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Ultracold fermions in a graphene-type optical lattice
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Some important features of the graphene physics can be reproduced by loading ultracold fermionic atoms in
a two-dimensional optical lattice with honeycomb symmetry and we address here its experimental feasibility.
We analyze in great detail the optical lattice generated by the coherent superposition of three coplanar running
laser waves with respective angles 27/3. The corresponding band structure displays Dirac cones located at the
corners of the Brillouin zone and close to half-filling this system is well described by massless Dirac fermions.
We characterize their properties by accurately deriving the nearest-neighbor hopping parameter 7, as a function
of the optical lattice parameters. Our semiclassical instanton method proves in excellent agreement with an
exact numerical diagonalization of the full Hamilton operator in the tight-binding regime. We conclude that the
temperature range needed to access the Dirac fermions regime is within experimental reach. We also analyze
imperfections in the laser configuration as they lead to optical lattice distortions which affect the Dirac
fermions. We show that the Dirac cones do survive up to some critical intensity or angle mismatches which are
easily controlled in actual experiments. In the tight-binding regime, we predict, and numerically confirm, that
these critical mismatches are inversely proportional to the square root of the optical potential strength. We also
briefly discuss the interesting possibility of fine tuning the mass of the Dirac fermions by controlling the laser
phase in an optical lattice generated by the incoherent superposition of three coplanar independent standing

waves with respective angles 2/3.
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I. INTRODUCTION

In 2004, researchers in Manchester isolated one-atom
thick sheets of carbon atoms, with the atoms organized in a
planar honeycomb structure [1]. Such a material is referred
to as graphene and is of utmost importance in condensed-
matter physics since by stacking it one gets the graphite
structure and by wrapping it one gets carbon nanotubes and
fullerenes [2]. Graphene is also of great theoretical interest
because it provides a physical realization of two-dimensional
field theories with quantum anomalies [3]. Indeed, the effec-
tive theory that describes the low-energy electronic excita-
tions in graphene is that of two-dimensional massless Weyl-
Dirac fermions. In graphene these massless fermions
propagate with about one 300th of the speed of light. Trig-
gered by the Manchester discovery, an intense activity has
flourished in the field, and continues to flourish, as witnessed
by Refs. [4-9], for example. The reported and predicted phe-
nomena include the Klein paradox (the perfect transmission
of relativistic particles through high and wide potential bar-
riers) [7], the anomalous quantum Hall effect induced by
Berry phases [10,11], and its corresponding modified Landau
levels [12].

It is now well established that some condensed-matter
phenomena can be reproduced by loading ultracold atoms
into optical lattices [13,14]. The great advantage is that the
relevant parameters (shape and strength of the light potential,
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atom-atom interaction strength via Feshbach resonances
[15], etc.) are accessible and can be accurately controlled
while spurious effects that destroy the quantum coherence
are absent such as the analog of the electron-phonon interac-
tion. In [16], Zhu et al. proposed to observe Dirac fermions
with cold atoms in a hexagonal optical lattice. Our present
objective is to analyze in detail this scheme capable of re-
producing in atomic physics the unique situation found in
graphene. It consists of creating a two-dimensional honey-
comb optical lattice and loading it with ultracold fermions
such as the neutral °Li or “°K atoms.

Parts of this paper recall known results. In addition to the
need of setting the stage and introducing the notational con-
ventions, there is also the intention to bridge the solid-state
community and the atomic physics community on the par-
ticular subject of massless Dirac fermions as observed in
graphene sheets and its counterpart in atomic physics. We
also present extensions of previous solid-state works in the
atomic physics context and report a number of results.

We analyze the various experimental parameters that need
to be controlled in order to reproduce, with cold atoms
trapped in an optical lattice, the physics at work in graphene.
After briefly introducing optical lattices, we first explain how
to create an optical lattice with the honeycomb symmetry
and analyze its crystallographic features. We then calculate
the band structure in the tight-binding approximation and by
exact diagonalization, thereby providing evidence for the oc-
currence of the so-called Dirac points. Next, we evaluate the
nearest-neighbor hopping amplitude by using a semiclassical
instanton method. For the benefit of possible experiments we
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give the necessary requirements for reaching the massless
Dirac fermion regime. Finally, we examine how massless
Dirac fermions survive lattice distortions that could result
from intensity-unbalanced or misaligned laser beams. These
distortions open the way to new physics related to the quan-
tum Hall effect [17]. We will close by briefly mentioning
possible experiments to target for noninteracting and inter-
acting ultracold fermions [18,19].

