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We show that the Hubbard Hamiltonian with particle-assisted tunneling rates—recently proposed to model
a fermionic mixture near a broad Feshbach resonance—displays a ground-state phase diagram with superfluid,
insulating, and phase-separated regimes. In the latter case, when the populations are balanced the two phases
coexist in microscopic antiferromagnetic domains. Macroscopic phase segregation into a high-density super-
fluid of molecules and a low-density Fermi liquid of single atoms appears in the density profile above a critical
polarization pc.

DOI: 10.1103/PhysRevA.80.043602 PACS number�s�: 67.85.�d, 03.75.Ss, 05.30.Fk, 71.10.Fd

I. INTRODUCTION

The recent experimental observation of normal-superfluid
transition in two-component Fermi gases �1–3� has attracted
a great deal of attention on the subject of strongly interacting
confined fermionic atoms. In this context, an important result
consisted in the observation on the density profile of phase
separation �PS� between a superfluid core and an external
polarized shell, depending on the population imbalance p
and the interaction strength across a Feshbach resonance
�4,5�. The theoretical investigation of PS in the framework of
uniform Fermi gases �6� provided an efficient description of
the phase diagram along the BCS-BEC crossover. In particu-
lar, homogeneous phases of fully polarized and partly polar-
ized normal gases or of unpolarized and partly polarized su-
perfluids have been recognized, as well as the coexistence of
some of these phases by varying the gas polarization and the
interaction strength between atoms.

A description of the above phenomena when the fermi-
onic atoms are confined by anisotropic optical lattices would
represent a major achievement. On the theoretical side, it has
been speculated that, with respect to real materials, these
systems could provide a much neater realization of the Hub-
bard model �7,8�. The very recent experimental observation
�9,10� of the formation of an insulating phase in a repulsively
interacting two-component Fermi gas on an optical lattice
confirms this hypothesis, thus, enabling the use of such sys-
tems as a laboratory to investigate the onset of many phe-
nomena in real materials, one for all high-temperature super-
conductivity.

There is still no full agreement on the fact that Hubbard-
like model Hamiltonians can support evidence of macro-
scopic phase segregation. Moreover, it has been observed
that the Feshbach resonance, besides inducing the desired
strong interaction among atoms �11�, can cause highly non-
trivial effects �12–15�, which should be effectively included
in the lattice model. For instance, a broad resonance—typical
of the experimental setups with fermionic atoms—could gen-
erate a multiband distribution of the atomic population,
which in turn affects the effective correlation between atoms
on neighboring sites. In such a case, it was shown �15� that a
lattice resonance model is the generic model which would
properly describe the system. The latter can be mapped

�16,17� into an extended Hubbard model with correlated
hopping, previously known in literature as the Simon-Aligia
model Hamiltonian �18�.

In this work, we provide exact analytical and numerical
evidence that in the regime of strong interaction between
fermions the Simon-Aligia model reproduces the scenario
expected for ultracold fermionic gases, exhibiting normal,
superfluid, insulating, and PS regimes. Based on such results,
we also propose a simple explanation of the microscopic
mechanism driving the transition to macroscopic phase seg-
regation: while phase coexistence is present for appropriate
parameters in a large range of filling values, the short-range
antiferromagnetic order masks this feature when the two
populations are balanced and only for a critical polarization
pc macroscopic phase segregation appears. Above it, a re-
gime of breached pairs is entered.

II. LATTICE MODEL HAMILTONIAN

In the case of fermionic atoms with two internal states on
a one-dimensional optical lattice, the Simon-Aligia model
can be written as �16�

