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We study the phonon fluxes emitted when the condensate velocity crosses the speed of sound, i.e., in
backgrounds which are analogous to that of a black hole. We focus on elongated one-dimensional condensates
and on stationary flows. Our theoretical analysis and numerical results are based on the Bogoliubov–de Gennes
equation without further approximation. The spectral properties of the fluxes and of the long distance density-
density correlations are obtained, both with and without an initial temperature. In realistic conditions, we show
that the condensate temperature dominates the fluxes and thus hides the presence of the spontaneous emission
�the Hawking effect�. We also explain why the temperature amplifies the long distance correlations which are
intrinsic to this effect. This confirms that the correlation pattern offers a neat signature of the Hawking effect.
Optimal conditions for observing the pattern are discussed, as well as correlation patterns associated with
scattering of classical waves. Flows associated with white holes are also considered.
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I. INTRODUCTION

The analogy between sound propagation in nonhomoge-
neous media and light propagation in curved space-times has
opened the possibility to detect the analogue of black hole
radiation in the laboratory �1�. Indeed, when sound waves
propagate in a flowing medium whose velocity crosses at
some point the speed of sound, they experience the analog of
an event horizon. If the phonon state is stationary and regular
across this sonic horizon, one expects to obtain a thermal
flux of phonons with a temperature kBT=�� /2�, where � is
the gradient of the flow velocity evaluated at the sonic hori-
zon. Since the analogy works perfectly in the hydrodynami-
cal limit, the above result should be valid at least when � is
much smaller than the critical wave vector characterizing the
dispersion �2–5�.

Following the original work of Unruh, various setups
were proposed: see �6� for a review. In Refs. �7–15� the
particular case of sound waves in dilute Bose-Einstein con-
densates �BEC� was considered. These condensates have
nice properties both from an experimental and a theoretical
point of view. From the first, progress in the manipulation
and control of their physical properties is rapid, and from the
second, the equations for the condensate and the phonons are
well understood, as well as the approximations they involve
�16�.

In this work, we first aim to derive the properties of the
phonon fluxes without making use of the gravitational anal-
ogy. In fact we also aim to determine the validity range of
the analogy. To achieve these goals, our analytical and nu-
merical analyses are both based on the �exact�
Bogoliubov–de Gennes �BdG� equation. More specifically,
we consider one dimensional stationary flows which contain
one sonic horizon �black or white� surrounded by two infinite
asymptotically homogeneous regions. In this case, at fixed
conserved frequency |�|, three types of asymptotic phonons

exist, and a complete description of their scattering is given
in terms of a 3 � 3 Bogoliubov transformation �17�.

Our second aim is to provide quantitative estimates of the
spectral properties of the fluxes, in order to guide or explain
experimental projects. To this end, we have performed a sys-
tematic numerical analysis.

Our third aim is to understand the links between local and
nonlocal observables. In Gaussian states �e.g., vacuum and
thermal states�, the physical predictions encoded in a Bogo-
liubov transformation are all contained in two groups of ex-
pectation values: first occupation numbers �in the present
case there are three of them, one for each type of outgoing
phonons: n̄�

i = �a�,i
out†a�,i

out�, i=1,2 ,3�, and second, interference
terms, such as �a�,i

outa�,j
out� with i� j, which determine the long

distance correlations �18–20�. In this study, we were moti-
vated by the recent work �14� where a distinct pattern of
density correlations was “numerically observed” when a
sonic horizon forms. In what follows, we shall explain both
the properties of this pattern, and also why, when taking into
account the condensate temperature, the initial distributions
of phonons tend to hide the black-hole radiation in the occu-
pation numbers whereas, at the same time, they reinforce the
correlation pattern without affecting its spatial properties.
This confirms that the correlation pattern offers a neat signa-
ture of the Hawking effect �13�.

In Sec. II, we derive the mode equation for the phonon
field in one dimensional stationary condensates. We obtain
an explicit fourth-order equation which is valid for all non-
homogeneous condensates. To be general, the sonic horizons
we consider can be due either to the velocity flow v�x�, or to
a varying sound speed c�x�, or to a combination of these two.
We shall later see that some fluxes properties �such as the
backscattering mixing left- and right-moving phonons� cru-
cially depend on the particular combination which is
realized.

In Sec. III, we analyze the mode equation, we identify the
combinations of solutions which describe initial and final
asymptotic phonons and relate them by the aforementioned
3�3 Bogoliubov transformation. In the next section, we
show how it governs both local and nonlocal observables.
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This is carried out twice, without and with an initial tempera-
ture. In appendixes, we consider the scattering of coherent
states, which links the previous analysis with hydrodynami-
cal
experiments �21�, and white holes.

In Sec. V, we numerically solve the mode equation and
obtain the spectral properties of the emitted phonons. We
consider both weakly and strongly dispersive regimes. The
transition from one to the other characterizes the validity
range of the gravitational analogy.

II. SETTINGS

A. Dilute gases

We give here the basic ingredients which describe the
condensates and their linearized perturbations. The reader is
referred to the review �16� for more details.

In a second quantized formalism, the set of atoms is de-
scribed by a field operator ��t ,x� which annihilates an atom
at t ,x, and which obeys the equal time commutator

���t,x�,�†�t,x��� = �3�x − x�� . �1�

The time evolution of � is given by the Heisenberg equation

i��t��t,x� = ���t,x�,H� , �2�

where the Hamiltonian is

H =� d3x� �2

2m
�x�

†�x� + V�†� +
g

2
�†�†��	 . �3�

In this expression, m is the mass of the atoms, V is the
external potential, and g is the effective coupling constant
which describes the scattering of atoms by a local term.

At sufficiently low temperature, of the order of 300 nK
for 104 atoms, a large fraction of the atoms condense in a
common state. To separate this state from its perturbations,
the field operator is decomposed into a c-number wave de-
scribing the condensed atoms, �0, and a fluctuation,

� =�0 + 	̃ . �4�

In the mean field approximation, �0 satisfies the Gross-
Pitaevskii equation

i��t�0 = �T + V + g
0��0, �5�

where the kinetic operator is T=−�2�x
2 /2m. This equation

guarantees that 
0= 
�0
2 obeys the continuity equation:
�t
0+div�
0v�=0, where v is the condensate velocity.

B. Stationary condensates

In the general case, V and g depend on both x and t. In the
body of this work we shall only consider stationary cases. In
Appendix A the time-dependent case is presented. Before
proceeding, let us make clear that stationarity means here
that there is a Galilean frame �that needs not coincide with
the lab frame� in which V ,g and therefore 
0 only depend on
x. From now on we work in this “preferred” frame.

In this frame, the condensate wave function has the form

�0�t,x� = e−i�t/��
0�x�eiW0�x�, �6�

where 
0�x� gives the �mean� density of condensed atoms, µ
is the chemical potential, and k0�x�=�xW0 is the condensate
wave vector.

In the sequel, we shall work with one dimensional con-
densates. This means that the transverse excitations have en-
ergies much higher than the longitudinal ones, and than the
interaction energy g
0. The transverse excitations can there-
fore be ignored at sufficiently low energies. This simplifying
hypothesis can be relaxed without significantly modifying
the forthcoming treatment. For one-dimensional stationary
condensates, the continuity equation reduces to


0�x�v�x� = const. �7�

where v�x�=�k0�x� /m is the velocity of the condensate, and
where x is the longitudinal coordinate. Plugging Eq. �6� in
Eq. �5� gives

� = �mv2�x�
2

+ 
0
−1/2T
0

1/2 + V�x� + g�x�
0�x� . �8�

Because of Eq. �7�, the nonhomogeneity of the back-
ground can be characterized by only two functions. We shall
use v�x� and the x-dependent speed of sound

c2�x� = g�x�

0�x�

m
, �9�

because the equation for the relative fluctuations only depend
on these functions.

C. Bogoliubov–de Gennes equation

We show that the relative fluctuations obey, at the linear
order, a fourth-order equation which does not involve the
external potential. Inserting Eq. �4� in Eq. �2�, and linearizing
the equation in 	̃, one gets

i��t	̃ = �T + V + 2g
�0
2�	̃ + g�0
2	̃†. �10�

Given the structure of this equation and Eq. �8�, we found
that it is mathematically more convenient to work with the
relative fluctuation 	 defined by

� =�0�1 + 	� . �11�

Then using Eqs. �6� and �9�, one gets

i���t + v�x�	 = T
	 + mc2�	 + 	†� , �12�

where we have introduced the “dressed” kinetic operator

T
 = −
�2

2m
0
�x
0�x = − �2 v

2m
�x

1

v
�x, �13�

which takes into account the nonhomogeneous character of
the condensate density. The last expression is obtained using
Eq. �7� and is valid for stationary condensates only.

In this last case, the field operator can be written as a
superposition of the form
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	��t,x� = a�e−i�t	��x� + a�
† �e−i�t���x��*, �14�

where a� and a�
† are phonon annihilation and creation opera-

tors. Inserting Eq. �14� in Eq. �12� and taking the commuta-
tor with both a� and a�

† yield

���� + iv�x� − T
 − mc2�	� = mc2��,

�− ��� + iv�x� − T
 − mc2��� = mc2	�. �15�

It is instructive to obtain a single equation for 	� by elimi-
nating ��. This can be done by dividing the first line by c2

and acting on the resulting equation with the operator be-
tween brackets in the second line. After some manipulation,
we obtain

����� + iv�x� + T
�
1

c2 �− ��� + iv�x� + T
� − �2v�x
1

v
�x		�

= 0. �16�

This equation �or equivalently Eq. �15�� is valid for all sta-
tionary one-dimensional condensates. It contains no approxi-
mation besides those involved in the BdG equation �15,16�.
In Appendix B we analyze its properties as well as its rela-
tions with other dispersive models.

D. Near horizon trajectories and background profiles

A sonic horizon can be obtained in two cases depending
on whether it is c+v or c−v that crosses zero. Assuming it is
c+v, the condensate flows to the left, i.e., v0. We further
require that c+v smoothly crosses zero, i.e., the following
expansion is valid in a finite range:

c + v = �x + O�x2� . �17�

We set to x=0 the location of the sonic horizon, and we call
the near horizon region, the range of x where the neglect of
nonlinear terms in Eq. �17� is valid.

To verify that this profile gives rise to a black-hole hori-
zon, we can either refer to the gravitational analogy �6� or
directly analyze the characteristics of Eq. �16�. Adopting the
second approach, we perform a long wavelength approxima-
tion to Eq. �16�, i.e., we drop the T
 terms and consider the
eikonal solutions of the resulting equation. In this approxi-
mation, right �u� and left �v� moving solutions �with respect
to the condensate� decouple and are governed by
x-dependent momenta k�

u and k�
v , respectively. These are so-

lutions to

� − k�v�x� = � k�c�x� , �18�

where the ���� sign governs k�
u �k�

v �, and where c�x��0. To
get the space-time trajectories we consider the Hamilton-
Jacobi equations �dx /dt=�� /�k, dk /dt=−�� /�x�. These tra-
jectories give the locus of constructive interference when
considering wave packets. In the near horizon region, for the
right movers, Eq. �18� gives

k = k0e−�t,

x = x0e�t. �19�

By definition, whenever such equations are obtained with �
�0, one is dealing with a black hole horizon. When instead �
0, the structure of the trajectories is that of a white hole.
The two cases are related by a time reversal symmetry; see
Appendix D.

In both cases the relevant quantity is the “decay rate” �,
given by the gradient

� = �d�c + v�
dx

�
horizon

, �20�

evaluated at the sonic horizon c+v=0. �In the general rela-
tivistic jargon it is called the “surface gravity” �when multi-
plied by c�. It plays a crucial role in the laws of black-hole
thermodynamics �22,23�, and it fixes the temperature of
black-hole radiation when using relativistic fields �24�.� One
should also point out that the left movers, the v modes, are
hardly affected by the horizon since −c+v�2v−�x is ap-
proximately constant in the near horizon region.

In the sequel, we shall work with

c�x� + v�x� = c0D sgn�x�tanh1/n�� 
�x

Dc0

�n . �21�

The parameter 1�D�0 determines the size of the near ho-
rizon region, namely, 
�x
=Dc0 /�. As we shall see, it plays a
critical role in the deviations with respect to the standard
relativistic fluxes. The power n controls the sharpness of the
transition from the near horizon behavior to the asymptotic
flat regions on either side. For n→�, the transition becomes
sharp. As discussed in �5,17�, sharp transitions give rise to
nonadiabatic effects which produce superimposed oscilla-
tions on the fluxes. In this paper, we shall work with n equal
to 2, and we refer to �17� for more details about this aspect.

Given that the left-moving v-modes “see” the combina-
tion c−v, and are coupled to the u-modes, we need to fix
both v and c, and not only the combination of Eq. �21�. To
this end, we introduce a new parameter q which specifies
how c+v is shared between c and v:

c�x� = c0 + �1 − q��c�x� + v�x�� ,

v�x� = − c0 + q�c�x� + v�x�� . �22�

For q=1 �q=0� the hole is purely due to the gradient of v
�c�. In �14� the analysis was carried out with q=0, whereas
in the recent experiment �25�, one finds q�0.7. In our nu-
merical analysis we shall see that the value of q has an im-
portant impact on the spectrum of the Hawking radiation.
The influence of D and q on the functions c�x� and v�x� is
illustrated in Fig. 1.

