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We consider the dynamics of a movable mirror �cantilever� of a cavity coupled through radiation pressure to
the light scattered from ultracold atoms in an optical lattice. Scattering from different atomic quantum states
creates different quantum states of the scattered light, which can be distinguished by measurements of the
displacement spectrum of the cantilever. We show that for large pump intensities the steady-state displacement
of the cantilever shows bistable behavior. Due to atomic back action, the displacement spectrum of the
cantilever is modified and depends on the position of the condensate in the Brillouin zone. We further analyze
the occurrence of splitting of the normal mode into three modes due to mixing of the mechanical motion with
the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body
interaction.
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I. INTRODUCTION

In recent years two distinct subjects, optical microcavities
and nanomechanical resonators have become entangled ex-
perimentally by underlying mechanism of optical, radiation-
pressure forces. The coupling of mechanical and optical de-
grees of freedom via radiation pressure has been a subject of
early research in the context of laser cooling �1–3� and
gravitational-wave detectors �4�. Recently there has been a
great surge of interest in the application of radiation forces to
manipulate the center-of-mass motion of mechanical oscilla-
tors covering a huge range of scales from macroscopic mir-
rors in the laser interferometer gravitational wave observa-
tory �LIGO� project �5,6� to nanomechanical cantilevers
�7–12�, vibrating microtoroids �13,14� membranes �15�, and
Bose-Einstein condensates �16,17�. The quantum optical
properties of a mirror coupled via radiation pressure to a
cavity field show interesting similarities to an intracavity
Kerr-like interaction �18�. Recently, in the context of classi-
cal investigations of nonlinear regimes, the dynamical insta-
bility of a driven cavity having a movable mirror has been
investigated �19�. Theoretical work has proposed to use the
radiation-pressure coupling for quantum nondemolition mea-
surements of the light field �20�.

In the field of quantum degenerate gases, standard meth-
ods to observe quantum properties of ultracold atoms are
based on destructive matter-wave interference between at-
oms released from traps �21�. Recently, a new approach was
proposed, which is based on all optical measurements that
conserve the number of atoms. It was shown that atomic
quantum statistics can be mapped on transmission spectra of
high-Q cavities, where atoms create a quantum refractive
index. This was shown to be useful for studying phase tran-
sitions between Mott insulator and superfluid states since
various phases show qualitatively distinct spectra �22,23�.
Recently, coupled dynamics of a movable mirror and atoms
trapped in the standing-wave light field of a cavity were
studied �24�. It was shown that the dipole potential in which
the atoms move is modified due to the back action of the
atoms and that the position of the atoms can become bistable.

New possibilities for cavity optomechanics by combining the
tools of cavity electrodynamics with those of ultracold gases
is the motivation of the present work. Here we show that
different quantum states of ultracold gases in optical lattice,
confined in a cavity can be distinguished by the steady-state
displacement spectrum of the movable mirror �cantilever�.
The atomic and cantilever back action shifts the cavity reso-
nance. The laser pump is shown to coherently control the
dynamics of the mirror. Changing the pump intensity, one
can switch between stable and bistable regimes. Due to cou-
pling between the condensate wave function and the cantile-
ver, mediated by the cavity photons, the cantilever displace-
ment spectrum is continuously modified as the condensate
moves across the Brillouin zone. We also show that in the
presence of atom-atom interactions, the coupling of the me-
chanical oscillator, the cavity field fluctuations and the con-
densate fluctuations �Bogoliubov mode� leads to the splitting
of the normal mode into three modes �normal-mode split-
ting�.