HSA = − �
�,�i,j�

�t + �g�ni−� + nj−�� + �tni−�nj−��ci�
† cj�

+
�

2 �
i

ni�ni − 1� , �1�

where �= �↑ ,↓	 identifies the two internal states of the fer-
mionic atoms �−� standing for the opposite of ��, �i , j� de-
notes two neighboring sites, and ni�ni↑+ni↓. Here t de-
scribes the direct hopping of atoms of a given population
between neighboring sites, while �g=g− t and �t= t+ tad
−2g are the deviation from the direct hopping case �in which
�g=0=�t�, induced by correlations in proximity of a wide
Feshbach resonance. More precisely, g describes the configu-
ration tunneling, in which one atom is transferred onto a site
already occupied by an atom of different specie: it amounts
to coupling two fermionic atoms into a dressed molecule. tda
accounts for the motion of one atom between two already
occupied sites: de facto it exchanges a dressed molecule and
a fermionic atom located on neighboring sites. Finally, � is
the energy cost of the dressed molecule, which works as an
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effective detuning parameter. Since in Eq. �1� the number of
atoms of both populations are conserved quantities, one can
work at arbitrary fixed average number of atoms per site
�filling� n=N /L with N= ��ini� �0�n�2�, and population
imbalance p= ��ini↑−ni↓� /N �0� 
p
�1�.

In the context of highly correlated fermionic materials,
HSA has been widely studied �19–21�. In particular, at p=0 it
was recently shown �20� that—for the choice �g=−t �i.e.,
g=0�—its exact ground-state phase diagram can be obtained,
and it has been explored at n=1. The structure of the latter is
reminiscent for some aspect of the mentioned physics of cold
fermionic gases, providing evidence of both PS and an insu-
lating behavior for appropriate values of interaction param-
eters. Both features were confirmed by numerical analysis
also for 0�g�−tad �21�. Here we recast the exact solution
of Ref. �20� to the present context, allowing for arbitrary p,
and we explore the role of population imbalance on the den-
sity profile at and away from the exact case.

III. RESULTS

A. g=0

We first consider the g=0 case. A convenient representa-
tion of the model Hamiltonian �1� is obtained by introducing
on-site Hubbard projection operators. These are defined as
Xi

��� 
��i��
i, where 
��i are the states allowed at a given
site i, and �=0, ↑ , ↓ ,2 �
2��
↑↓��. In terms of these opera-
tors, the Hamiltonian H�HSA��g=−t� reads as �up to con-
stant terms�

H = �
�i,j��

�tXi
�0Xj

0� + tadXi
2�Xj

�2� + ��
i

Xi
22. �2�

From a mathematical point of view, the choice �g=−t imple-
mented in Eq. �2� implies that also the total number of
dressed molecules Nd= ��iXi

22� is a conserved quantity.
Hence, the ground state of H must be searched among the
eigenstates of just its first two terms, namely, those with
coefficients t and tad. These terms are degenerate with re-
spect to the population of the single atoms and their eigen-
states do not depend on p. One can show that in the thermo-
dynamic limit, the ground state 
�GS�n�� consists of a high-
density core of length Lh with Nd paired atoms and Lh−Nd
fermionic atoms, surrounded by a low-density shell of length
L−Lh occupied by N−Nd−Lh single atoms, where Lh and Nd
have to be determined variationally. Such a choice allows
one to maximize the number of available low-energy mo-
menta. Explicitly,


�GS�n�� = 
�l�N − Nd − Lh��L−Lh

�h�Lh − Nd��Lh

. �3�

Here 
���Nf��L are the ground states of Nf effective spinless
fermions on a L-sites chain, moving in a background of
empty sites �= l or dressed molecules �=h.

For Lh=0=Nd, the ground state coincides with 
�l�Ns��L
and describes a normal �possibly partly polarized� Fermi liq-
uid of single fermionic atoms, which we denote as NP. More-
over, for Lh=L, the ground state becomes 
�h�L−Nd��L, a
�polarized� superfluid of dressed molecules and fermionic at-
oms �SFP�. In particular, for Lh=Nd, the latter consists just of

dressed molecules, and we denote the state as unpolarized
superfluid �SF0�. Apart from these cases, 
�GS�n�� is always
characterized by PS. The two coexisting phases have differ-
ent densities nl, nh, where n� can be expressed in terms of the
variational parameters lh�Lh /L and nd�Nd /L as

nl = 1 −
1 − n + nd

1 − lh
, nh = 1 +

nd

lh
. �4�

The boundaries of the PS regions in dependence of the
physical parameters can be derived by investigating, at fixed
p and n, the dependence on nd and lh of the energy in the
thermodynamic limit, namely, limL→	