III. THEORETICAL ANALYSIS

To prepare the numerical analysis of Eq. �15�, it is worth
studying the modes �	�, ���, and the Bogoliubov transfor-
mation relating the asymptotic in and out mode bases. We
remind the reader that for a relativistic two-dimensional �2D�
massless field, the Bogoliubov transformation induced by
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propagating the field in Eq. �21� is particularly simple be-
cause left and right moving modes decouple; see, e.g., �26�.
When dealing with Eq. �16�, one faces two novelties. First, at
fixed �, four independent solutions now exist, and secondly,
the left-right decoupling is no longer exact �even in the dis-
persionless limit m→��. Similar features have been already
confronted in �5,17�. However, the present case is more gen-
eral since both v and c vary. It is also more complicated
because 	 and Eq. �A6� are complex, whereas the field and
the mode equation in the former works were both real.

A. Asymptotic solutions

In the above profiles, c and v are asymptotically constant
in the regions 
�x
�Dc0. In these regions, the general solu-
tion of Eq. �16� is a superposition of plane waves eikx with
constant amplitudes. The asymptotic roots k��� are solutions
of �see Eq. �B3��

�� − v�k�2 = c�
2 k2 +

�2k4

4m2 =��
2 �k� . �23�

For � �0, in the subsonic region c+ 
v+
, there is one real
root k�

u�0 which corresponds to a right mover and another
real root k�

v0 which describes a left mover �see Fig. 2�,
where the two extreme cases q=1 �left plot� and q=0 �right
plot� are represented. There is also a pair of complex conju-
gated roots �since the equation is real�. The root with a nega-
tive �positive� imaginary part corresponds to a growing
�decaying� mode to the right.

In the supersonic region c−� 
v−
, for � larger than a criti-
cal frequency �max �we compute its value below� there are
only two real roots, as in a subsonic flow. Instead for 0�
�max four real roots exist. This doubling of the number of
real roots is illustrated in Fig. 3. Thus the pair of growing

and decaying modes which existed in the subsonic flow is
replaced by a couple of oscillatory modes. Such a replace-
ment is a generic feature of QFT in external fields; see �27�.
In BEC it will occur at all horizons for both black and white
holes.

B. Maximal frequency �max

The maximal frequency �max is the value of � where the
two extra real roots merge. It is thus reached when the
straight line �−v−k is tangent to −�−�k�, the negative root of
Eq. �23� evaluated in the supersonic region. The correspond-
ing value of kmax is

kmax =
1
�2

m

�
�v−

2 − 4c−
2 + 
v−
�v−

2 + 8c−
2 . �24�

Then �max is obtained by replacing k by kmax in Eq. �23�.
Using Eqs. �21� and �22�, it is thus of the form

�max = �� f�D,q� , �25�

where the “healing” frequency � is related to the healing
length computed with c0

�0 =
�

�2mc0

, �26�

by �=�2c0 /�0. �The prefactor �2 has been added so that the
quartic term in the dispersion relation Eq. �23� be equal to
k4c0

4 /�2.� In what follows, � �or the adimensional �=� /��
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v
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0
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c
/c
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q=0.7

c(x)/c
0

v(x)/c
0

FIG. 1. Upper plot: shape of the profile �c+v� /c0 as a function
of �x /c0 for D=0.5 �solid line� and D=1 �dashed line�. Lower plot:
separate profiles c�x� /c0 and v�x� /c0 for D=0.5 and n=2. The solid
lines correspond to q=0.3 and the dashed lines to q=0.7. Both pairs
of profiles give rise to the same function c+v, represented by the
solid line in the upper plot.

FIG. 2. Graphical resolution of the dispersion relation Eq. �23�
for q=1 �left plot� and for q=0 �right plot�. The straight lines rep-
resent �−v�k and the curves represent ���k�. The solutions k���
are given by the abscissa of their intersections.

FIG. 3. Graphical resolution of the dispersion relation in the
supersonic region for three values of �: 0��max, �=�max, and
���max.
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is referred to as the dispersion scale and is used to charac-
terize the importance of dispersion.

The contours of constant �max /� in the �D ,�� plane are
shown in Fig. 4 for q=0 and for q=1. One sees that q has
only little influence on the value of �max /� when this latter is
small, but the effect becomes significant for larger values.
The physical consequences of this shall be seen in Sec.
V C 2. Notice that for D�1, one has f�D ,q��D3/2. This
means that �max can be much smaller than �.

C. Mode orthonormality and mode completeness

To proceed to the canonical quantization of 	, one needs
a mode basis which is orthonormal and complete. The ortho-
normality is defined with respect to the conserved scalar
product on the space of the solutions of Eq. �15�. In terms of
the doublet Wi= �	i ,�i� the scalar product takes the form
�28�

�W1
W2� = �
−�

�

dx
0�x��	1
*	2 − �1

*�2� . �27�

The presence of 
0 in this product follows from the use of the
rescaled fluctuations defined in Eq. �11�. Similarly, the equal
time commutator reads

�	�t,x�,	†�t,x��� =
1


0�x�
��x − x�� . �28�

This x-dependent measure induces no difficulty, and more-
over one can get rid of it by using the non-Cartesian coordi-
nate y defined by dy=dx
0�x�.

When the condensate is homogeneous the quantization is
rather straightforward and well known �16�. However, when
the flow c+v possesses a horizon, the situation is more
subtle. Therefore, before considering the inhomogeneous

backgrounds of Eq. �21�, let us quantize 	 when c and v are
constant both in space and in time. The complete description
we shall obtain transposes to a BEC that of Ref. �17�.

1. Homogeneous condensates: k representation

In homogeneous condensates, it is appropriate to express
the field in terms of exponentials eikx and creation/destruction
operators labeled by the �real� wave vector k,

	̂ = �
−�

�

dk�âk	k + âk
†�

k
*� , �29�

where

	k�t,x� =
e−i�kt+ikx

�2�
0

uk, �k�t,x� =
e−i�kt+ikx

�2�
0

vk, �30�

and where �k is the positive solution of Eq. �23�. Using these

expressions and introducing W̄k= ��
k
* ,	

k
*�, the “bar” doublet

associated with Wk= �	k ,�k�, one verifies that the orthonor-
mality conditions

�Wk
Wk�� = − �W̄k
W̄k�� = ��k − k�� ,

�W̄k
Wk�� = 0, �31�

are satisfied when the amplitudes uk and vk take their stan-
dard value �29�, irrespectively of the �subsonic or super-
sonic� value of the condensate velocity v. Explicitly, using
Eqs. �15� and �B3�, one obtains

vk = Dkuk, 
uk
2 − 
vk
2 = 1,

Dk =
1

mc2���c2k2 +
�2k4

4m2 − �mc2 +
�2k2

2m
� . �32�

The fact that Dk is independent of the condensate velocity v
follows from Galilean invariance, the condensate being ho-
mogeneous. Indeed, in the coordinates tc and xc comoving
with the fluid, related to the coordinates t and x by tc= t and
xc=x−vt, the 2D wave vector of components ��k ,k� in the
t ,x system has comoving components ��k=�k−vk ,k� where
all reference to v drops out when using k to label modes, as
can be seen from Eq. �23�.

The operators âk and âk
† obey the usual bosonic commu-

tation relation �âk , âk�
† �=��k−k��. The relationships between

mode doublets Wk and these operators follow from

âk = �Wk
Ŵ� ,

âk
† = − �W̄k
Ŵ� , �33�

where the doublet operator is Ŵ= �	̂ , 	̂†�.
In this k representation, one can also easily verify that the

mode basis is complete. That is, starting with the commuta-
tors �âk , âk�

† �=��k−k�� and the doublets Wk, making use of
the completeness �in the sense of Fourier analysis� of the
exponentials eikx with k real from ���,��, and using that
Dk=D−k �which is a necessary condition� one verifies that

10
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FIG. 4. Contours of constant �max /� in the �D ,�� plane, for q
=0 �solid lines� and q=1 �dashed lines�.
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Eq. �28� is satisfied, again irrespectively of the value of the
condensate velocity v.

Therefore, when using � instead of k to label modes and
operators, one should discard the growing and the decaying
solutions of Eq. �16�. Unlike the oscillatory plane waves they
cannot be reached in a limiting procedure, starting with
square integrable functions.

2. Nonhomogeneous condensates: � representation

When considering nonhomogeneous but stationary flows,
one should use the conserved frequency � to label modes.
Then one notices that the change of variable k→� in Eq.
�29� proceeds very differently according to the subsonic or
supersonic character of the flow. As a preliminary step, we
consider separately subsonic and supersonic homogeneous
flows. A superscript u�v� shall be added to characterize right
�left� movers with respect to the condensate.

In a homogeneous subsonic flow, only two real roots of
Eq. �23� exist: ku����0 and kv���0. Given that dk /d�
never crosses zero, one can re-express Eq. �29� as

	�t,x� = �
0

�

d��e−i�t	̂��x� + e+i�t�̂�
† �x�� , �34�

where

	̂��x� = â�
u	�

u �x� + â�
v	�

v �x� ,

�̂��x� = â�
u��

u �x� + â�
v��

v �x� . �35�

The rescaled modes and operators are 	�=	k
�dk /d�, and

â�= âk
�dk /d�. One easily verifies that the factors �dk /d�

guarantee that all ��k−k�� obtained in the former section are
consistently replaced by ���−���. That is, the operators â�
and â�

† obey �â� , â��
† �=���−���. Similarly the modes 	�

u

and 	�
v are orthogonal to each other and possess unit positive

norm �in the sense of a Dirac distribution ���−����.
We now consider a homogeneous supersonic flow. Start-

ing again from Eq. �29� one decomposes, as in Eq. �34�, the
field as an integral over � of a sum of right- and left-moving
modes. When considering the left-moving sector in left-
moving flows, dk /d� does not cross zero. Therefore, as in
subsonic flows, all left-moving �positive norm� modes can
still be monotonically labeled by � belonging to �0,��. The
same is no longer true for the right-moving sector. In fact,
the integral �0

�dk splits into an integral over � belonging to
�0,�� plus another piece over negative frequencies belonging
to �−�max,0�. This last interval terminates at −�max where
the two new real roots ku����0 merge.

Thus, for ���max, 	̂� and �̂� read as in Eq. �35� since
one has only one �positive norm� u root. Instead, when 0
��max, three real u roots exist: the continuation �in ��
of this positive norm one, plus two new roots with negative
� �see Fig. 3�. In this case, one has

	̂��x� � � dt

2�
ei�t	�t,x�

= â�
u	�

u �x� + â�
v	�

v �x� + �
l=1,2

â−�,l
u† ��−�,l

u �x��*,

�36�

�̂�
† �x� � � dt

2�
e−i�t	�t,x�

= â�
u†���

u �x��* + â�
v†���

v �x��* + �
l=1,2

â−�,l
u 	−�,l

u �x� .

�37�

In the first equation, a complex conjugate and a subscript ��
have been used to characterize the two new modes. This
means that the two doublets W−�,l

u = �	−�,l
u ,�−�,l

u � have a posi-
tive norm and obey Eq. �15� with a frequency i�t=−�0. It
should also be noticed that the above operators 	̂��x� and
�̂��x� contain both annihilation and creation sectors. This
allows one to write 	�t ,x� as in Eq. �34�, i.e. as an integral
over � ��0,��.

In metrics which contain a transition from a subsonic to a
supersonic flow because of the scattering on v�x�, the modes
that are bounded on one side of the horizon are generally not
bounded on the other side. However, given the linearity of
Eq. �15�, one can always construct bounded modes as linear
combinations of the above modes, requiring that the coeffi-
cient of the growing mode be zero �17�.

In fact, when ��max, three independent bounded com-
binations can be constructed and 	̂�, instead of Eq. �36�,
now reads

	̂��x� = â�
u	�

u �x� + â�
v	�

v �x� + â−�
u† ��−�

u �x��*, �38�

and similarly for �̂��x�. In this expression, 	�
u , 	−�

u , and �−�
u

stand for yet unspecified normalized bounded modes. The
particular cases of the in and out bases shall be defined in the
next section. For ���max instead, there is one growing
mode on each side of the horizon. Hence only two indepen-
dent bounded linear combinations can be constructed so that
	̂� is still decomposed as in Eq. �35�.

D. Bogoliubov transformation

1. Vacuum instability and spontaneous pair production

Since we are dealing with a stationary situation, the en-
ergy of the state of 	 is constant. Hence, one might have
thought that no phonons could possibly be spontaneously
emitted. This is not the case because the vacuum is unstable
against the production of phonon pairs when two conditions
are met. First, negative energy excitations must exist. We
saw in the last section that it is the case when the flow is
supersonic for ��max.

However, this is not enough, as can be understood by
considering a homogeneous condensate propagating in a fric-
tionless translation faster than sound in the lab frame. One
also needs spatial gradients to define unambiguously the
unique “preferred” stationary frame, and to couple the so-
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defined negative energy excitations to positive energy ones.
When these conditions are met, the Hamiltonian of 	 has the
following structure:

H = �
0

�max

d����â�
u†â�

u + â�
v†â�

v − â−�
u† â−�

u �

+ �
�max

�

d����â�
u†â�

u + â�
v†â�

v � . �39�

From this expression three conclusions can be drawn. First,
phonons with ���max cannot participate in the pair produc-
tion since no partner with the corresponding negative fre-
quency exists. Second, both u and v positive frequency
phonons participate in the vacuum instability. Which of the
two channels contributes most depends on the intensity of
the coupling with the negative frequency excitations. Third,
the diagonalization of H in the sector 0��max is am-
biguous because by a unitary ��-diagonal� Bogoliubov trans-
formation, the above quadratic form is left unchanged.