II. HONEYCOMB OPTICAL LATTICE
A. Radiative forces and optical lattices

A two-level atom (with angular frequency separation w,,
and excited-state angular frequency width I') that interacts
with a monochromatic laser field with complex amplitude
E(r,0)=E(r)e~'“L' gets polarized and experiences radiative
forces due to photon absorption and emission cycles [20,21].
When the light frequency is tuned far away from the atomic
resonance, i.e., when the light detuning 6=w;—w,, is much
larger than I', the field-induced saturation effects are negli-
gible and the atom essentially keeps staying in its ground
state. In this situation, the atom-field interaction is dominated
by stimulated emission processes where the atomic dipole
absorbs a photon from one Fourier component of the field
and radiates it back into the same or another one of these
Fourier modes. In each such stimulated cycle, there is a mo-
mentum transfer to the atom and, as a net result, the atom
experiences an average force in the course of time. This di-
pole force exerted by the field onto the atom in its ground
state is conservative. It derives from the polarization energy
shift of the atomic levels (ac Stark or light shifts) [22] and
the dipole potential V(r) is given by

vy = ML, (1
8 0 I
where I(r)=e€yc|E(r)|?/2 is the light field intensity (time-
averaged energy current density) at the center-of-mass posi-
tion r of the atom and I is the saturation intensity of the
atom under consideration.

For multilevel atoms, the situation is more complicated as
the dipole potential now depends on the particular atomic
ground state sublevel under consideration. However, if the
laser detuning & is much larger than the fine and hyperfine
structure splittings of the atomic electronic transition, then
all ground-state atomic sublevels will essentially experience
the same dipole potential. This common potential turns out to
be given by Eq. (1) as well. Hence, by conveniently tailoring
the space and time dependence of the laser field, one can
produce a great variety of dipole potentials and thus manipu-
late the ground-state atomic motion.

Optical lattices are periodic intensity patterns of light ob-
tained through the interference of several monochromatic la-
ser beams [23]. By loading ultracold atoms into such artifi-
cial crystals of light one obtains periodic arrays of atoms.
Indeed, as seen from Eq. (1), when the light field is blue-
detuned from the atomic resonance (5>0), then the atoms
can be trapped in the field-intensity minima whereas for red-
tuned light (§<<0) they can be trapped at the field-intensity
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FIG. 1. The coplanar three-beam configuration used to generate
the honeycomb lattice. All beams have the same frequency,
strength, and linear polarization orthogonal to their common propa-
gation plane. The honeycomb lattice under consideration is obtained
for blue-detuned beams with respective angles 27/3. For these
symmetric laser beams, the time-averaged radiation pressure—
albeit small at large detuning—rvanishes in this configuration. By
reversing the propagation direction of one of the lasers, such that
ky=k,+k;, say, a triangular lattice of a different geometry is
formed. We will, however, exclusively deal with the k| +k,+k;=0
case.

maxima. Such arrays of ultracold atoms trapped in optical
lattices have been used in a wide variety of experiments. As
recently evidenced by the observation of the Mott-Hubbard
transition with degenerate gases [24], they have proven to be
a unique tool to mimic, test, and go beyond phenomena ob-
served until now in the condensed-matter realm [14,25].
They also have a promising potential for the implementation
of quantum simulators and for quantum information process-
ing purposes [13,26,27].

B. Optical lattice with honeycomb structure
1. Field configuration and associated dipole potential

The simplest possible optical lattice with honeycomb
structure is generated by superposing three coplanar travel-
ing plane waves that have the same angular frequency w;
=ck;, the same field strength E,>0, the same polarization
and the three wave vectors k, form a trine: their sum van-
ishes and the angle between any two of them is 27/3,

2

with a,b=1,2,3 and &, is the Kronecker symbol [23]. As is
illustrated in Fig. 1, we choose the x,y plane as the common
plane of propagation and, to be specific, use

(3. 1
k1+k2+k3=0, ka‘kbsz Eéab—_ (2)

k, T\3e, - e,
kl = kLey’ k } = kL 2 (3)
3

for the parametrization of the wave vectors.

Further, we take all fields to be linearly polarized orthogo-
nal to the plane, so that the three complex field amplitudes
are given by
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Er,0)= Eoei(kll"_d’a)e_i“’L’eZ, (4)

where ¢, is the phase of the ath field for =0 at r=0. We
note that a joint shift of the reference points in time and
space,

2

1
t_)t__E ¢a’ r_)r+3k22 ¢aka’ (5)
L a

3wL a

removes the phases ¢, from Eq. (4), so that the simple
choice ¢ =¢@,=¢p3=0 is permissible, and we adopt this con-
vention. In an experimental implementation, one would need
to stabilize the phase differences ¢,— ¢, to prevent a rapid
jitter of the lattice that could perturb the atoms trapped in the
potential minima.