1
L ��GS�n�
H
�GS�n��.

The ground-state energy egs�p ,n� is obtained upon minimiz-
ing the latter with respect to nd and lh

egs�p,n� = min
nd,lh

�−
2



��1 − lh�sin 
nl + lhtad sin 
�2 − nh��

+ �nd
p
, �5�

where the expression in parenthesis is constrained by the
actual value of the polarization p, since nd�n /2�1− p�. The
optimal solution is obtained for p=0, in correspondence with

nd= n̄d and lh= l̄h. In order to discuss the scenario of imbal-
anced populations, we notice that the minimization equation
for nd has formal solution n̄d=

lh


arccos
u−2 cos 
nl

2tad
. While at p

=0 this satisfies the constraint for nd, in general it may miss
such property for p�0. In fact, this happens above a critical
polarization

pc = 1 − 2n̄d/n , �6�

when a regime of breached pairs is entered.
The system begins nucleating the normal phase within the

superfluid to accommodate the excess polarization and, cor-
respondingly, the number of dressed molecules nd diminishes
with respect to the optimal value n̄d, nd=n /2�1− p� for p
� pc, as shown in Fig. 1.

The ground-state phase diagram of the model described
by H, as obtained from Eqs. �4�–�6� is reported in Fig. 2 in
the �-p plane at a filling value n�1 and t tad t /2. Six

FIG. 1. �Color online� Number of pairs nd versus polarization
p at �=0, and �g=−t , �t=0.4t �continuous line, exact�, �g
=−0.8t , �t=0 �red diamonds, numerical�. Inset: critical polariza-
tion pc vs filling n.
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different regions can be identified, depending on the values
of nd and lh in the solution. In the regime of deep attractive
detuning at p=0, the solution corresponds to the choice

n̄d= l̄h=n /2: it describes an unpolarized superfluid of pairs,
SF0. In the same regime when p�0, the solution becomes
lh=nd� n̄d: the ground state nucleates in SF0, a low-density
normal phase of fully polarized Fermi liquid �NFP�. In this
case, PS is favored with respect to the polarized superfluid
since tad� t; for tad t the opposite scenario holds. When the
detuning � is still attractive but moderate, as well as p, the

solution reads n̄d= l̄h�n /2: the unpolarized superfluid coex-
ists with a normal Fermi liquid �NP�. At lower-enough attrac-

tive � value, the solution becomes n̄d� l̄h. According to Eq.
�4�, this implies nh�2: a regime is entered in which the
superfluid is polarized �SFP� since it contains 2−nh unpaired
atoms and still coexists with NP. Such a region extends up to
�c, which, in the present case, is moderately repulsive. Since
the size L−Lh of NP increases by enhancing �, also the value
of the critical polarization pc above which the normal phase
becomes fully polarized increases accordingly. Above it, the
SFP phase reduces its size by breaking some pair: this case
corresponds again to nd� n̄d. In both cases, the transition of
the superfluid phase in the PS regime from SF0 to SFP is
identified by the line nh=2. Moreover, the transition line to
the breached pair regime �shaded region in Fig. 2� is charac-
terized by n̄d=n /2�1− p�. Finally, the uniform phase of nor-
mal Fermi liquid �NP� is reached for ���c, the transition

line being denoted by n̄d= l̄h=0. The physical parameters tad
and n also play a relevant role in the above scenario. The
filling n is crucial in the PS regimes, which is entered only
for n�nl. In particular, the SFP+NP regime is the stable
ground states in the range nl�n�nh, whereas the SF0+NP
state is stable up to nh=2, nl, and nh depending on the physi-
cal parameters through Eq. �4�. Also the uniform phase
changes by varying n: while for n�1 this is NP, for n=1 it
becomes insulating, and for n1 it is SFP. A thorough in-
vestigation shows that by decreasing tda, the phase diagram
becomes more asymmetric with respect to the half-filling
configuration �not shown�.