Therefore, one needs an additional physical criterion to
remove this ambiguity. In the general �time-dependent� case
no such criterion exists, and the notion of phonon is inher-
ently ambiguous �23,30�. However, in the present case of
stationary asymptotically homogeneous condensates, there is
no ambiguity to define two complete sets of modes. The first
set of modes �the “in” modes� characterizes the initial
phonons propagating towards the sonic horizon. The second
set, the “out” modes, characterizes the asymptotic particle
content of the scattered field configurations. Having the two
sets, we can compute how they are related and how this
relationship governs the decay of the vacuum.

2. Space-time structure of in and out wave packets

The procedure to identify the in and out modes is standard
�26�. One should construct “broad wave packets,” i.e., super-
positions of stationary modes, so as to extract the asymptotic
temporal behavior by looking at the stationary phase condi-
tion ��S=0. This equation is equivalent to Hamilton’s equa-
tion since the mode phase S coincides with the Hamilton-
Jacobi action in the eikonal approximation. From this
asymptotic behavior, one identifies the modes �in fact the
doublets W�,a= �	�,a ,��,a�� that are associated with each ini-
tial �and final� one-phonon state. It should also be pointed
out that these modes acquire a precise physical meaning
when considering coherent states, see Appendix C.

It is useful to visualize these modes. Let us first describe
the in mode 	�

u,in, i.e., the particular solution of Eq. �16�
which contains in the past only a right-moving packet. We
shall do it twice, both for ���max, where there is only some
elastic scattering �see Fig. 5�, and for ��max, in the pres-
ence of pair creation �see Fig. 6�. In both cases, initially, one
only has the incoming branch with unit norm. At late time,
when ���max, one has a transmitted u mode with amplitude
T�, and a reflected v-mode with amplitude R�. For �
�max, in addition to these modes there is the negative fre-
quency mode ��−�

u,out�*. The description of the other in and
out modes is obtained without difficulty.

3. Bogoliubov transformation

From Eq. �39� one sees that for ���max one has only two
modes with positive frequency �energy�. Because the con-
densate is not translation invariant, there is some scattering.
Therefore, in and out 	 modes are related by

	�
u,in = T�	�

u,out + R�	�
v,out,

	�
v,in = − R

�
*	�

u,out + T
�
*	�

v,out. �40�

The other modes, the ��
u/v,in/out, are related among themselves

by the same relations. Since there is no mixing of 	� with
�
�
*, the conservation of the norm trivially implies 
T�
2

+ 
R�
2=1. One is thus dealing with an elastic scattering be-
tween u and v modes, and T� and R� are the transmitted and
reflected amplitudes, respectively. This is a “trivial” transfor-
mation in the sense that there is no spontaneous pair produc-
tion. The vacuum of these high frequency modes is thus
stable.

FIG. 5. Schematic space-time representation of a wave-packet
made out of modes 	�

u,in for ���max. At early times, the packet is
purely right moving. It is then scattered into a transmitted right-
moving part and a reflected left-moving one. The dashed line rep-
resents the initially unexcited “ancestor” of the late-time left-
moving packet.

FIG. 6. Same as Fig. 5 for ��max when pair production
occurs.
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It should be pointed out that this elastic scattering is also
found for all modes, when the flow remains everywhere sub-
sonic. In fact, because of dispersion, the high frequency
modes with ���max do not see/experience the presence of
the sonic horizon. This can be verified by computing the
trajectories followed by wave packets centered around some
���max.

The situation is radically different for ��max. In this
case the mode mixing is nontrivial, and three equations are
needed to characterize the transformation,

	�
u,in = ��	�

u,out + �−���−�
u,out�* + Ã�	�

v,out,

	�
v,in = ��

v	�
v,out + B���−�

u,out�* + A�	�
u,out,

	−�
u,in = �−�	−�

u,out + �����
u,out�* + B̃����

v,out�*. �41�

The coefficients are given by the overlap of the correspond-
ing �normalized� in and out doublets, e.g.,

�−� = − �W̄−�
u,out
W�

u,in� . �42�

The normalization of the coefficients then immediately fol-
lows, e.g., the first equation �together with the corresponding
one for ��

u,in� gives


��
2 + 
Ã�
2 − 
�−�
2 = 1. �43�

In this expression, the minus sign comes from negative norm
doublets �see Eq. �31��.

It should be noticed that the above enlarged Bogoliubov
transformation governs the general case. It applies indeed to
any stationary situation when there is one type of negative
frequency modes �here the u modes 	−�

u �. It should also be
noticed that in situations with two sonic horizons, such as
black hole white hole pairs �25,31,32�, the Bogoliubov trans-
formation will be more complicated than Eq. �41�.

IV. FLUXES, DENSITY FLUCTUATIONS,
AND CORRELATIONS

Most of the work dedicated to the Hawking effect concen-
trates on the particle content, or the energy content, of the
outgoing flux �23,30�. These two observables are related to

��
2 of Eq. �41�. However, it was also noticed that there
exist Einstein-Podolski-Rosen �EPR� correlations between
the outgoing particles and their partners with negative fre-
quency �. Unlike the energy flux, these correlations are
weighted by ����

* and originate from interfering terms �i.e.,
nondiagonal in the occupation number�. In the case of gravi-
tational black holes, little attention has been given to the late
time correlations because they are hidden for the external
observers since the partners are trapped inside the horizon
�26�. Nevertheless these correlations have well-defined prop-
erties �33�. Moreover, they extend to the past and can be
revealed by sending quanta to stimulate the emission process
�34–36�.

With the advent of acoustic black holes, the situation
completely changes because one has access to both regions
and can therefore probe the EPR correlations. In this respect,

acoustic black holes are similar to what is found in the ho-
mogeneous time-dependent BEC �37–40� and inflationary
cosmology. In that case, the primordial fluctuations, seeds of
the galaxy clusters and of the temperature anisotropies in the
cosmic microwave background, also result from pair creation
�41�. Moreover, their correlations possess a well-defined
space-time structure �20� which, on the one hand, affects
today’s observables because both members are within our
Hubble patch, and on the other hand, is very similar to that
found in time-dependent BEC �38,42�.

We start our analysis with the three occupation numbers
with and without an initial temperature. The first case is
similar to that of �17�, but many new features arise because
of the different structure of the wave equation and because
both c and v vary. The second case is completely new, as are
the next sections where we relate the coefficients of Eq. �41�
to both local and nonlocal density fluctuations.

A. Occupation numbers in the initial vacuum

Let us first consider the in vacuum 
0in�, i.e., the state
annihilated by the destruction operators â�

u,in, â�
v,in, and â−�

u,in

defined by the in modes through Eq. �33�. For gravitational
black holes, this is the physically relevant state �for outgoing
u configurations� after a few e-folding times �t=1 /�. In fact,
because of the exponential redshift effect associated with the
near horizon propagation �see Eq. �19�� the transient effects
due to infalling quanta are exponentially rapidly washed out.
Therefore, the choice of the initial distribution of quanta
does not affect the stationary properties of the outgoing flux.
This is no longer necessarily true for acoustic black holes
because the dispersion limits the number of e-folding times
during which Eq. �19� applies �43,44�. Thus, one should ana-
lyze each case to see if the vacuum state provides a reliable
approximation.

Assuming this is the case, the mean occupation numbers
are

n̄�
vac = �0in
â�

u,out†â�
u,out
0in� = 
��
2,

n̄�
vac,v = �0in
â�

v,out†â�
v,out
0in� = 
B̃�
2,

n̄−�
vac = �0in
â−�

u,out†â−�
u,out
0in� = 
�−�
2 + 
B�
2 = n̄�

vac + n̄�
vac,v.

�44�

These expressions follow when using Eqs. �41� and �33� to
express the out operators in terms of in ones.

When compared with the simpler case where u and v
modes decouple �26� the main novelty is that v quanta are
also produced �to the left of the horizon, in the “inside”
region when using the gravitational analogy�. Their occupa-
tion number is n̄�

vac,v. Because of this, n̄�
vac, the numbers of u

phonons emitted to the right is always smaller than that emit-
ted to the left: n̄−�

vac. In fact, n̄−�
vac= n̄�

vac+ n̄�
vac,v tells us that in

addition to the usual “Hawking” channel, there is a new
channel where one of the partner is a v quantum. When the

latter is negligible, for 
B̃�
2� 
��
2, one recovers the simpler
case where n̄−�

vac= n̄�
vac.
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B. Occupation numbers from an initial thermal state

In a BEC, in realistic situations, there will always be some
residual temperature. The order of magnitude of this tem-
perature is given by the chemical potential µ of Eq. �8� and
thus inversely proportional to the healing length �. Moreover,
the characteristic wavelength of the condensate inhomogene-
ity �c /� will generally be larger than �. Therefore, since
Hawking temperature is kBTH=�� /2�, the initial distribu-
tion of phonons could well hide the Hawking effect.

For concreteness, to characterize the initial state, we as-
sume that the three distributions have the same temperature.
Using �in, the initial value of the comoving frequency, the
three initial occupation numbers n̄�

in , n̄�
in,v, and n̄−�

in are

n̄�
in,a = �e�T�

in,a��� − 1�−1, �45�

where �T is related to the �initial� temperature by kBTin
=� /�T. This choice means that, before the scattering in the
near horizon region, the temperature measured in the frame
comoving with the fluid is the same for all modes.

However, because of the scattering, modes sharing the
same constant frequency � mix. Hence we must use � to
characterize the initial distributions. For each type of modes,
we thus need to express �in in terms of �. This explains the
presence of the index a in the comoving frequency in the
above equation. Using Eq. �23�, the values corresponding to
the three in modes of Eq. �41� are

�in,u��� = � − v−ku��� ,

�in,v��� = � − v+kv��� ,

�in,u�− �� = − � − v−ku�− �� , �46�

where the three roots ku����0,kv���0, and ku�−���0
are clearly seen in Fig. 2.

Given the initial occupation numbers, Eq. �41� fixes the
final ones to be

n̄�
fin = n̄�

in + 
A�
2�n̄�
in,v − n̄�

in� + 
��
2�1 + n̄−�
in + n̄�

in� ,

n̄�
fin,v = n̄�

in,v + 
Ã�
2�n̄�
in − n̄�

in,v� + 
B̃�
2�1 + n̄−�
in + n̄�

in,v� ,

n̄−�
fin = n̄−�

in + 
�−�
2�1 + n̄−�
in + n̄�

in� + 
B�
2�1 + n̄−�
in + n̄�

in,v� .

�47�

The interpretation of these equations is clear. The first term is
the corresponding initial occupation number. Then for the
first two equations, the second term is due to the elastic
scattering between u and v modes which adds �or subtract�
particles according to the strength of the scattering, whereas
the last term is due to the induced emission which involves
both the partner’s initial occupation number n̄−�

in and that of
the species itself. In the third line instead, one has two in-
duced emission terms because there are two “pair creation”
channels and no “elastic” channel.

C. How to get rid of thermal noises?

From the first equation in Eq. �47�, one can easily imagine
that the Hawking radiation �HR�, i.e., the spontaneous cre-

ation of pairs weighted by 
��
2 given in the first line of Eq.
�44�, might be hidden by the presence of initial distributions.
See also �15� for a discussion of the consequences of three-
phonon interactions.

There is yet another difficulty which can complicate the
detection of HR, namely, the possibility to distinguish right-
from left-moving phonons. In the case one can, detecting HR
requires that 
��
2 be larger than, or at least of the same order
as, both n̄�

in and 
A�
2n̄�
in,v. The first condition could be satis-

fied because the initial distribution of u modes can be sig-
nificantly redshifted. By this we mean that one can have
�in,u������ and thus possibly �in,u���� /Tin�� /TH, al-
though a priori Tin�TH. The second condition might be
more problematic because the v modes are hardly redshifted.
Nevertheless, the inequality 
A�
2n̄�

in,v� 
��
2 could also be
satisfied because, as we shall see, in certain cases the u−v
mixing is very small. Therefore, when one is able to distin-
guish left-from right-moving phonons, it could be possible to
detect Hawking radiation, even when the initial temperature
is larger than Hawking temperature. In Sec. V D, we study
numerically realistic situations and confirm this possibility.
In the case one cannot distinguish left-from right-moving
phonons, the situation is much worse. The dominant noise
term would be n̄�

in,v, and an initial temperature larger than
Hawking temperature would hide Hawking radiation.

Before proceeding to the numerical analysis, we study
density fluctuations and nonlocal density correlations firstly
because phonon occupation numbers are not directly measur-
able �see, however, �10�� whereas density fluctuations are,
and secondly because nonlocal correlations are amplified by
initial thermal distributions instead of being smeared by
them.

The reader interested in the spectral properties can read
Sec. V first and go back afterward to the next section.

D. Density fluctuations

Given that 	 is a complex field, there are several ways to
characterize the fluctuations in a BEC: either through the
density correlation function which is governed by Re 	 �see
Eq. �B5�� or through the phase correlations governed by Im
	, or even through the crossed phase-density correlations. In
what follows we only discuss the density-density correlations
as the extension to the two other types is easily made.

