, although it goes beyond the
purpose of this paper. In this paper, our goal was to establish
the regimes in which the power-law singularities of S(q, ®)
derived for the Lieb-Liniger model can be observed in a
setup with a trap. The finite temperature results we present
below are needed for explaining the data of Ref. [15] (see
Sec. V C) and are thus elucidating the conditions realized in
that experiment.

We consider noninteracting bosons at finite temperature 7'
in a trap of frequency wy. The dynamic structure factor is
obtained as follows:

Sy(g,w) =27 E
€,0'=0
(e+e")

X(l +N€)N516((1)— (1)@61),

2
dxe' ™ @ (x) @y (x)

(C1)

where @(x) is the harmonic oscillator state, N, is the aver-
age number of particles in state €, and wgp=({—{€")w,.
Within the grand-canonical ensemble, N, obeys the Bose-
Einstein distribution, N,=[exp((€wo—u)/T)—1]"!, with the
chemical potential p determined from the equation of state,

(C2)

at a fixed value of 7. At thermal equilibrium, it is sufficient
to consider only absorption processes (w>0) since the prob-
abilities of energy emission and energy absorption are related
to each other by the detailed balance equation

S(q’_ (J)) = e—w/Ts(q’ (,l)) . (C3)

Assuming hereafter w >0 and evaluating the matrix elements
of ¢ in Eq. (C1) on the harmonic oscillator states, we ar-
rive at [cf. Eq. (Al)]

Sy(g,w) = 2772 N() (6212\;‘ -’12 Sw—Lfwy), (C4)
2]
€) g)(e_'_ )'|: V( 7 (1+N€+V)Nw (CS)

where Lﬁ(x) are Laguerre polynomials. Temperature affects
the dynamic structure factor in Eq. (C4) through the shape of
the function N(€). At T=0, this function is constant, N({)
=N, and we recover the result of Eq. (A1). In order to ana-
lyze the behavior of M(£) at finite T, we rearrange the sum in
Eq. (C5) as follows. We represent (1+N,,,)N, as the series
(one may regard this series as a formal expansion in powers
of variable &)
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o0

(14N, )N, = 2 a,(0)&7, (C6)
p=1
IT(1 _ epl
a,(0) = (1 -&) ©7)

1-&
where é=exp(—wy/T). Then we carry out the summation in

Eq. (C5) for each term of the sum of Eq. (C6) separately,
using the identity [36]

VL (X)L (y)z _ (xyz)~? J—— ( ) \"xyZ)
o Tw+e+1) 1-z ¢ ’

1-z
(C8)
where I,(x) is the modified Bessel function of the first kind
and |z] <1. As a result we obtain
2401

e (o),
q

N) =

(C9)

0 %*Pf/Z ~ B - q2)\2§p/2
s(€) =2, a,(f) o8-8\ 2) .
p=1 ! 1-¢& ¢ 1-&

(C10)
Further, we analyze the function s({); the dynamic structure

factor in Eq. (C4) is expressed through s(€) as

o0

Sy(g,w) = 27, s(€) 8w - ).
=1

(C11)

We take the continuum limit over €, assuming that w, is
small, and thus, only large {=w/w, are of interest. We are
interested in frequencies w~ ¢*/m, which corresponds to ¢
~(g\)?. The Bessel function in Eq. (C10) has thus to be
evaluated at both large orders €> 1 and proportionally large
values of its argument. In order to do this, we use Debye’s
asymptotic expansion of the Bessel function [37]

1 et Z (0
[(tr)=———-—"1+2—— (., (CI2)
2 (142914 =1 LF
Z
) = V14224 I ————, (C13)
1+V1+z

where u,(f) are polynomials of order 3k of r=1/ VI+22. We
refer the reader to Ref. [37] for the explicit form of (7).
Here, we consider only the leading-order term in Eq. (C12),
which amounts to dropping the sum over k. Expanding, for
consistency, also other terms in Eq. (C10) for large ¢
~(g\)*>1, we obtain

e}

1 1 1= etred?
T
S(€) = —Cwy/T f o/ T P
Vagh 1 —e p=1 N1 —e=P®0

2
Xexp[—tanh<@><£—@> ] (C14)
27 )\gn 2

Equation (C14) is our main result in this appendix. We ana-
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lyze it in greater detail below. With the help of Eq. (C14), the
dynamic structure factor can be expressed, in the continuum
limit over w, as follows:

2
Sn(g,w) = ;s(w/wo). (C15)

0

The convergence of the sum in Eq. (C11) is guaranteed by
the factor ¢”#T in the summand. The ratio u/7 <0 is found
for given values of N and w,/T from Eq. (C2). We consider
here only the case N> 1. With increasing the temperature,
/T monotonically increases by absolute value from w/T
=—1/Nat T=0 to u/T=—-In(T/ wyN) at T> wyN. As a result,
the higher the temperature the faster the sum in Eq. (C11)
converges. This is in contrast to the sum in Eq. (C5) which
converges fastest at low temperatures. The presence of the
factor tanh(pwy/2T) in the exponent in Eq. (C5) introduces
an additional scale p ~ T/ w,, which can be larger or smaller
than the convergence scale p~T/(—u). As a result, we ob-
tain several temperature regimes.