B. gÅ0

We now discuss the g�0 case. Since in this case no exact
solution is available, one has to resort to numerical simula-

tions for finding the ground state of HSA. At p=0, the situa-
tion was already investigated by means of the density-matrix
renormalization-group algorithm �21�: the essential features
of the exact solution characterize a large range of g values,
namely, 0�g�−tad, whereas a crossover region to the stan-
dard Hubbard regime is achieved when g�−tad and still
tad�0. The main difference with respect to the g=0 case is
that the spin degrees of freedom become relevant. As a con-
sequence, at p=0 when 0�g�−tad PS manifests itself at a
microscopic level, by forming nanoscopic PS domains of
size � �that turns out to be related to nd� in which the coex-
isting phases rearrange their relative spins in order to maxi-
mize antiferromagnetic short-range order.

Given the above interpretative framework, we thus expect
that p�0 should not affect the results at g�0 as far as the
presence of phase coexistence is concerned. This is con-
firmed by the numerical data obtained by exact diagonaliza-
tion on small clusters �L=16� for nd and pc at g=0.2t, com-
pared in Fig. 1 with the exact results at g=0 and same U, tad,
and n values, showing accurate quantitative agreement. In
both cases, increasing p amounts to force the orientation of
an increasing number of single atoms, while nd remains con-
stant and equal to the p=0 optimal value up to p= pc. Here,
all the single atoms belong to one of the two internal states
and, for p pc, some pair must break with respect to the
optimal number n̄d. What is expected to change with respect
to the g=0 case is instead the size of the PS domains. Since
the number of single atoms available for such a short-range
antiferromagnetic arrangement diminishes with p, � should
increase correspondingly, so that for p� pc macroscopic
phase segregation occurs also at g�0. This is indeed con-
firmed by numerical investigation of the charge structure fac-
tor N�q���re

iqr��njnj+r�− �nj��nj+r�� at half chain �j=L /2�.
The results are reported in Fig. 3 at half filling. For p� pc the
value at which N�q� reaches its maximum moves smoothly
from 2
nd at p=0 to the lowest available q value �i.e., q
=2
 /L� at p= pc, where it remains also at higher p values. In
this case, macroscopic phase segregation is achieved. The
inset of Fig. 3 shows that the latter feature is maintained
even in the crossover region g�−tad0, though in this case
the behavior of N�q� becomes closer to the standard Hubbard
case for p� pc.

FIG. 2. Exact phase diagram in the �-p plane at n=0.9, �g
=−t, and �t=0.4t: the shaded region corresponds to macroscopic
phase segregation in the density profile. FIG. 3. �Color online� Static charge structure factor N�q� at

different p values, L=N=16, �=0, �t=0, and �g=−0.8t �figure�,
�g=−0.6t �inset�. In both cases, macroscopic phase separation
emerges at p� pc.
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IV. CONCLUSIONS

In this paper, we provided exact analytical and numerical
evidence that a lattice Hamiltonian recently proposed �15,16�
to mimic the physics of ultracold fermionic atoms on one-
dimensional optical lattices close to a broad Feshbach reso-
nance reproduces quite well the physics characteristic of
these systems. In particular, aside to superfluid and insulating
phases, a phase-separated regime is achieved in case of
strongly interacting atoms. In this case, macroscopic phase
segregation appears in the density profile above a critical
polarization pc thanks to a peculiar mechanism. In fact, when
PS is present in the system of balanced atoms, the coexisting
phases form domains of microscopic dimension in order to
implement antiferromagnetic short-range order. By increas-
ing the imbalance of the population p, the size of the do-
mains increases, to reach macroscopic phase segregation ex-
actly at p= pc and above. The effect can be observed—for a

large range of filling values around half filling—also on the
number of pairs nd.

The model discussed here shows macroscopic phase seg-
regation and Flude-Ferrell-Larkin-Ovchinnikov oscillations
�17�, both distinctive features in the investigation of systems
of ultracold fermionic atoms. Therefore, our work gives evi-
dence that Hubbard models with particle-assisted tunneling
rates are more appropriate than the ordinary Hubbard model
to describe the above physics when these systems are con-
fined to anisotropic optical lattices. The present scenario
should survive in higher dimension since its nature is to as-
cribe to the cooperative behavior of spin and charge degrees
of freedom in the PS phase rather than to their separation.
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