To simplify the forthcoming expressions we introduce the
field operator �̂=	+	†. In stationary cases, it can be decom-
posed as in Eq. �34�, and in terms of the same operators as
those of Eq. �38�. The only change is that the wave functions
	�

a and ��
a are all replaced by

��
a �x� = 	�

a �x� + ��
a �x� . �48�

Since this correspondence applies to both the in and out sets,
and since both 	�

a and ��
a obey transformation of Eq. �41�,

the three initial ��
in,a are also related to the three final ��

out,a by
Eq. �41�. Therefore, even though �̂ is not a canonical field, as
it does not obey canonical commutators, it can be treated as
a genuine quantum field when computing correlation func-
tions.
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The statistical properties of the density fluctuations en-
coded in a given state are characterized by the anticommu-
tator,

Gin�t,x;t�,x�� =
1

2
Tr�
̂in��̂�t,x�,�̂�t�,x����

= �
−�

�

d�e−i��t−t��G�
in�x,x�� , �49�

where 
̂in is the initial density matrix since we work in the
Heisenberg representation. In the second line we passed to a
Fourier transform since we assumed that both the condensate
and the state are stationary �in the “preferred” frame�.

When the initial state 
̂in is incoherent, using the in basis
to express �, only three terms having the same structure are
obtained,

G�
in�x,x�� = �n̄�

in + 1/2���
in,u�x����

in,u�x���* + �n̄�
in,v + 1/2���

in,v�x�

����
in,v�x���* + �n̄−�

in + 1/2�

���−�
in,u�x��*�−�

in,v�x�� . �50�

This expression is valid for � �0; for � 0, one has
G−�

in �x ,x��= �G�
in�x ,x���* since Gin�t ,x ; t� ,x�� is real. In the

above equation, the initial occupation numbers are given by

n�
in,i� �ij = Tr�
̂ina�

in,i†a�
in,j� . �51�

Due to the incoherence of 
̂in, only the diagonal terms re-
main. Additional terms would be obtained if the state 
̂in

contained correlations among the initial configurations. In
what follows we assume it does not �see however Appendix
C�.

Because of the scattering near the sonic horizon, G�
in�x ,x��

has a rather complicated structure, as can be seen by decom-
posing the in modes into out ones. In fact G�

in�x ,x�� encodes
both local observables related to the occupation numbers of
Eq. �47�, and nonlocal ones governed by correlators such as
Tr�
̂ina�

out,ia�
out,j� with i� j.

E. Coincidence point limit

Far from the horizon so that the scattering is completed,
i.e., when 
x
�Dc0 /�, one should express the in modes in

terms of their asymptotic plane wave content �eik�
a x. To ease

the reading, we shall call these asymptotic contributions by
the corresponding wave, ��

in,a or ��
out,a, for which the ampli-

tude of this contribution is unity, and, to avoid any misinter-
pretation, we shall add an upper index “as” to make clear that
only the unit plane wave contribution should be kept. In
terms of these, using Eq. �47�, in the asymptotic right region,
one gets

G�
in�x,x� → �n̄�

fin,u + 1/2�
��
out,u,as
2 + �n̄�

in,v + 1/2�
��
in,v,as
2,

�52�

whereas, on the left, the “power” is asymptotically equal to

G�
in�x,x� → �n̄�

fin,v + 1/2�
��
out,v,as
2 + �n̄−�

fin,u + 1/2�
�−�
out,u,as
2

+ �n̄�
in,u + 1/2�
��

in,u,as
2 + �n̄−�
in,u + 1/2�
�−�

in,u,as
2.

�53�

Since the point x=x� lives in an asymptotic region where the
condensate is homogeneous, the norm of the asymptotic
modes ��

as is x independent. Notice also that we discarded all

oscillatory terms, such as ��
out,u,as���

in,v,as�*�ei�k�
u −k�

v �x, be-
cause they rapidly oscillate as x→�, and thus drop out when
averaging over �.

The interpretation of the above equations is clear. When
working in the state 
̂in, the two asymptotic values of the
correlator are the sum of the contributions of the waves that
have been scattered, governed by the final occupation num-
bers,

n�
fin,i = Tr�
̂ina�

out,i†a�
out,i� , �54�

and of the waves which have not propagated through the
horizon region, and whose occupation numbers are the initial
ones given in Eq. �51�. From Eq. �52� one clearly sees that
the second term �the v contribution� will hide the Hawking
radiation whenever n̄in,v is much larger than n̄fin,u, which is
the case in realistic situations, as we shall see in Sec. V D 3.

It is therefore also of interest to compute

F�t,x;t�,x�� =
i

2
0
��x� − �x�Tr�
̂in�†�t�,x����t,x��

= �
−�

�

d�e−i��t−t��F��x,x�� . �55�

In the coincidence point limit �t ,x�= �t� ,x��, �
0F /m is the
atom flux at �t ,x�. It is the sum of 
0v=
0�k0 /m, the flux of
the condensed atoms, and of the integral over � of F��x ,x�.
In the asymptotic right region, using Eq. �14�, for � �0, one
has F�=F�dr+F�com where

F�dr = k0� �n̄�
fin
	�

u,out,as�x�
2 + n̄�
in,v
	�

v,in,as�x�
2� ,

F�com = n̄�
fink�

u,out
	�
u,out,as�x�
2 + n̄�

in,vk�
v,in
	�

v,in,as�x�
2.

�56�

For � 0, one has the same expressions with opposite signs,
with 	� replaced by ��, and n̄� replaced by n̄�+1. F�dr arises
from the uncondensed atoms and is due to the dragging of
the background, while F�com is the atom flux measured in the
frame comoving with the condensate. As in the case of the
density fluctuations, the term arising from the initial distri-
bution of v-phonons largely dominates. However, since
k�

v,in0, F�com is related to the difference of the terms appear-
ing in G�

in�x ,x�, up to k-dependent factors �different for each
term�. Thus, if one has access to both the atom flux and the
density fluctuations in the right asymptotic region, there is a
greater hope to have access to n̄�

fin.
Note that any other local observable constructed out of

two fields, like the depletion, will have the same structure in
the right asymptotic region and will thus suffer from the
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same limitations, namely, it will be largely dominated by the
contribution of n�

in,v. This reinforces the interest to consider
nonlocal observables.

F. Long distance correlations

1. Late time entanglement

We now study the long distance correlations, for 
x−x�

�Dc0 /���0. In this case G�

in�x ,x�� displays a rich structure.
Considering x�0, x�0, one gets a priori eight terms since
one has two asymptotic modes �as on the right and four on
the left �see Eq. �36��. However, many of them drop out
because they destructively interfere upon integrating over �
�see the discussion after Eq. �53��. Hence, when the initial
state 
̂in is incoherent, no �long distance� correlations among
in modes exist. Similarly, all terms mixing in and out �as

modes will destructively interfere. In fact, only out phonons
are entangled by the scattering in the near horizon region.
Hence only correlations among asymptotic out modes will
contribute. Given that in the subsonic region, there is only
one asymptotic out mode, ��

out,u,as, and in the supersonic re-
gion, two such modes exist, for x�0 and x�0, one has

G�
in�x,x�� = ��

out,u,as�x��A����
out,v,as�x���* + B��−�

out,u,as�x��� .

�57�

When both x and x� are taken in the subsonic region, no long
distance correlations can develop since ��

out,u,as is the only
asymptotic out mode. On the contrary, when both x and x�
are negative, in the supersonic region, the two asymptotic
modes are entangled and this will show up in

G�
in�x,x�� = C���out,v,as�x��−�

out,u,as�x�� . �58�

Given the 3 � 3 character of Eq. �41�, three types of late
time correlations could have been expected since three dif-
ferent couples of out modes can be formed.

To compute A�, B�, and C� one can either express the
right-hand side of Eq. �50� in terms of out modes and iden-
tify the coefficients multiplying the corresponding couple of
��

out,as, or equally start with Eq. �49� and decompose the field
� using the out basis. Adopting the second, more rapid
method, we get

A� = Tr�
̂ina�
out,ua�

out,v†� ,

B� = Tr�
̂ina�
out,ua−�

out,u� ,

C� = Tr�
̂ina�
out,va−�

out,u� , �59�

where we have used the fact that the aout operators commute
in each product. Unlike the coincidence point limit of
G�

in�x ,x�� which is governed by diagonal terms �see Eqs. �52�
and �53��, the long distance correlations are governed by
terms which are nondiagonal in occupation number. This is
exactly as in homogeneous situations �20,42� and in fact will
always be found when the parametric amplification �or the
scattering� conserves a quantity, the frequency � here, the
spatial wave vector k in homogeneous cases. A straightfor-
ward calculation gives

A� = n̄�
in��Ã

�
* + n�

in,vA���
v* + �n̄−�

in + 1��
�
*B̃�,

B� = n̄�
in���−�

* + n̄�
in,vA�B

�
* + �n̄−�

in + 1��
�
*�−�,

C� = n̄�
inÃ��̃−�

* + n̄�
in,v��

v B
�
* + �n̄−�

in + 1�B̃
�
*�−�. �60�

In the vacuum, the residual correlations all involve the nega-
tive frequency modes because these enter in both pair cre-
ation channels.

At this point, an important observation should be made.
Because the initial distributions n̄in,a only appear in factors
multiplying terms already present in the in vacuum, the long
distance correlations will not be erased by the presence of
initial quanta. In fact an initial temperature will in general
amplify the long distance correlations induced by
interactions.1 It was numerically observed in �14�, as was the
fact that the A� coefficient, arising from the product a�

u a�
v†, is

nonzero even in a subsonic flow.2

We finally remind the reader that the above correlations
were obtained using the BdG equation �15� which neglects
phonon interactions �15�. One might therefore worry that the
entanglement is reduced upon taking into account such inter-
actions. We refer to Refs. �45–47� for an analysis of this
point in a cosmological context. In brief, the weakness of the
nonlinearities guarantees that the entanglement is hardly
reduced.

2. Spatial structure of long distance correlations

At fixed � no spatial structure emerges from Eqs. �57� and
�58�. To get the spatial properties of the correlations, one
needs to take the inverse Fourier transform. Then, as it is the
case when considering wave-packets, constructive interfer-
ences will develop along the characteristics of the mode
equation. To ease the reading of the forthcoming expression
we found convenient to return to Eq. �49� and to reintroduce
t and t�.

As usual, the constructive interference condition gives the
stationary phase condition ��S=0. In the present case, using
an eikonal approximation for the modes ��

a �x�
�exp�ifxdyk�

a �y��, the three phases of the terms weighted by
A�, B�, and C�, are respectively

SA�t,t�,x,x�;�� = − ��t − t�� + �
z

x

dyk�
u �y� − �

z

x�
dyk�

v �y�

+ arg�ln A�� ,

1We added “in general” because the terms in the right-hand side of
Eq. �60� have no definite sign. Hence, an increase in the tempera-
ture could lower, in some �rare� cases, the resulting amplitudes of
the left-hand side of Eq. �60�. It is interesting to point out that when
the u−v mixing is small, i.e., when the A and B coefficients can be
set to zero, only two terms in B remain �the first and the third one�,
and that these will always add up, thanks to the unitarity of the
reduced 2 � 2 Bogoliubov transformation.

2Because of the orthogonality of the scattering matrix of Eq. �40�
it would be zero unless n�

in�n�
in,v. We thank Mayoral and Fabbri for

drawing our attention to this particular point.
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SB�t,t�,x,x�;�� = − ��t − t�� + �
z

x

dyk�
u �y� + �

z

x�
dyk−�

u �y�

+ arg�ln B�� ,

SC�t,t�,x,x�;�� = − ��t − t�� + �
z

x

dyk�
v �y� + �

z

x�
dyk−�

u �y�

+ arg�ln C�� , �61�

where z is an arbitrary location where the absolute �unob-
servable� phase of the ��

a is fixed. The stationary phase con-
dition gives

�t − t�� = �
z

x

dy��k�
u �y� − �

z

x�
dy��k�

v �y� + �� arg�ln A�� ,

�62�

for the first line, and similar equations for the second and
third lines. It seems a priori that the choice of z matters.
However this is not the case because z enters in A� in such
a way that a change in z leaves the right-hand side of the
equation unchanged. �This is because the coefficients of Eq.
�59� contain the operators a†, a which are “contravariant”
with respect to a phase shift of the corresponding mode.� The
physically meaningful phase that comes out of these expres-
sions has the role of fixing the location where the interac-
tions occur �19�.

This result becomes exact in the limit where x and x� are
taken far away from the scattering zone, and it amounts to
put z=0 and to drop the last term in Eq. �62�, and similarly
for the equations involving B� and C�. There could be some
finite phase shift with respect to these eikonal estimates, but
these do not change with x and x� and hence give subdomi-
nant effects in the large x limit. In this limit, the properties of
the correlation pattern derived from Eq. �62� are thus inde-
pendent of both the norm and the phase of the coefficient
A�. Hence the same long distance space-time pattern will be
found both in the limits � →0 and � →�, i.e., in regimes
which do not give the standard Hawking radiation. Therefore
if Hawking radiation implies the pattern, the converse is not
true �when defining Hawking radiation as the near thermal
radiation associated with a finite surface gravity ��.