II. CANTILEVER DISPLACEMENT SPECTRA AS A
PROBE OF QUANTUM PHASES OF ULTRACOLD

ATOMS

We consider an elongated cigar-shaped Bose-Einstein
condensate �BEC� of N two-level 87Rb atoms in the �F=1�
state with mass m and frequency �a of the �F=1�→ �F�=2�
transition of the D2 line of 87Rb, strongly interacting with a
quantized single standing-wave cavity mode of frequency �c
�Fig. 1�. The standing wave that forms in the cavity results in
a one-dimensional optical lattice potential. The cavity field is
also coupled to external fields incident from one side mirror.
It is well known that high-Q optical cavities can significantly
isolate the system from its environment, thus strongly reduc-
ing decoherence and ensuring that the light field remains
quantum mechanical for the duration of the experiment. We
also assume that the induced resonance frequency shift of the
cavity is much smaller than the longitudinal-mode spacing,
so that we restrict the model to a single longitudinal mode. In
order to create an elongated BEC, the frequency of the har-
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monic trap along the transverse direction should be much
larger than one in the axial �along the direction of the optical
lattice� direction. The system is also coherently driven by
a laser field with frequency �p through the cavity mirror
with amplitude �. The cavity mode is coupled to a mech-
anical oscillator �movable mirror� with frequency �m via
the dimensionless parameter �= �x0 /�m�

d�p

dx �x=0. Here x0
=�� /2mef f�m is the zero-point motion of the mechanical
mode, mef f is its effective mass. It is well known that high-Q
optical cavities can significantly isolate the system from its
environment, thus strongly reducing decoherence and ensur-
ing that the light field remains quantum mechanical for the
duration of the experiment. The harmonic confinement along
the directions perpendicular to the optical lattice is taken to
be large so that the system effectively reduces to one dimen-
sion. This system is modeled by the optomechanical Hamil-
tonian �Hom� in a rotating wave and dipole approximation.

Hom =
p2

2m
− ��a�+�− − ��câ

†â + ��mâm
† âm − i�g�x���+â

− �−â†� − i��â − â†� + ���mâ†â�âm + âm
† � , �1�

where �a=�p−�a and �c=�p−�c are the large atom-pump
and cavity-pump detuning, respectively. Here �+, �− are the
Pauli matrices. The atom-field coupling is written as g�x�
=g0 cos�kx�. Here â and âm are the annihilation operators for
a cavity photon and the mechanical mode respectively. The
input laser field populates the intracavity mode which
couples to the cantilever through the radiation pressure and
the atoms through the dipole interaction. The field in turn is
modified by the back action of the atoms and cantilever. It is
important to notice the nonlinearity in Eq. �1� arising from
the coupling between the intracavity intensity and the posi-
tion quadrature of the cantilever. The system we are consid-
ering is intrinsically open as the cavity field is damped by the
photon leakage through the massive coupling mirror and the
cantilever is connected to a bath at finite temperature. In the
absence of the radiation-pressure coupling, the cantilever
would undergo a pure Brownian motion driven by its contact
with the thermal environment. Here we also assume that
there is no direct coupling between the atoms and the canti-
lever, though this coupling could give rise to some interest-
ing physics. The effects of the direct atom-mirror interaction
can be neglected by assuming that a few lattice sites near the
center of the cavity are appreciably populated. Since the de-
tuning �a is large, spontaneous emission is negligible and we

can adiabatically eliminate the excited state using the
Heisenberg equation of motion �−= i

� �Hom ,�−�. This yields
the single-particle Hamiltonian

H0 =
p2

2m
− ��câ

†â + cos2�kx��Vcl�r� + �U0â†â� − i��â − â†�

+ ��mâm
† âm + ���mâ†â�âm + âm

† � . �2�

The parameter U0=
g0

2

�a
is the optical lattice barrier height

per photon and represents the atomic backaction on the field
�25�. Vcl�r� is the external classical potential. Here we will
always take U0	0. In this case the condensate is attracted to
the nodes of the light field, and hence the lowest bound state
is localized at these positions which leads to a reduced cou-
pling of the condensate to the cavity compared to that for
U0
0. Along x, the cavity field forms an optical lattice po-
tential of period � /2 and depth ��U0�â†â�+Vcl�. We now
write the Hamiltonian in a second quantized form including
the two-body interaction term,

H =	 d3x�†�r��H0��r��

+
1

2

4
as�
2

m
	 d3x�†�r���†�r����r����r�� , �3�

where ��r�� is the field operator for the atoms. Here as is the
two-body s-wave scattering length. The corresponding
optomechanical-Bose-Hubbard �OMBH� Hamiltonian can be

derived by writing ��r��=
 jb̂jw�r�−r� j�, where w�r�−r� j� is the

Wannier function and b̂j is the corresponding annihilation
operator for the bosonic atom at the jth site. Retaining only
the lowest band with nearest-neighbor interaction, we have