(i) T< wy, low temperatures;

(ii) wy<<T<T,, high temperatures; and

(iii) T, <T, very high temperatures, where T, is defined
as the temperature at which u=-wy. In the limit N> 1, we
obtain from Eq. (C2) that T, satisfies the transcendental
equation N=(T,./ wy)In(T,./ ). Thus, to leading logarithmic
order (In N> 1), we have T,=wyN/In(N).

Let us first consider the zero-temperature limit, 7<< w,.
Approximating e~®¢T~0 and u/T=~-1/N in Eq. (C14), we
arrive at

> 2
§(0) = (Ee_””v>exp[—(£—@> ] (C16)
g\

\"776])\ p=1 2

The sum in the parentheses in Eq. (C16) equals N at N> 1.
Using Eq. (C16) in Eq. (C15), we recover the zero-
temperature result of Eq. (A3), up to w/wqy+(g\)?/2 in the
prefactor, which is within the accuracy of the asymptotic
expansion.

In the high-temperature regime, wy,<<7T<T,, we split the
sum in Eq. (C14) into two parts. In the first part, the sum-
mation index p runs from p=1 to p~T/w,. Here, we ap-
proximate tanh(pw,/2T) = pw,/2T and replace the sum over
p by an integral. In the second part, the summation can be
carried out explicitly as in the case of Eq. (C16), but with the
lower summation bound at p ~T/w,. As a result, we obtain

s(€) =s5,(€) + s,(£), (C17)
© 1 Tlw, J ‘ -
s == 7 T——e
1 \’7Tq)\ 1-— e—@wO/T 0 \’,1 _e X
¢ gh\?
Xexp[— E(-—q—) } (C18)
2\gn 2
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FIG. 11. (Color online) Dynamic structure factor Sy(q,w) of
noninteracting bosons at different temperatures. Dotted line: at low
temperatures, 7<<wy, the factor Sy(q,w) displays a Gaussian peak
of width Sw~ Vwyg?/m centered at w=g?/2m [see Eq. (A3)].
Solid line: at high temperatures, wy<<T<wyN/InN, the factor
Sy(g, w) retains the low-temperature peak at a reduced intensity and
develops a much broader (background) peak of width Jw
~\Tq*/m centered at the same position if ¢g%/m> T. Dashed line:
at very high temperatures, wyN/In N<T, only the broad peak is
present. The width of this peak continues to increase with tempera-
ture [see text at Eq. (C21)]. The plot is made using Egs. (C14) and
(C15) for a system of N=1000 particles at temperatures 7/ wy=0
(dotted), 100 (solid), and 250 (dashed); a value of (g\)>/2=100
was used.

1 e—((’/q)\ — gN2)? PRIz

5,(€) =
. \y’/';_Tq)\ 1-e

(C19)

~lwyT | _ T’

where c is a number order 1, which can be fixed by requiring
ds(€)/dc=0. In practice, choosing a fixed value for ¢ in the
range between 1 and 5 yields accurate results. The integral in
Eq. (C18) can be expressed through special functions if de-
sired. The qualitative behavior of the functions s,(¢) and
s5(€), in the considered temperature regime, is as follows.
The function s,(€) is, up to a prefactor, the zero-temperature
result [see Eq. (A3)]. It contributes to Sy(g,w) with a rela-
tively sharp peak at w=g*/2m. In contrast, the function
51(€) has a much broader peak centered at the same place as
the peak of s,(¢), provided ¢?/2m>T. The dynamic struc-
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ture factor Sy(q,w) is, therefore, a sharp peak with broad
tails (see solid line in Fig. 11). As the temperature increases,
the relative spectral weight shifts from the peak to the tails.
The width of the sharp peak is given by Eq. (A4) with 8¢
~ 1/\. The width of theb_road peak is given by the same
equation but with 8¢~ VmT. The physical explanation for
the coexistence of the sharp and broad peaks is the fact that
in this temperature regime a macroscopic fraction of particles
occupy the ground state of the harmonic potential. The sharp
peak is due to the particles in the ground state and the broad
peak is due to the particles in the thermal tail of the Bose-
Einstein distribution function.

In the *“very high” temperature regime, 7> T, the contri-
bution s,(€) can be neglected. Furthermore, the upper bound
of integration in Eq. (C18) can be extended to infinity since
the factor e#““0 suppresses the integrand before the upper
bound is reached. As a result, we obtain

1 TRw, I(po) I'(uy)
s(6)=— —Cwy/T - ’
ST ] oo
> M B My
_i_'_l(i + @)2 (C20)
e e 4\gh 2 )

If g*/2m>T, then the dynamic response has a peak at w
2 . . N / .

=~qg*/2m with width dw~ (q/m)y(-u)m. A simple expres-
sion for p can be given only if temperature is sufficiently
high, 7> wyN, see text below Eq. (C15). Then, the width of

the peak is
—In| —|.
m woN

If ¢°/2m<T, then Sy(g,w) is a monotonically decaying
function of w on the scale of temperature. We show the
behavior of Sy(g,w) in different temperature regimes in
Fig. 11.

S0~ q (C21)
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