In the large distance limit, when putting t= t�, the station-
ary phase condition applied to Eq. �61� gives for the A�, B�,
and C� terms, respectively,

�t�
HJ,u�x� = �t�

HJ,v�x�� ,

�t�
HJ,u�x� = �t−�

HJ,u�x�� ,

�t�
HJ,v�x� = �t−�

HJ,u�x�� , �63�

where

�t�
HJ,a�x� = �

0

x

dy��k�
a �y� �64�

is the time it takes the a-type phonon of frequency � to
propagate from x=0 to x in virtue of the Hamilton-Jacobi
equation determining the group velocity,

vgr
a ��� = ���k�

a �−1. �65�

For each type of correlations, we see that the locus of con-
structive interference of, say, x� given x, is given by the
value of x� reached at the same lapse time it takes the partner
to reach x, both phonons starting their journey near the ho-
rizon x=0. In the large x limit, the dominant contribution
comes from the uniform motion outside the horizon region.
Thus the above three constructive interferences occur at lo-
cations x and x� related by

x

vgr
a ���

=
x�

vgr
b ���

. �66�

Using Eq. �23�, the asymptotic group velocities are, for
x→+�,

vgr
u ��� = �k�+ + v+ = c+

2k
1 + k2�+

2

�+�k�
+ v+, �67�

for the right movers in the subsonic region, the “Hawking
quanta,” and, for x→−�,

vgr
v ��� = − �k�− + v− = − c−

2k
1 + k2�−

2

�−�k�
+ v−,

vgr
u �− �� = �k�− + v− = c−

2k
1 + k2�−

2

�−�k�
+ v−, �68�

for the v quanta and the u partners in the supersonic region.
In the dispersionless regime, for k���1, these group veloci-
ties are independent of � and respectively equal to c++v+ in
Eq. �67�, and −c−+v−, c−+v− for Eq. �68�. Therefore, in this
regime, the correlation pattern is independent of � and will
show up in Gin�t ,x ; t�= t ,x�� of Eq. �49�.

These three types of correlations have been �numerically�
observed in �14�. They have been also correctly interpreted
save for two aspects. First, the C� branch has been attributed
to the “partial elastic scattering” of right movers of positive
frequency. If this explanation applies to the first term, it does
not to the last two which involve pair creation B� coeffi-
cients mixing ��

v and �−�
u . Second, the A� is claimed to

“originate from thermal effects.” From the first line of Eq.
�60� we see that it is indeed amplified by thermal effects but,
because of the third term, it is already present in the vacuum.
Being quadratic in frequency mixing coefficients, it is too
weak to be easily seen in the numerical simulations. How-
ever using a black and white print of the arXiv version of
�14�, these correlations are quite visible in the last two plots
in Fig. 2 �see Fig. 6 for their orientation in the x, x� plane�.
Upon contacting the authors, they agree that these correla-
tions are indeed present at zero temperature. When preparing
the revised version of this paper, we became aware of �48�
which agrees with this point, as with the rest of our analysis,
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and which also contains additional interesting results.
Concerning the relative amplitude of A�, B�, and C� it

should be noticed that, in general, there is no clear ordering.
Instead, when the u−v mixing is weak, the Bogoliubov co-
efficients A� and B� are much smaller than �� �see Sec.
V C 4� and therefore B� is the largest. In this regime, one
recovers the properties of the B� branch relating the u modes
across the horizon that have been known for a while. In the
context of gravitational black holes, using relativistic fields,
they can be found in �26,33�. As of acoustic black holes, it
was understood in �4� that the late time behavior of these
correlations is essentially unaffected by dispersive effects3

�see also �43,44��. Finally, that the B� correlations determine
�in the hydrodynamical limit� the long distance density cor-
relations in BECs was stressed in �13�.

In Appendix C we present an alternative and simple way
to characterize the correlation pattern. It consists in sending
classical waves—described by highly excited coherent
states—towards the horizon. This approach is worth consid-
ering because it allows to relate the above study of Eq. �49�
both to the experiments in hydrodynamics described in �21�
and to the wave packet analysis of �4�.

V. SPECTRAL PROPERTIES: NUMERICAL RESULTS

A. Numerical procedure

The numerical procedure we used was elaborated from
that of �17�. The wave equation of that reference was re-
placed by the BdG equation �Eq. �15��, where the velocity v
and the sound speed c both vary �see Eq. �22��. The extrac-
tion of the Bogoliubov coefficients from the numerical solu-
tions to Eq. �15� took into account the specific normalization
of the modes �	�, ���. For a presentation of the procedure
itself, we refer to �17�.

B. Value of the parameters

Let us determine the number of free parameters and their
realistic ranges.4 A typical value for the average sound speed
c0 is

c0 = 0.15 cm s−1. �69�

Assuming that the condensate is made out of 85Rb, the mass
of the atoms is

m = 1.5� 10−25 kg. �70�

This yields the healing length,

�0 =
�

�2mc0

=
�2c0

�
� 3.3� 10−5 cm. �71�

The distance over which the variation in the sound speed
and flow velocity takes place, that is, the distance separating
the asymptotic regions where these speeds are constant, can-
not be smaller than a few healing lengths. To reduce the
number of free parameters, we assume in this work that it is
of the order of 10�0 �see, however, Sec. V C 6�. Then, given
our parameterization Eq. �21�, the gradient at the horizon is

� =
c0D

5�0
. �72�

With Eq. �71�, this yields a relationship between D and
�=� /�,

��
7

D
. �73�

as well as an expression for the Hawking temperature,

TH =
��

2�kB
� D� 1.1 nK, �74�

where we have used Eq. �72� and the numerical values
above. We choose as free parameters D and q. Thus Eq. �73�
fixes �.

Fairly large relative variations around the average sound
speed c0 can be achieved experimentally, for instance, by
means of a Feshbach resonance that modifies the coupling
constant g along the flowing BEC. Hence we shall consider
values of D from 0.1 to 0.7 �higher values are not excluded
experimentally but proved difficult to reach with our code�.
The corresponding values of � go from 70 to 10, while the
order of magnitude of Hawking temperature is

TH � 0.1 − 0.8 nK. �75�

In general there will be a variation of both the sound speed
and the flow velocity. Which one varies most depends on the
experimental conditions. In �14�, q was taken to be zero. In
the following, the typical value of q will be 0.3. In Sec.
V C 3, we shall nevertheless explore the whole range 0q
1.

In realistic conditions a condensate has an effective tem-
perature approximately fixed by the chemical potential �
�mc0

2. To be able to quantitatively compare Hawking tem-
perature with this effect, we define

T�0 =
mc0

2

kB
=
�c0

�0kB
� 30 nK, �76�

and in the following we consider initial temperatures �enter-
ing Eq. �45��;

Tin = �T�0, �77�

with � ranging from 1 /3 to 1 so that Tin goes from 10 to 30
nK. Equation �76� together with �71� yields

3In fact the correlation pattern is as robust as the occupation num-
ber n�= 
��
2 and the stationarity against introducing dispersion.
This is because z�=�� /��, the complex squeezing parameter
which determines the final quantum state �26�, is hardly affected. Its
norm determines n� whereas its phase determines the correlation
pattern. The density �in �� of modes subject to the Bogoliubov
transformation ensures the stationarity.

4We are grateful to Eric Cornell for providing us with realistic
experimental values for all parameters and to Jeff Steinhauer for
further comments.
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Tin

TH
= � � �2�� . �78�

If � is constrained by Eq. �73�, this can be rewritten as

Tin

TH
� 30

�

D
. �79�

The fact that Tin is about two orders of magnitude higher
than the Hawking temperature will surely complicate mea-
suring the spectral properties of the Hawking radiation.

In the following sections, we start by studying these spec-
tral properties assuming the condensate has zero temperature.
The analysis when there is an initial temperature is then per-
formed in Sec. V D. Our main goal is to understand how the
adimensional parameters D, �, and q affect the fluxes. To this
end it proves very convenient to work with the rescaled fre-
quency � /� and rescaled energy flux f� defined below.

C. Spectral properties of HR at zero temperature

Let us first study the energy flux of positive frequency u
quanta on the right of the horizon, i.e., what corresponds to
Hawking radiation. We denote by F the total energy flux, and
we define the energy flux density as

f� =
2�

kBTH

dF

d�
= 2�

�

�

��
2. �80�

The factor 2� /kBTH is here for convenience so that f� be
dimensionless and normalized to 1 at � �0 when the occu-
pation number n�= 
��
2 is the standard Planckian one with
temperature TH. To characterize the deviations from the stan-
dard flux, it is also convenient to use the effective tempera-
ture T� defined as

n� =
1

exp���/kBT�� − 1
. �81�

1. Typical spectra

In Fig. 7 f� and T� /TH are represented versus � /� for

D=0.1, 0.4, and 0.7. The corresponding � are fixed by Eq.
�73� and are, respectively, � �70, 18, and 10. The parameter
q specifying the relative contribution of c and v to the gra-
dient at the horizon �see Eq. �22�� is fixed to 0.3. The three
values of �max /� are, respectively, 1.17, 2.2, and 2.54. The
energy flux and T� quickly drop to zero when approaching
�max, as expected. Until short before �max, T� is nearly
constant.

Note nevertheless that this constant temperature can differ
from TH: for D=0.1, the asymptotic temperature when �→0
is equal to T0=1.08TH. For D=0.4 and D=0.7, we found
T0=0.996TH and T0=1.0004TH, respectively, so T0 differs
from TH only by a fraction of a percent when D is large
enough. Note also that the scale separation condition � �1 is
not the relevant criterion to predict the importance of the
deviation with respect to the standard spectrum since � is
much larger for D=0.1 than for the other two values. Instead,
it is the ratio �max /� that controls the deviation from the
standard temperature. This is confirmed in Sec. V O 2.

The thermality of the spectra can be characterized more
precisely. To this end we define

�T0
=

T0 − T�=kBT0/�

T0
, �82�

that measures the running of the temperature. For the three
spectra of Fig. 7, we found 
�T0


�0.1%. This establishes
that, to a very good approximation, the energy spectra are
Planckian, but truncated very close to �max. At this point it
should be stressed that to reach this result, nowhere have we
used the gravitational analogy. In fact the analogy is vali-
dated by our results since it would have predicted a thermal
spectrum at the standard Hawking temperature, missing
however the truncation near �max and the small running

�T0


�.

2. �max Õ� controls the deviation from the standard spectrum

In this section, in order to show that �max /� is the main
quantity that controls the modifications with respect to the
standard Planckian spectrum with temperature TH, we relax
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FIG. 7. Energy flux density f� �left plot� and effective temperature T� /TH �right plot� versus � /�, for �D ,��= �0.1,70�, �0.4, 18�, and
�0.7, 10�. q is fixed to 0.3.
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constraint �73� and allow for arbitrary values of � for a given
D. We characterize the deviation with respect to the standard
result by the relative difference,

�H = � f� − f�
H

f�
H �

�=�H

, �83�

as a function of �max /�, where f�
H denotes the Planckian

energy flux density with temperature TH and where �H
=kBTH /�.

In Fig. 8, for q=0.3, the curves associated with D=0.1
and D=0.7 have similar shapes with a maximum around
�max /�=0.6, with height 0.35 for D=0.1 and 0.18 for D
=0.7. The deviation then decreases and in both cases be-
comes less than a percent as soon as �max /��2. This con-
firms what was found �in a different setup� in Ref. �17�. This
is not the end of the story however, since as we now show,
there can be significant deviations from thermality in a BEC,
even when �max /� is large, depending on the value of the
parameter q.

3. Effect of inhomogeneity: Deviations from thermality

In the preceding sections, we fixed q=0.3, thus restricting
attention to experimental cases where the variation of c+v is
mainly due to the sound speed. This would be the case for
instance if one used a Feshbach resonance to vary the cou-
pling constant g across the BEC. In �25�, the authors report
to have created a white-hole–black-hole �WH/BH� horizon
pair in a BEC using a different technique, where a local
increase in the flow velocity leads to a decrease in the speed
of sound. Their profile c+v is not symmetric with respect to
the horizon, contrary to our parametrization, and has two
horizons. Ignoring the WH horizon we can approximately
describe their experimental realization within our setup.
From their experimental values one gets � �6, D�1, and
q�0.7, which yield �max /��3. Given the results of the pre-
ceding section, one expects a robust spectrum of phonon
radiation. This is however not the case, as shown in Fig. 9

where the effective temperature T� is shown as a function of
the frequency. The temperature becomes equal to TH only for
frequencies � ��. In the low-frequency part the power is
suppressed. From this case we learn that the precise mixture
of c and v used to form the horizon significantly affects the
properties of the Hawking flux and that the radiation pro-
duced in the setup of Ref. �25� should not have a thermal
spectrum.

The effect of q is investigated more systematically in Fig.
10 for a lower value of �max /� so as to ensure better numeri-
cal control. In that figure, T� /TH is plotted versus � /� for
D=0.4, and q=0 �homogeneous BEC where only c varies�,
q=0.5, and q=1 �only v varies�. For each value of q, � is
tuned so that we work at fixed �max /� to facilitate the com-
parison. For q=0 and q=1, the effective temperature varies
significantly and the radiation is thus not thermal. For q
=0.5, as in the previous plots with q=0.3, the radiation is
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FIG. 8. �H versus �max /� for D=0.1 and D=0.7. q is fixed to
0.3.
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FIG. 9. Effective temperature as a function of � /� for D=1,
q=0.7, and � �6. This situation describes approximately the ex-
perimental realization of Ref. �25�.
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FIG. 10. Effective temperature as a function of � /� for D
=0.4 and �q ,��= �0,19.54�, �0.5, 17.15�, and �1, 15.47�. �max /� is
the same for all curves, equal to 2.2.
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�almost� thermal. We verified that the same results hold with
other values of D and �, with the same particular role of q
=0.5.