H = E0

j

b̂j
†b̂j + E


j

�b̂j+1
† b̂j + b̂j+1b̂j

†� + ��U0â†â + Vcl�

��J0

j

b̂j
†b̂j + J


j

�b̂j+1
† b̂j + b̂j+1b̂j

†�� +
U

2 

j

b̂j
†b̂j

†b̂jb̂j

− ��câ
†â − i���â − â†� + ��mâm

† âm + ���mâ†â�âm + âm
† �

�4�

where

U =
4
as�

2

m
	 d3x�w�r���4,

E0 =	 d3xw�r� − r� j��
−
�2�2

2m
��w�r� − r� j� ,

E =	 d3xw�r� − r� j��
−
�2�2

2m
��w�r� − r� j�1� ,

J0 =	 d3xw�r� − r� j�cos2�kx�w�r� − r� j� ,

J =	 d3xw�r� − r� j�cos2�kx�w�r� − r� j�1� . �5�

FIG. 1. �Color online� Optomechanical realization of parametric
coupling of a mechanical oscillator to a cavity optical mode and
Bose-Einstein condensate trapped in an optical lattice inside the
cavity.
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The OMBH Hamiltonian derived above is valid only for
weak atom-field nonlinearity �26�. It has been shown �27�
that the intracavity field intensity is bistable, and leads to a
bistable optical lattice potential. The position of the indi-
vidual lattice wells is bistable as well since a mirror displace-
ment lm displaces each optical lattice well by lm in the same
direction. However, we consider a regime where lm / �
 /k�
�1, and thus we ignore this effect on the Wannier function
used above. The nearest-neighbor nonlinear interaction terms
are usually very small compared to the onsite interaction and
are neglected as usual. We now write down the Heisenberg-
Langevin equation of motion for the bosonic field operator

b̂j, the internal cavity mode â and the mechanical mode âm as

ḃ̂ j = − i
U0â†â +
Vcl

�
��J0b̂j + J�b̂j+1 + b̂j−1�� −

iE

�
�b̂j+1 + b̂j−1�

−
iU

�
b̂j

†b̂jb̂j −
iE0

�
b̂j , �6�

ȧ̂ = − iU0�J0

j

b̂j
†b̂j + J


j

�b̂j+1
† b̂j + b̂j+1b̂j

†��â + � + i��c

− ��m�âm + âm
† ��â −

�

2
â + ���p�t� , �7�

ȧ̂m = 
− i�m −
�m

2
�âm − i��mâ†â + ��m�m�t� . �8�

Here � and �m characterizes the dissipation of the optical
and mechanical degree of freedom respectively. Here, we
follow a semiclassical theory by considering noncommuting
noise operators for the input field, i.e., ��p�t��=0,
��p

†�t���p�t��=np��t�− t�, ��p�t���p
†�t��= �np+1���t�− t�, and a

classical thermal noise input for the mechanical oscillator,
i.e., ��m�t��=0, ��m

† �t���m�t��= ��m�t���m
† �t��=nm��t�− t�, in

Eqs. �7� and �8�. The quantities nm and np are the equilibrium
occupation numbers for the mechanical and optical oscilla-
tors, respectively. We consider a deep lattice formed by a
strong classical potential Vcl�r�, so that the overlap between
Wannier functions is small. Thus, we can neglect the contri-
bution of tunneling by putting E=0 and J=0. Under this
approximation, the matter-wave dynamics is not essential for
light scattering. In experiments, such a situation can be real-
ized because the time scale of light measurements can be
much faster than the time scale of atomic tunneling. One of
the well-known advantages of the optical lattices is their ex-
tremely high tunability. Thus, tuning the lattice potential,
tunneling can be made very slow �28�.