The strong effect of q on the Hawking flux can be under-
stood as follows. Contrary to the setup studied in �17� where
the u and v sectors were completely decoupled in the disper-
sionless limit, there is no such decoupling in the present
settings. The creation of left-moving quanta and the elastic
scattering of u quanta into v quanta will thus be large, even
when the dispersion plays no role. The above results thus
suggest that for q close to 0.5, the u−v mixing is small and
gets larger for extreme values of q near 0 and 1. To confirm
this, we now turn to the properties of the flux of left-moving
quanta, n̄�

v .

4. Mixing of u and v quanta

Figure 11 shows the particle flux of v quanta n̄�
v and the

elastic scattering coefficient 
A�
2 as a function of � /� for
the same parameters as in Fig. 10.

At low frequencies, 
A�
2 is nearly constant. It is two or-
ders of magnitude smaller for q=0.5 than for the other two
values. It should also be noticed that 
A�
2 does not vanish
for �→�max since both 	�

u and 	�
v remain well-defined

above �max so that 
A�
2 connects smoothly to 
R�
2 at �
=�max.

Near �max, n̄�
v goes to zero in the three cases. Instead, the

low-frequency behavior of n̄�
v changes dramatically depend-

ing on the value of q. First, the curves corresponding to q
=0 and q=1 join at low frequencies and are proportional
there to 1 /�. This behavior in 1 /� means that the energy
flux ��n̄�

v carried by the v quanta is constant and nonvan-
ishing at low frequencies. Secondly, for q=0.5, n̄�

v stays ev-
erywhere below 10−3 and is proportional to � at low frequen-
cies. This proportionality with � was also obtained in the
different setup of Ref. �17� and seems to indicate that the
case q=0.5 �and not q=1 as one would have thought na-
ively� is effectively similar to the setup of that reference.
Even though this particular point is most probably an artefact

of Eq. �22� where v and c follow the same function, the
qualitative conclusion that the u−v mixing is lower when the
horizon is formed by a variation of both v and c rather than
of only one of them, should hold experimentally. We empha-
size this point because a small u−v mixing guarantees that
the Hawking B type of correlations is the largest, as ex-
plained at the end of Sec. IV F 2.

Figure 12 shows the influence of D on the u−v mixing
coefficients n̄�

v and 
A�
2 for q=0.3. Both the creation of v
quanta and the elastic scattering coefficient A� are signifi-
cantly affected by D and increase by more than one order of
magnitude between D=0.1 and D=0.7. This will have im-
portant consequences when taking into account an initial
temperature.

5. Dispersionless elastic scattering

It is instructive to look at the behavior of 
A�H

2 evaluated

for ��H=kBTH as a function of �max /�, and for fixed values
of D and q. It is shown in Fig. 13. When �max /� is greater
than about 2, 
A�H


2 becomes nearly constant with a value
that depends on D and q. This means that for large �max /�,
the dispersion no longer plays any role. This is to be opposed
to what was found in �17�, where 
A�H


2 scaled approxi-
mately as �−4. The reason is that in a BEC, the wave equa-
tion Eq. �16� does not factorize into a u and a v part in the
dispersionless limit �→�. Thus, there is always some elastic
scattering between u and v modes. What Fig. 13 shows is
that the dispersionless value of 
A�H


2 is quickly reached, or
equivalently that the �-dependent contributions vanish rap-
idly for increasing �. This �-independent elastic scattering
exists also for q=0.5, whereas we have seen that in this case
n̄�

v has a behavior similar to the corresponding one in �17�.
This is somewhat surprising.

Note finally that, since 
A�
2 is nearly constant in �, see
Figs. 11 and 12, the value 
A�H


2 for some �D ,q� in the
regime where � plays no role actually gives 
A�
2 for all �.
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6. Strongly dispersive regimes

In Fig. 8, we saw that, starting in the robust regime
�max /��2 and reducing �max /�, �H first increases, which
indicates also an increasing asymptotic temperature T0, and
then monotonically decreases for �max /��0.6. We refer to
the latter regime as the strongly dispersive regime. It is
reached when the variation of c+v occurs on much smaller
distances than what is assumed in Eq. �73�.

In Fig. 14, the variation is assumed to occur on one heal-
ing length. This amounts to change the numerical factor in
Eq. �73� so that now � /�=0.7 /D. The effective temperature
T� is shown for q=0.3 and �D ,��= �0.2,3.5� and �0.4,1.8�.
The corresponding values of �max /� are 0.16 and 0.22, that

is, much smaller than in Fig. 7. The shape of the two curves
is remarkably similar to what was obtained in the right plot
of Fig. 7: as soon as the frequency is less than about 0.2�max,
T� is nearly constant �the running �T0

is equal to 7% and
5%� and then drops quickly to zero when approaching �max.
However, T0, the asymptotic value of T�, significantly differs
from the Hawking temperature: it is respectively equal to
0.6TH and 0.75TH. From this we conclude that when disper-
sion is strong, the low-frequency spectrum remains in 1 /� as
for a Planck spectrum. However since the cutoff frequency
�max is only ��max / �kBT0�=1.7 and 1.9, respectively, the
spectrum is no longer Planckian.5 We finally notice that
T0 /TH becomes smaller and smaller as �max /� decreases.

It is thus interesting to consider extremely dispersive
cases where c0�

−1 is much smaller than �0. In Fig. 15 we
represented T� /T�0 as a function of � /�max with D=1, q
=0.3, and small values of � from 0.1 to 10−3, corresponding
to �max /� ranging from 4�10−2 to 4�10−4. T� still tends to
a constant value T0 at low frequencies and the low-frequency
part of the spectrum still behaves as �−1. The ratio
��max / �kBT0� is nearly constant, equal to 1.6 for all three
curves. The running is large, of the order of 12%. An impor-
tant result is that the ratio T0 /T�0 saturates at a constant value
as �max decreases.6. This demonstrates that � becomes irrel-
evant and that T0 is fixed only by �0. We have verified that
this result also holds for other values of D and q but with
different asymptotic values for T0 /T�0.

5We thank Jacobson for a remark about this point.
6This result is corroborated by �48� where a steplike variation �in

x� of the sound speed is considered in a homogeneous condensate
flowing with a constant v so as to get a transition from a subsonic to
a supersonic flow. This case can be handled analytically and, in our
language, it corresponds to the limit � →� with D ,�0 fixed, and
q=0.
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D. Spectral properties with an initial temperature

1. Energy spectrum

As pointed out in Secs. IV B and V B, the residual tem-
perature of a condensate is expected to be about two orders
of magnitude higher than TH. The spectra of the previous
sections are thus unlikely to be observed as such and it is
necessary to include the effects of an initial temperature.
This is easily done using Eq. �47� and the numerical values
of the coefficients of the Bogoliubov transformation. Assum-
ing that the three initial occupation numbers are character-
ized by a common comoving temperature, they are given by
Eq. �45�. Their calculation reduces to the computation of the
functions �in��� for the three types of modes, which is easily
done by solving Eq. �23�. Since �in,a are three nontrivial
functions of �, the initial distributions are not Planckian in
�.

The energy spectrum emitted to the right of the horizon,
with a nonzero initial temperature, is defined as

f�
fin = 2�

�

�
n�

fin. �84�

It is represented in Fig. 16 for the same set of parameters as
in Fig. 7. Two values of the initial temperature are consid-
ered: a conservative one, Tin=30 nK, and an optimistic one,
Tin=10 nK. With the notations and the constraints of Sec.
V B, they correspond to � �1 and � �0.3, respectively. For
D=0.1, D=0.4, and D=0.7 the ratio Tin /TH is, respectively,
300, 75, and 43 when � �1, and 90, 23, and 13, when �
�0.3.

The spectra differ greatly from those at zero temperature
and have a nontrivial behavior. Without surprise, they no
longer vanish when approaching �max because neither n̄in nor


A�
2 do. The most interesting point is that for D=0.4 and 0.7
and the lower value of �, the spectra follow relatively closely
the zero-temperature ones until � ��. Thus, for frequencies
below �, large values of D, and low initial temperatures, the
measure of the phonon energy spectrum to the right gives a
good estimate of the zero-temperature flux �i.e., Hawking
radiation�.

To better understand these spectra, we show in Fig. 17 the
contributions to the energy flux of each of the three terms in
Eq. �47�, along with the full spectrum, in the two extreme
cases D=0.1 with � �1, and D=0.7 with � �0.3.

In both cases, at high frequencies, the initial distribution
n̄�

in largely dominates the spectrum, and all we see is just the
flux of the initial quanta. At low frequencies instead, the
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main contribution comes from the spontaneous plus stimu-
lated emission term 
��
2�1+ n̄�

in+ n̄−�
in �, called “creation term”

in Fig. 17. For D=0.1, the u−v scattering term is small and
never dominates, but it is never completely negligible. The
contribution from 
A�
2n̄�

in,v quickly becomes comparable to
the exponentially decreasing stimulated emission.

For D=0.7, this contribution is not much smaller than the
creation term at low frequencies, as could be expected from
the results of Fig. 12. On the other hand, the contribution
from n̄�

in long remains very small compared to the other two,
until about � ��. Thus the creation �stimulated emission
term is actually dominated by the Hawking pair creation ef-
fect, since n̄−�

in is close to n̄�
in. This explains the relative simi-

larity between the spectra with � �0.3 and � �1 in Fig. 16,
when D=0.7.

In brief, the main lesson from these plots is that, in gen-
eral, there is no clear hierarchy between the various contri-
butions in n̄�

fin, which makes the interpretation of a measure-
ment highly nontrivial. Nevertheless, let us try to identify
what the optimal conditions are for such a detection.

2. Optimal experimental conditions

The comoving frequency � of the right-moving quanta is
strongly redshifted in the black hole geometry, which implies
that the initial �u,in��� is much larger than �. Since the
integrated redshift increases with �, one could ask whether
lowering the Hawking temperature with respect to the initial
temperature Tin, with a fixed value of D, could not improve
the results above. Indeed, if the increase in the redshift were
such that �in /Tin would grow with �, the initial occupation
numbers n�

in and n−�
in would decrease exponentially, and one

could hope to have the stimulated plus creation term domi-
nate over the other two on a larger interval of frequency �.
This is not the case however, as we now explain.

The initial proper frequency �in��� /� for the three types
of modes is shown in Fig. 18, for D=0.4, q=0.3, and differ-
ent values of �. As expected, at a given �, �in,u /� is an
increasing function of �. However it scales only as �, and
since the ratio Tin /TH also is proportional to �, �in,u /Tin
hardly changes. On the other hand, the left movers suffer

almost no redshift, and �in,v has almost no dependence on �.
Thus, �in,v /Tin decreases as �−1 and the initial occupation
number of the v modes increases as � for a given �.

These remarks are summarized in Fig. 19, where the oc-
cupation numbers n̄�

in of Eq. �45� are represented for the same
parameters as in Fig. 18. n̄�

in and n̄−�
in are almost equal and,

more importantly, do not change with � at low frequencies.
n̄�

in,v on the other hand explodes when � increases. Since

A�
2 does not depend on � in first approximation, the con-
sequence is that the scattering contribution in n̄�

fin dominates
at low frequencies when � increases, since the other contri-
butions remain unchanged. In conclusion, there is no gain in
lowering TH.

In fact, as can be seen from the figures of the previous
section, the optimal conditions to be able to measure directly
the zero temperature flux f� are reached when there is a large
relative variation of c+v on the smallest possible distance,
that is, the largest possible D with the smallest possible �.
Remember also that c and v should contribute nearly equally
to the variation for 
A�
2 to be as small as possible.

3. Density fluctuations and atom flux

As explained in Sec. IV C, the flux f� studied in the pre-
vious sections is observable only if one can distinguish ex-
perimentally between left- and right-moving phonons. It is
thus important to address the question whether the easily
accessible density fluctuations also contain some signature of
the particle creation process. The function 
0vG�

in of Eq.
�52�, evaluated in the coincidence point limit in the right
asymptotic region, is represented in the upper plot of Fig. 20
for D=0.7, q=0.3, and � �0.3. This quantity is adimen-
sional, does not depend explicitly on 
0 and c0 and is pro-
portional to the power spectrum of the density fluctuations.
In the lower plot, F�com, defined in Eq. �56� and adimension-
alized by multiplication with 
0vc0 /�, is represented, for the
same set of parameters. In both cases, the contributions gov-
erned, respectively, by n�

fin �referred to as “HR related” in the
figure� and by n�

in,v have been plotted separately. They are of
the same order of magnitude but for � ��, that is, in the
region where n�

fin is mainly due to Hawking radiation �see
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Fig. 16� the contribution from the initial excitations is greater
by a factor of about 2 in the density fluctuations and of up to
6 in the atom flux. This confirms the remark made in the
theoretical analysis that no clear signature of Hawking radia-
tion can be observed in these local observables. However, as
pointed out in Sec. IV E, one could hope to combine both
observables to extract n�

fin.

VI. CONCLUSIONS

In this work, we presented a complete description of the
scattering of the phonon modes propagating in stationary
one-dimensional condensates that possess a sonic horizon.
Our description is based on the BdG equation, and the scat-

tering in the horizon region is expressed in terms of 3�3
Bogoliubov transformations relating asymptotic one phonon
modes.

We have shown that this scattering affects two types of
observables, local ones such as the density fluctuations, and
the long distance correlations. The former are governed by
expectation values which are diagonal in the occupation
number �see Eq. �52�� whereas the latter are determined by
interference terms �Eq. �59�� which reveal the entangled na-
ture of the final state.

When taking into account the condensate temperature, the
local observables are in general dominated by the initial dis-
tributions, whereas nonlocal correlations are amplified by
these initial distributions without having their pattern modi-
fied �when the initial state is uncorrelated�. Therefore the
latter probably constitute the clearest indication that the
Hawking effect is taking place. However, it is worth noting
that the spatial structure of the pattern is not specific to HR
strictly speaking, i.e., to a nearly Planckian spectrum, since it
is determined before all by the structure of the 3�3 transfor-
mation of Eq. �41� rather than by the value of its coefficients.
In fact, similar patterns are found when considering the scat-
tering of classical waves, as explained in Appendix C, and in
the limiting cases � →� and � �0 �with nonvanishing
higher derivatives of c+v at x=0 for the latter� where the
spectrum is no longer approximately Planckian �as we veri-
fied�.

In the last part, we numerically integrated the BdG equa-
tion and obtained the occupation numbers of the three kinds
of phonons, both with and without an initial temperature.
The main results are the following.

Firstly, in the initial vacuum and when the u−v mixing is
small �q�0.5�, the spectrum of the outgoing �right-moving�
phonons is Planckian, with a temperature determined by the
gradient � of Eq. �20�, as soon as �max /� 2 and for fre-
quencies ��max �see Fig. 7�. This result, derived directly
from the BdG equation �without further approximation�,
makes precise the domain of validity of the analogy between
relativistic fields in black hole metrics and a phonon field in
the corresponding “dumb hole.” When �max /�2, the anal-
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ogy fails even for the lowest frequencies �see Fig. 14�, which
invalidates the condition usually found in the literature that
the analogy is applicable for wavelengths greater than the
healing length. When the u−v mixing is not negligible, the
spectrum deviates from the Planck spectrum, see Figs. 10
and 11. This is due to grey body factors �that can also be
computed to a good approximation using the gravitational
analogy �49��.

Secondly, as for the detection of the analog HR in a BEC,
if one can distinguish left-from right-moving phonons, the
Hawking flux could be observable when the relative varia-
tion in c+v is large and happens on a small number of heal-
ing lengths. Instead, if they cannot be distinguished, local
observables are completely dominated by the initial tempera-
ture of the condensate. One must then resort to nonlocal
observables such as density-density correlations �13,14�.

Thirdly, in Appendix D, we established the relationship
between the fluxes emitted by white and black hole flows.
Because of the blueshift effect in WH flows, the correlation
pattern is more amplified in the presence of initial quanta
than in BH flows and should therefore be easier to detect.
This could well be the optimal case for observing HR in the
laboratory through the correlation pattern.
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discussions over the last years, as well as his comments on
an early version of this paper. We both would like to thank
the participants of the workshop “Towards the observation of
Hawking radiation in condensed matter systems” �http://
www.uv.es/workshopEHR/� held at IFIC in Valencia for in-
teresting remarks following the presentation of results con-
tained in this work. We are also grateful to Jeff Steinhauer
for comments about his work �25� and BEC in general, and
to Iacopo Carusotto for comments in Appendix C.

APPENDIX A: NONSTATIONARY CASE

In this Appendix we consider nonstationary condensates.
As we shall see, little is modified when compared with the
stationary case studied in the body of the paper. To ease the
comparison we still work with the one dimensional case. The
extension to the three dimensional case is trivial.

In the mean-field approximation, the condensate is now
described by

�0�t,x� = �
0�x,t�eiW0�t,x�. �A1�

This wave satisfies Eq. �5� where V and g depend both on x
and t. �As pointed out in �14�, some tuning of V and g might
be necessary not to produce time-dependent effects that
might hide the Hawking radiation.� The conservation of the
number of atoms follows from Eq. �5� and gives the conti-
nuity equation

�t
0 + �x�
0v� = 0, �A2�

where v�t ,x�=�k0�t ,x� /m is the velocity of the condensate,
and k0�t ,x�=�xW0�t ,x� its wave vector. Plugging Eq. �A1�
into Eq. �5� and using Eq. �A2� still gives Eq. �8� where the
chemical potential is replaced by ��0�t ,x�=−��tW0. Then,
because of Eq. �A2�, the condensate is still characterized by
v�t ,x� and the speed of sound

c2�t,x� = g�t,x�

0�t,x�

m
. �A3�

To describe the phonon modes, as in Sec. II, it is conve-
nient to work with the relative fluctuation 	 defined in Eq.
�11�. Then, using Eqs. �A1� and �A3�, one still gets Eq. �12�.
To get the c-number modes which shall be used to proceed to
the second quantization, we look for a complete orthonormal
family of doublets Wj = �	 j ,� j�, where the index j now does
not correspond to a conserved quantum number. The scalar
product with respect to which orthonormality is defined is
still given by Eq. �27�, with 
0�x� replaced by 
0�x , t0�. �The
choice of the time t0 when the product is evaluated does not
change its value since it is conserved.� This family enters 	
as in Eq. �14�,

	�t,x� = �
j

�âj	 j�t,x� + âj
†�� j�t,x��*� , �A4�

where âj and âj
† are the annihilation and destruction opera-

tors, with which one can construct the phonon Fock space.
However, contrary to the case studied in the text, there is in
general no clear interpretation of the vectors in this Fock
space in terms of particle content, and the notion of phonons
is inherently ambiguous. The notion of phonon can be recov-
ered if the condensate is stationary in the asymptotic past and
the asymptotic future. In that case, as in the text, one can
define two Fock spaces, the in one and the out one.

Inserting Eq. �A4� in Eq. �12� and taking the commutator
with âj and âj

† yields

�i���t + v�x� − T
 − mc2�	 j = mc2� j ,

�− i���t + iv�x� − T
 − mc2�� j = mc2	 j . �A5�

As in the body of the paper, one can eliminate � j and obtain

�����t + v�x� − iT
�
1

c2 ����t + v�x� + iT
� + 2mT
		 j = 0.

�A6�

We notice that all kinetic terms are of the form of Eq. �13�.
This is related to the fact that T
 is self-adjoint when using
the scalar product of Eq. �27�.

APPENDIX B: ADDITIONAL REMARKS
CONCERNING EQ. (16)

1. Eikonal approximation and importance of ordering

It is worth exploring the properties of Eq. �16�, the sta-
tionary version of Eq. �A6�. We first notice that

c2���� + iv�x� + T
�
1

c2 = ���� + iv�x� + T
�

+ c2��i�v�x + T
�,
1

c2 . �B1�

This makes explicit that the spatial gradient of c2 affects Eq.
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�16� only through a commutator. We also notice that �� the
other mode of Eq. �14� obeys

��− ��� + iv�x� + T
�
1

c2 ���� + iv�x� + T
� − �2v�x
1

v
�x	��

= 0. �B2�

The only differences between the equations for 	� and for
�� come from the sign of the commutator between v�x and
c−2. When this commutator is neglected, as it is in the eiko-
nal approximation, 	� and �� thus obey the same equation.

When working to leading order in an eikonal approxima-
tion, i.e., inserting 	��ei�dxk� in Eq. �16� �or inserting ��
�ei�dxk� in Eq. �B2�� gives the dispersion relation in a mov-
ing fluid of velocity v,

�� − kv�2 =�2 = k2c2 +
�2k4

4m2 = c2k2�1 +
�2k2

2
� , �B3�

where �=� /�2mc is the healing length. We recover the quar-
tic dispersion relation between the frequency in the comov-
ing frame �= ��−kv�, and the wave vector k. It should be
noticed that in a stationary nonhomogeneous flow, � and k
depend on x through v�x� and c�x�, whereas the frequency �
is a globally defined constant. Remember also that � is not
necessarily the lab frequency, because it is defined in the
frame in which the condensate quantities only depend on x.

Returning to Eq. �16�, it is clear that its role is to fix the
exact properties of the ordinary differential equation obeyed
by 	�. These properties could not have been inferred starting
from Eq. �B3� and applying the substitution k→−i�x because
this naive rule could neither predict the ordering of T, v�x�,
and c2�x� found in Eq. �16�, nor the different one found in
Eq. �B2�.

2. Hydrodynamical limit and Euler mode equation

In the hydrodynamical �dispersionless� limit, for long
wavelengths with respect to the healing length �, one can
drop the two operators T
 in Eq. �16�. Then Eq. �16� reduces
to the Eulerian mode equation which describes sound waves
in a moving fluid, and this with the correct nontrivial order-
ing of T, v�x�, and c2�x�. Let us verify this.

The Eulerian action is usually written in terms of the ve-
locity potential !, related to the velocity fluctuation by �v
=�x! �see, e.g., �43��. To make contact between ! and the 	
field, one should compare the fluctuations of � described as
in Eq. �11� to those written as

�� = ��
1/2eiW� =�0� �
2
0
+ i�W� =�0	 . �B4�

Using �v= �

m�x�W=�x!, one obtains

	 + 	† =
�



0
,

	 − 	†

2i
= " = �W =

m

�
! . �B5�

Using the phase fluctuation "=m! /� rather than ! itself,
the Euler action is

SE =
�2

2m
� dtdx
0� 1

c2 ���t + v�x�"�2 − ��x"�2	 . �B6�

Then, using the continuity equation, the mode equation reads

���t + v�x�
1

c2 ��t + v�x� −
1


0
�x
0�x" = 0. �B7�

When working at fixed �= i�t and using v
0=const, as an-
nounced, one recovers the dispersionless limit of Eq. �16�
obtained by taking the limit T
→0.

Notice that Eq. �B7� is a generalization of the �dispersion-
less limit of the� mode equation which has been generally
studied in the literature �see Refs. �3–5,17,43��. In those ref-
erences, the equation also followed from Eq. �B6�, but with
the extra hypothesis that both c and 
0 can be approximated
by constants, in which case one recovers the massless rela-
tivistic 2D mode equation.

3. Link with Unruh’s dispersive models

It is worth noticing that the dispersive properties of the
phonons come through the two operators T
 in Eq. �16�. This
is not what we would have obtained had we used the rules of
�3� with a quartic superluminal dispersion. Indeed, the Eule-
rian action supplemented by a quartic term �k4 /�2� is

S� =
�2

2m
� dtdx
0� 1

c2 ���t + v�x�"�2 − ��x"�2 +
1

�2 ��x
2"�2	 ,

�B8�

and the corresponding mode equation reads, in a stationary
condensate and at fixed �,

��� + iv�x�
1

c2 �� + iv�x� − v�x
1

v
�x +

v
�2�x

2 1

v
�x

2"� = 0.

�B9�

In nonhomogeneous situations, the quartic term encoding the
dispersion differs from that of Eq. �16�, which means that
"��x� will differ from 	��x� in any nontrivial background.

Finally, it is also worth noticing that Eq. �16� can be ob-
tained from an action for a single field with a quadratic ki-
netic term, and which generalizes the Euler action,

S	 = −
�2

2m
� dtdx
0� 1

c2���t + v�x + i
T

�
�	2

− ��x	�2	 .

�B10�

This action can be obtained from S=�dtd3x�i��*�t�−H�,
where H is given in Eq. �3�, using Eq. �11�, keeping all
quadratic terms in 	 and 	*, and using Eq. �12� to eliminate
	* in favor of 	. The conjugate momentum that enters the
equal time commutator �	�x� ,��y��= i���x−y� is rather un-
usual

� = −
�2

m


0

c2��t + v�x + i
T

�
�	 = i�
0�	 + 	†� = i��
 ,

�B11�

where we used Eq. �B5�. It thus obeys �=−�†. Using Eq.
�A4�, � decomposes as
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��t,x� = �
j

�âj� j�t,x� + âj
†��̄ j�t,x��*� , �B12�

where � j = i�
0�	 j +� j�=−�̄ j. The conserved scalar product
�which generalizes the standard Klein-Gordon one �23� and
which agrees with Eq. �27�� is

�	2
	1� =
i

�
� dx��2

*�1 − �̄2
*	1� . �B13�

It is not clear whether this alternative way of describing
the phonon field presents any advantage over the original
version of Eq. �15�. It could nevertheless be useful to study
how dispersion affects the analogy with gravitational sys-
tems �39,40,50�.