The steady-state value of the position quadrature xm,s
= âm,s+ âm,s

† �the subscript s denotes the steady-state value� is
found as

xm,s =
− 8��m

2 âs
†âs

4�m
2 + �m

2 , �9�

where,

âs
†âs =

�2

��c − U0J0N̂ − ��mxm,s�2 + �2/4
. �10�

Here N̂= b̂j
†b̂j. The equation for âs

†âs is very important for
the understanding the physics behind this problem. From it
we clearly see how the cantilever and atom dynamics affects
the steady state of the intracavity field. The coupling to the
mirror and the atoms shifts the cavity resonance frequency
and changes the field inside the cavity in a way to induce a
new stationary intensity. The change occurs after a transient
time depending on the response of the cavity and the strength
of the coupling to the cantilever and the ultracold atoms.
Following �22� Eqs. �9� and �10� allows to express xm,s as a
function f�n̂1 , . . . , n̂M� of atomic occupation number opera-
tors and calculate their expectation values for prescribed
atomic states ���.

For the Mott state �n̂j�MI=qj atoms are well localized at
the jth site with no number fluctuations. It is represented by
a product of Fock states, i.e., ���MI=� j=1

M �qj� j ��q1 , . . . ,qM�,
with expectation values

�f�n̂1, . . . , n̂M��MI = f�q1, . . . ,qM� , �11�

For simplicity we consider equal average densities �n̂j�MI
=N /M �n0.

In SF state, each atom is delocalized over all sites leading
to local number fluctuations. It is represented by super-
position of Fock states corresponding to all possible
distributions of N atoms at M sites: ���SF
=
q1,. . .,qM

�N ! /MN /�q1 ! . . .qM!�q1 , . . . ,qM�. Expectation
values of light operators can be calculated from

�f�n̂1, . . . , n̂M��SF =
1

MN 

q1,. . .,qM

N!

q1 ! . . . qM!
f�q1, . . . ,qM� ,

�12�

representing a sum of all possible “classical” terms. Thus, all
these distributions contribute to scattering from a SF, which
is obviously different from �f�n̂1 , . . . , n̂M��MI with only a
single contributing term.

In Fig. 2, we represent ��xm,s�� as a function of �c /�0,
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FIG. 2. �Color online� Steady-state displacement spectra of the
cantilever. The single Lorentzian �thick line� for the MI reflects the
nonfluctuating atom number. Many Lorentzians for SF �thin line�
reflect atom number fluctuations. Here we have used �m /�0=30,
�m /�0=0.001, � /�0=0.1, �=0.0067, and the pump intensity is
� /�0=0.2.
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where �0=U0J0. Clearly for the SF case, the displacement
spectra are a sum of Lorentzians with different dispersion
shifts. A comblike structure is seen if each Lorentzian is
resolved. In the Mott state however, a single Lorentzian
�thick line� is noticed. These were the typical structures pre-
dicted for the transmission spectra �22�. Since the coupling
between the cantilever and the condensate wave function is
mediated by the cavity field, we find that the displacement
spectrum of the cantilever maps the distribution function of
the ultracold atoms. An important condition to resolve the
Lorentzians is �
�0 and this condition is easily met in
present experiments �29�. Detecting the mirror’s motion is
straightforward, since the optical phase shift is directly pro-
portional to the mirror’s displacement. Typically, the lorenti-
zian frequency spectrum of the mirror’s position is obtained
in this way. The peak width yields the total damping rate,
including the effective optomechanical damping. The area
under the spectrum reveals the variance of the mirror dis-
placement, which is a measure of the effective temperature.

III. BISTABLE BEHAVIOR

We now consider the case of large number of atoms and
hence treat the BEC within the mean-field framework and

assume the tight-binding approximation where we replace b̂j
by � j and look for solutions in the form of Bloch waves
� j =uk exp�ikjd�exp�−i�t /�� �30�. Here � is the chemical

potential, d is the periodicity of the lattice and 1
M 
 jb̂j

†b̂j =n0
�atomic number density�, M is the total number of lattice
sites. From Eqs. �9� and �10�, we obtain a cubic equation in
xm,s.