APPENDIX C: CORRELATION PATTERNS IN THE
CLASSICAL LIMIT

Rather than using the vacuum or a thermal state as in the
text, we assume that the initial state also contains a highly
excited coherent state.7 This state can be obtained by making
use of the displacement operator

D̂w = exp�wâ�
† − w*â�� . �C1�

Any of the three initial operators a�
in,j appearing in Eq. �51�

can be used to construct the corresponding initial wave. One
can also consider wave packets engendered by

D̂d,w = exp�� d��wd�â�
† − w*d

�
*â�� . �C2�

When imposing the normalization �d�
d�
2=1, the mean oc-

cupation number of initial quanta added by D̂d,w is 
w
2, as it

is for D̂w in Eq. �C1�.
When 
̂in, the initial state without the coherent state, is

such that Tr�
̂in�̂�t ,x��=0, the anticommutator in the pres-
ence of the coherent state separates as

G�t,x;t�,x�� =
1

2
Tr��D̂d,w
̂

inD̂d,w
† ���̂�t,x�,�̂�t�,x���� ,

=�̄d�t,x��̄d�t,x� + Gin�t,x;t�,x�� , �C3�

where Gin is given in Eq. �49�, and where the mean value of
the field operator is

�̄d�t,x� = Tr��D̂d,w
̂
inD̂d,w

† ��̂�t,x�� = �0in
D̂d,w
† �̂�t,x�D̂d,w
0in� ,

�C4�

as if the initial state was the in vacuum. �To get these equa-
tions, we have used Tr�
̂in�̂�t ,x��=0 and the relation

D̂d,w
† â�D̂d,w= â�+wd�, see, e.g., �51�.� From the decomposi-

tion Eq. �C3�, we see that the correlation pattern is the sum
of the pattern encoded in the state 
̂in we studied in the

former sections, plus the new pattern encoded in the real
wave packet �̄d�t ,x� associated with the coherent state.

Assuming that this wave packet is initially made only
with â�

in,u, it is given by

�̄d�t,x� = �
0

�

d��wd�e−i�t��
in,u�x� + c.c.� . �C5�

At early times, before it enters the near horizon region, it
describes a single wave packet propagating against the flow
in the region where the flow is supersonic �see Fig. 6�. As
shown in that figure, at late time, it splits into three wave
packets,

�̄d�t,x� = �
0

�

d��wd�e−i�t����
out,u�x� + c.c.�

+ �
0

�

d��wd�e−i�tÃ���
out,v�x� + c.c.�

+ �
0

�max

d��wd�e−i�t�−���−�
out,u�x��* + c.c.� . �C6�

The first one describes the transmitted wave. It is amplified
with respect to the initial wave if �d�
��d�
2�1 which
needs not be always the case, as can be seen from Eq. �39�.
The second wave describes the left moving packet obtained
by elastic scattering. The third wave is due to stimulated pair
creation process, see the minus sign in Eq. �39�. It describes
the partner’s wave and is present only if d� has nonvanishing
components for ��max since �−�=0 for ���max. Notice
that the Fourier component multiplying the mode ei�t�−�

out,u is
the complex conjugate of �−�wd�. The fact that d

�
* appears

guarantees that when replacing d� by d�ei�t0, the partner
wave with negative � stays synchronized, i.e., it is shifted by
the same lapse of time as the two other wave packets with
positive �. Notice also that the presence of the coefficient
�−� implies that the partner wave function cannot be local-
ized in a region smaller than c /� because �−��e−��/� for �
��. In this we recover the width of the correlations to the
partner which is found when using the correlation function
�13,35�.

We can now relate the space-time pattern encoded in Gin,
the second term in Eq. �C3�, to that encoded in �̄d. Since
these two terms have a completely different origin, one
might a priori think that the two patterns will be radically
different. However, this is not the case.

Two conditions must be met for the patterns to be ap-
proximately the same. The first concerns the out modes,
whereas the second concerns the Bogoliubov coefficients ap-
pearing in Eq. �C6�. At a given late time t, i.e., after a lapse
of time �t, the chosen wave packet �̄d has been scattered, the
pattern encoded in �̄d is given by the three values of x where
the waves constructively interfere. Working far from the ho-
rizon, i.e., ��t�1 �see also the discussion in the paragraph
after Eq. �62��, and using Eq. �64�, these are the solutions of

7We are grateful to Unruh for bringing our attention to coherent
states while one of us was presenting this work at the Peyresq
conference of Cosmology in June 2009.
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�t�d

HJ,a�x� = �t , �C7�

where �d=�d��
d�
2 is the mean frequency of the wave
packet. When the dispersive effects are weak at late time, as
it is the case for �d�c /�0, see the discussion after Eq. �68�,
the solutions of Eq. �C7� are essentially independent of �d.
Therefore, in the large x limit, one finds the same pattern of
correlations whether one considers the two-point function at
some given time t as a function of x� given x, see Eq. �63�, or
whether one looks for the two partner waves when using a
packet which contains a branch that arrives at x at time t.

In the above reasoning, we have neglected the � depen-
dence of the Bogoliubov coefficients. If their relative phase
would vary rapidly, and therefore that of z�=�−� /�� as well,
Eq. �C7� could receive significant corrections that might de-
pend on the value of �d, thereby giving different patterns for
different wave packets. This is not the case. When using a
massless two dimensional relativistic field, one finds that the
pattern is universal as arg z� is truly independent of �, see
e.g. Eq. �3.49� in �26�. Upon considering dispersive fields,
when both �d�c /�0 and ��c /�0 are satisfied, one finds �4�
that the late time pattern is unmodified even though the early
pattern is completely different and depends on both the value
of �=c /�0 and the subluminal or superluminal character of
dispersion �43,44�. These results were obtained using saddle
point and eikonal approximations which are both reliable in
the present regime. The analysis was performed with a scalar
dispersive field, but it also applies to a phonon field in a BEC
because the differences between the various dispersive mod-
els �see Appendix B� are not relevant in an eikonal regime.

In brief, we saw that the late time pattern obtained from
the scattering of classical waves is �to leading order in � /��
the same as that obtained from amplifying vacuum �or ther-
mal� fluctuations. This correspondence follows from the fact
that both patterns are obtained from the �common� decom-
position of in modes into out modes. Given this we can ad-
dress a question which has been raised by several of our
colleagues: to what extent observing the scattering of classi-
cal waves could be considered as a signature of the Hawking
effect?

A convincing signature �21� would consist in measuring
the contribution of the negative frequency modes which
anomalously contribute to Eq. �39�, once sent a wave packet
composed only of positive �, as it is the case in Eq. �C6�.
The experimental difficulty is different for BH and WH
flows. In BH flows, one has to be sure that the initial packet
contains no negative modes otherwise their final contribution
will be dominated by the initial one, thereby preventing a
neat measure of �−�. The values of � with �−��0 are such
that 
�
�max. Given Eq. �23�, they correspond to an inter-
val of initial values for k���

kmax = k�− �max� k��� k̄max = k��max� , �C8�

where

k̄max = kmax +�kmax
2 +

4m2

�2

�max
2

kmax
2 . �C9�

The restriction to modes with positive frequency imposes k
�k0=k�0�=2m /��v−

2 −c−
2�1/2. By a numerical analysis, we

found that the ratio �k̄max−k0� /k0 is of the order of 20%,
independently of m �or ��, and weakly varying with D and q.
Thus in principle, one could selectively excite �e.g., by
Bragg spectroscopy techniques �52,53�� certain values of k in
that interval. However in experiments, there will be a tension
between the limited lifetime of the condensate and the nar-
rowness of the packets in k space which gives broad packets
in real space with long traveling times. Orders of magnitude
taken from �52,25� indicate that there could be one wave
packet satisfying all desiderata.

For WH flows, because of the time reversal symmetry, the
situation is the opposite in that there is no difficulty to pre-
pare an initial wave packet containing only positive frequen-
cies, whereas the final positive and negative frequency pack-
ets might be difficult to distinguish as they will follow
similar trajectories �21�.

APPENDIX D: WHITE HOLES

So far we only considered condensate flows that possess a
sonic horizon which is analogous to that of a black hole.
However sonic horizons which act as a white hole are closely
related to the black hole ones. Indeed, the transformation,

v�x� → − v�x� ,

c�x� → c�x� , �D1�

transform the profile studied in the text �Eq. �21�� into a
white hole profile, in which the characteristics focus forward
in time �see Eq. �19� with � 0�. �This equation now applies
to the left-moving modes so that the quanta mainly produced
are left-moving ones.�

The equivalent of Eq. �A6� in this WH profile reads

�����t − v�x� − iT
�
1

c2 ����t − v�x� + iT
� + 2mT
		 j = 0.

�D2�

Under a time-reversal t→−t, Eq. �D2� becomes the complex
conjugate of Eq. �A6�. This proves that there is a one-to-one
mapping given by

T:	 j
BH�t,x� � 	 j

WH�t,x� = �	 j
BH�− t,x��*. �D3�

The same relation holds between � j
BH and � j

WH. The doublets
Wj

WH and Wj
BH related by Eq. �D3� thus have the same norm

for the scalar product �27�.
With these remarks, it is manifest that in a stationary WH

flow, when working at fixed frequency �, the modes

	�
v,in,WH�t,x� = e−i�t�	�

u,out,BH�x��*,

	−�
v,in,WH�t,x� = e+i�t�	−�

u,out,BH�x��*,

	�
u,in,WH�t,x� = e−i�t�	�

v,out,BH�x��*, �D4�

�and similarly for ��
i,in,WH� form a complete in basis. Notice

that the in/out character and the u /v character of the modes
is interchanged between the BH and the WH. Indeed, be-
cause of the time-reversal symmetry, the phase and group
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velocities of the modes change sign. The Bogoliubov trans-
formation relating the in to the out WH modes is thus the
inverse of Eq. �41�. This implies that when dealing with a
WH flow in the initial vacuum, instead of Eq. �44�, the mean
occupation numbers of emitted quanta are

n̄�
WH = 
�−�
2,

n̄�
u,WH = 
B�
2,

n̄−�
WH = n̄�

WH + n̄�
WH,u = n̄−�

BH. �D5�

The third line shows that the total number of produced pairs
is equal to that for the corresponding BH. However since

��
2� 
�−�
2, the repartition of the quanta with positive �
into left and right movers differs.

Before considering the implication of these relations, it is
worth noting that only one quantity governs all differences
between the occupation numbers and the elastic scattering in
the WH and BH cases. Indeed, Eq. �D5� �or the third equa-
tion in �44�� shows that


��
2 + 
B̃�
2 = 
�−�
2 + 
B�
2, �D6�

while the conservation of the norm of 	�
u,out,BH and of 	�

u,in,BH

gives


��
2 + 
Ã�
2 − 
�−�
2 = 
��
2 + 
A�
2 − 
��
2� = 1� . �D7�

Thus,


��
2 − 
�−�
2 = 
B�
2 − 
B̃�
2 = 
A�
2 − 
Ã�
2. �D8�

The relative difference between the occupation numbers in
the BH and WH cases is small whenever the u−v mixing
coefficients are small �see, for instance, Sec. V C 3 in �17��.
In the case of a BEC, however, the u−v mixing coefficients
are not necessarily small and can even grow as 1 /� at low
frequencies �see Sec. V C 4�.

To further analyze the difference between WH and BH

fluxes �in Fig. 21�, we have represented 
B�
2 and 
B̃�
2 for

q=0.3 and two values of �D ,��. Contrary to 
B̃�
2 that grows
as 1 /�, 
B�
2 is nearly constant at low frequencies so that
their difference grows like 1 /�. The consequence of this is
that the relative difference �
��
2− 
�−�
2� / 
��
2 tends to a
constant at low frequencies, as is verified in Fig. 22, where
this difference is shown for the same parameters as the pre-
vious figure. This constant value can be significant. For D
=0.4 it is slightly greater than 1%; for D=0.1, it is very
small, of the order of 0.1%. For both values of D, the relative
difference becomes important near �max, but both 
��
2 and

�−�
2 vanish when reaching this frequency.

From Eq. �D5� several important lessons can be drawn.
Firstly, we established that, when starting with the vacuum
state, the fluxes of phonons emitted by a WH flow are di-
rectly related to those of the corresponding BH flow.

Secondly, from this correspondence, the WH flows appear
to be as stable as the corresponding BH flows. It should be
stressed however that this conclusion is reached when using
real frequencies �, and not taking into account the modes

that are not asymptotically bounded. Whether this implies
that WH flows are stable is a moot point which deserves
further study �see �54��.

Thirdly, when expressed in the asymptotic regions in
terms of the comoving frequency �a��� �or the wave num-
ber ka���� the spectral properties of the WH fluxes are radi-
cally different from those of the corresponding BH. This is
because, when considering a WH flow, the relationships be-
tween the comoving �a and the conserved frequency � are
time reversed with respect to those for a BH. Hence, unlike
what was found for a BH flow, Eq. �46� now determines the
final values of the �a which are thus blueshifted. In the ideal
case of an initial vacuum, this would be a great advantage
since the detection of higher energy phonons is easier. When
taking into account the nonvanishing temperature of the con-
densate, the initial occupation numbers are now given by
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na,in,WH���= �e�
a,out,BH���/Tin−1�−1, hence they are much larger

than those in the corresponding BH case since �a,out,BH��.
It implies that the initial occupation numbers in WH flows
will always be larger than the number of quanta spontane-
ously created. From this, two conclusions can be drawn.
First, the detection of the analog Hawking radiation, based
on the measurement of final occupation numbers, will be
more difficult than in the corresponding BH. Second, on the

contrary, the observation of the long-distance correlations of
Eqs. �57� and �58� will be greatly facilitated as the larger
initial occupation numbers increase their amplitude.

Fourthly, WH might also be more appropriate than BH to
manipulate coherent states because at early time, as ex-
plained in Appendix C, positive and negative � wave packets
follow very different trajectories, whereas for BH they essen-
tially follow the same trajectory.
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