xm,s
3 −

2�

��m
xm,s

2 +
��2 + �2/4�

�2�m
2 +

8�2

��4�m
2 + �m

2 �
= 0. �13�

Here, �=�c−U0N�J0+2J cos�kd��. Note that now we do
not ignore the tunneling term J. A plot of �xm,s� versus � /�0

for two different values of the pump parameter � is shown in
Fig. 3. Clearly for higher pump intensity the system shows a
bistable behavior. For pump rates higher than a critical value,
we find three steady-state solutions for the mirror displace-
ment, with two of them being stable. The system prepared
below resonance will follow the steady-state branch until
reaching the lower turning point, where a nonsteady-state
dynamics is excited. This dynamics is governed by the time
scale of the mechanical motion of the mirror because the
cavity damping is almost two orders of magnitude faster
��m���. Figure 3�b� shows the steady-state displacement
spectra �xm,s� as a function of the quasimomentum for two
different values of the cavity detuning �c /�0=0.5 �thin line�
and �c /�0=−0.5 �thick line�. The cantilever phonons de-
velop a quasimomentum dependence due to strong coupling
with the condensate mediated by the cavity photons. The
atomic back action modifies both the cavity field and the
cantilever displacement. As the condensate moves across the
Brillouin zone, the atom-field interaction changes and as a
result the cantilever displacement spectra is continuously
modified. For �c /�0=−0.5, a bistable behavior is seen when
the condensate is at the edge of the Brillouin zone �here �
=0�. This bistable behavior is absent when �c /�0=0.5. The
position of the condensate in the Brillouin zone is easily
manipulated by accelerating the condensate.

IV. DYNAMICS OF SMALL FLUCTUATIONS:
NORMAL-MODE SPLITTING

Here we show that the coupling of the mechanical oscil-
lator, the cavity field fluctuations and the condensate fluctua-
tions �Bogoliubov mode� leads to the splitting of the normal
mode into three modes �normal-mode splitting �NMS��. The
optomechanical NMS however involves driving three para-
metrically coupled nondegenerate modes out of equilibrium.
The NMS does not appear in the steady-state spectra but

a
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FIG. 3. �Color online� �a� Steady-state displacement spectrum as a function of � /�0 for k=0. The thin curve corresponds to pump
intensity � /�0=0.2 and the thick line corresponds to � /�0=1.0. For the larger pump intensity, we find three steady-state solutions, with two
of them being stable. The system prepared below the resonance will follow the steady-state branch until reaching the lower turning point,
where a nonsteady-state dynamics is excited. The parameters taken are, �=0.0067, �m /�0=30, �m /�0=0.001 and � /�0=0.08. �b�: The
displacement spectrum modified by the atomic backaction through the cavity photons as a function of the quasimomentum �kd� for two
different values of �c /�0. For �c /�0=−0.5, a bistable behavior is seen �thick line� when the condensate is at the edge of the Brillouin zone
�kd= �
�. This bistable behavior is absent when �c /�0=0.5 �thin line�.
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rather manifests itself in the fluctuation spectra of the mirror
displacement. To this end, we shift the canonical variables to

their steady-state values �i.e., â→ âs+ â, âm→ âm,s+ âm, b̂j

→ 1
�M

��N+ b̂�� and linearize to obtain the following
Heisenberg-Langevin equations neglecting atomic losses due
to heating:

ḃ̂ = − i�� + 2Uef f�b̂ − iUef fb̂
† − igc�â + â†� , �14�

ȧ̂ = 
i�d −
�

2
�â − i

gm

2
�âm + âm

† � − igc�b̂ + b̂†� + ���p�t� ,

�15�

ȧ̂m = 
− i�m −
�m

2
�âm − i

gm

2
�â + â†� + ��m�m�t� . �16�

Here, Uef f =
Un0

� , gc=U0J0
�N�âs�, �=U0J0�âs�2+

VclJ0

� +
E0

� ,
and �d=�c−U0NJ0−��mxm,s is the detuning with respect to
the renormalized resonance and �d
0 leads to cooling. Note
that xm,s is negative and hence makes �d positive. The atomic
and cantilever back action modifies the cavity detuning. The
optomechanical coupling rate is given by gm=2âs��m and
�âs�2 gives the mean resonator occupation number. In deriv-
ing the above equation, we have assumed that âs to be real.
As before, we assume negligible tunneling �J=E=0�, and
hence we drop the site index j from the atomic operators. We
will always assume �m��. Equations �14�–�16� and their
Hermitian conjugates constitute a system of six first-order
coupled operator equations, for which the Routh-Hurwitz
criterion implies that the system is stable only for gm


���d�d�+�2 /4��m / ��d� and �d�d�	0, where �d�=�d
−2gc / ��+3Uef f�. We transform to the quadratures: Xm= âm

+ âm
† , Pm= i�âm

† − âm�, Xp= â+ â†, Pp= i�â†− â�, Xb= b̂+ b̂†, and

Pb= i�b̂†− b̂�. The displacement spectrum in Fourier space for
np=0 is found as

Sx��� =
x0

2

2

�m

2 ������2��mnm −
�d

2 + �2 + �2/4
2�d�m

�s���� ,

�17�

where,

�−1��� = �m
2 + 2�m�s��� − �2 − i���m + �s���� , �18�

�s��� =
�dgm

2 �4��
2

2��8 + �2�2��
4�

, �19�

and

�s��� = −
��dgm

2 �m��
4

��8 + �2�2��
4�

, �20�

�4 = �
�2

4
+ �d

2 − �2���2 − �� + Uef f��� + 3Uef f��

− 4�dgc
2�� + Uef f�� , �21�

��
2 = ��2 − �� + Uef f��� + 3Uef f�� . �22�

This spectrum is characterized by a mechanical suscepti-
bility ���� that is driven by thermal noise ��nm� and by the
quantum fluctuations of the radiation pressure �quantum back
action� and quantum fluctuations of the condensate. Note that
in the absence of the atom-photon coupling �gc=0�, the dis-
placement spectrum �Eq. �17�� reduces to that found in �31�.

In Fig. 4�a�, we show a normalized plot of the displace-
ment spectrum Sx��� for two values of the atomic two-body
interaction, Uef f /�m=0 �thin line� and Uef f /�m=0.3 �thick
line�. Parameters chosen are: gm /�m=0.4, � /�m=0.1,
�m /�m=0.01, gc /�m=0.1, �d /�m=−1, and � /�m=0.01. In
the absence of the interactions, we observe the usual normal
mode splitting into two modes and we find that due to a finite
atom-atom interaction the normal mode splits up into three
modes. The NMS is associated with the mixing between the
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FIG. 4. �Color online� �a� Normalized plot of the displacement spectrum Sx��� for two values of the atomic two-body interaction,
Uef f /�m=0 �thin line� and Uef f /�m=0.3 �thick line�. Parameters chosen are: gm /�m=0.4, � /�m=0.1, �m /�m=0.01, gc /�m=0.1, �d /�m

=−1, and � /�m=0.01. A clear NMS is observed in the presence of atom-atom interaction. �b� Normalized plot of the displacement spectrum
Sx��� for the same parameters as �a� but with a stronger atom-photon coupling gc /�m=0.2. The NMS is now much more prominent
compared to that in �a�.
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mechanical mode and the fluctuation of the cavity field
around the steady state and the fluctuations of the condensate
�Bogoliubov mode� around the mean field. The origin of the
fluctuations of the cavity field is the beat of the pump pho-
tons with the photons scattered from the condensate atoms.
The frequency of the Bogoliubov mode in the low-
momentum limit is ��Uef f. Hence in the absence of interac-
tions, the Bogoliubov mode is absent and the system simply
reduces to the case of two mode coupling �i.e coupling be-
tween the mechanical mode and the photon fluctuations�. In
the presence of finite atom-atom interaction, the mechanical
mode, the photon mode, and the Bogoliubov mode forms a
system of three coupled oscillators. It is important to note
that splitting in the displacement spectrum occurs only for
gm	� /�2 due to finite width of the peaks. Figure 4�b� illus-
trates the influence of increasing the atom-photon coupling
gc=0.2. The NMS is now much more prominent compared to
the case with gc=0.1. Similar three coupled oscillator experi-
mental results where two coupled cavities, each containing
three identical quantum wells �32� and one microcavity con-
taining two quantum wells �33�, have been reported. An im-
portant point to note is that in order to observe the NMS, the
energy exchange between the three modes should take place
on a time scale faster than the decoherence of each mode.
Also the parameter regime in which NMS may appear im-
plies cooling. On the positive detuning side, the observation
of NMS is prevented by the onset of parametric instability.
Experimentally, Normal-mode splitting of a system of large
number of atoms coupled to the cavity field has been
achieved recently �35�. It was observed that the NMS was
observed only if the coupling between the atoms and the
cavity was strong enough �strong cooperative coupling re-
gime�. This regime was achieved by increasing the atom
numbers. One experimental limitation could be spontaneous
emission which leads to momentum diffusion and hence
heating of the atomic sample �17�.

Strictly speaking, a three-dimensional trap geometry is
essential to observe the superfluid to Mott insulator transi-
tion. Consequently instead of a linear array of atoms, a
quasi-two-dimensional pancake-shaped condensates are
formed. In a more complete theory, coupling between the
inhomogeneous density in the radial plane and the density
modulations along the axial direction should be taken into
account. In actual experiments mode coupling are always
present and this changes the Bogoliubov spectrum �36,37�.

The biggest experimental challenge to observe the pre-
dicted dynamics is to have an optomechanical device with
both a high optical finess �currently in the range from 103 to
105�, and a high mechanical quality factor �103 to 105 for
beams and cantilevers�. An alternative approach �15,38� in-
volving a membrane of thickness 50 nm inside a fixed opti-
cal cavity can circumvent this problem to some degree and
has reached a finesse of 104 and a mechanical quality factor
of 106.

To demonstrate that the dynamics investigated here are
within experimental reach, we discuss the experimental pa-
rameters from �16,17,34�: a BEC of typically 105 87Rb atoms
is coupled to the light field of an optical ultra high-finesse
Fabry-Perot cavity. The atom-field coupling g0=2

�10.9 MHz �16� �2
�14.4 �17�� is greater than the decay
rate of the intracavity field �=2
�1.3 MHz �16� �2

�0.66 MHz �17��. The temperature of the ultracold atomic
gas T��� /kB so that the coherent amplification or damping
of the atomic motion is neglected. Typically atom-pump de-
tuning is 2
�32 GHz. From �34�, the mechanical fre-
quency �m=2
�73.5 MHz and �m=2
�1.3 KHz. The
coupling rate gm=2
�2.0 MHz. The energy of the cavity
mode decreases due to the photon loss through the cavity
mirrors, which leads to a reduced atom-field coupling. Pho-
ton loss can be minimized by using high-Q cavities. Our
proposed detection scheme relies crucially on the fact that
coherent dynamics dominate over the losses. It is important
that the characteristic time scales of coherent dynamics are
significantly faster than those associated with losses �the de-
cay rate of state-of-art optical cavities is typically 17 kHz
�35��.

V. CONCLUSIONS

In summary we have analyzed cavity optomechanics with
ultracold atoms. We showed that the steady-state displace-
ment spectra of a cantilever coupled indirectly to a gas of
ultracold atoms in an optical lattice through the cavity field
are distinct for different quantum phases of equal densities.
Further, we showed that in the mean field of the atoms, the
cantilever displacement shows a bistable behavior for high
pump intensities and exhibits a dependence on the position
of the condensate in the Brillouin zone due to the back action
of the condensate on the cantilever. The cantilever displace-
ment spectrum shows a bistable behavior when the conden-
sate is at the edge of the Brillouin zone. In the presence of
atom-atom interactions, the coupling of the mechanical os-
cillator, the cavity field fluctuations and the condensate fluc-
tuations �Bogoliubov mode� leads to the splitting of the nor-
mal mode into three modes �normal-mode splitting�. The
system described here shows a complex interplay between
distinctly three systems namely, the nanomechanical cantile-
ver, optical microcavity and the gas of ultracold atoms. The
quantum state of the degenerate gas influences the cantilever
displacement spectra via the cavity photons, while on the
other hand the cantilever displacement modifies the cavity
field which in turn modifies the properties of the condensate.
The position of the condensate in the Brillouin zone and the
atomic tunneling can influence the cantilever dynamics and
at the same time the cantilever dynamics can be used to
control the atomic dynamics.
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