Dipole potential (1) generated by the electric field
E=Z2 &, is of the form

AT 1
V() = Volf(r)|? = Voo(r) with Vo=—==,  (6)
8 51,
where [ is the intensity associated with the field strength E,,.
The total dimensionless field amplitude f(r) and the dimen-
sionless optical potential v(r) are given by

f(r)=1+exp(=ib,-r)+exp(ib, - r) (7)
and
v(r)=3+2cos(b,-r)+2cos(by-r)+2cos[(b; +b,) - r],
)

where b,=k;—k, and b,=k, -k, feature the reciprocal primi-
tive vectors. For parametrization (3), we have

b 3
1 ex+\’ e\,

= —_— 2 9
bz} K (9)

with k=|b,|=13k,. One may further notice that the periodic
patterns associated to each of the cosine terms in Eq. (8)
have the same spatial period of (27/k;)/+3, about 58% of
the laser wavelength \;=27/k;.

Linear combinations of the Brillouin vectors with integer

coefficients define the reciprocal lattice B, a regular pattern
in k space,

g={n1b1+n2b2|n1,n2=0, + 1, + 2,} (10)

The reciprocal lattice is central to all studies of the dynamics
of particles that move under the influence of the given peri-
odic potential [28].

In particular, one domain in reciprocal space of utmost
importance is the first Brillouin zone () defined as the so-

called primitive Wigner-Seitz cell [28] of B; see Fig. 2. It is
a regular hexagon but with the subtle feature that opposite
edges are to be identified with each other since they can be

related by a displacement vector in B. By the same token the
three corners K,, (respectively, K/) have to be identified with
one another and we collectively denote them by K (respec-
tively, K'). These two different corners K and K’ are known
in the graphene literature as the Dirac points for a reason that
will become clear in the next section. Upon denoting K
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FIG. 2. The triangular reciprocal lattice B associated with the
triangular Bravais lattice of Fig. 4. It is spanned by the reciprocal
primitive vectors b and b, of Eq. (9) and is also a triangular lattice
(as indicated by the full dots). The shaded region identifies the first
Brillouin zone ) which is here a regular hexagon. Its center is
conventionally named I" in the solid-state literature. Opposite edges
are in fact identical as they only differ by a translation in the recip-
rocal lattice. This feature is emphasized by drawing the identical
edges with the same (solid, dashed, or dash-dotted) line. For the
same reason, the three corners K, (a=1,2,3) are to be identified
with each other, and likewise the three corners K|, are really only
one point in Q. Thus, only two of the six corners, collectively
labeled as K and K’ and known as the Dirac points, are different.
Also shown are the wave vectors of the three coplanar plane waves
(dashed arrows).

=K, and K' =K], their positions in () are given by the wave
vector of the lasers that generate the optical honeycomb po-
tential,

1
K:—K,zg(bz—bl):k], (11)

and K,=k,=K-b,, K3=k;=K+b,, as well as K,=-K_.

2. Triangular Bravais lattice

The dimensionless potential (8) consists of a periodic
two-dimensional array of maxima, minima, and saddle points
generated by repeated translations of a primitive unit tile
called the basis. The underlying lattice geometry itself is
encapsulated in the associated Bravais lattice I3, that is

B={ma, +mya,jm;,m,=0,+1,=2,..}, (12
such that the value of the potential is not affected by any
displacement R € B, v(r+R)=v(r).

The Bravais primitive vectors a, are constructed based on
the relation

(13)

a, 'bbz 2775ab'

In other words, the Bravais lattice 3 and the Brillouin lattice

B constitute dual spaces. Supplementing Eq. (9), we have the
explicit parametrization
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FIG. 3. The underlying Bravais lattice B of a two-dimensional
honeycomb is the two-dimensional triangular Bravais lattice with a
two-point basis A and B. The gray-shaded area is the primitive cell
3. The honeycomb lattice constant a is defined as the distance
between nearest-neighbor sites.

—V, (14)

where A=|a,|=4m/(3k;)=2\,/3 is the common length of
the Bravais primitive vectors.

The Bravais lattice defined by Eq. (14) is a friangular
one. We opt here for the diamond-shaped primitive cell 2,
delineated by the two Bravais lattice vectors as a tiling for
optical potential (8); see Fig. 3. Another possible choice
would have been the hexagonal Wigner-Seitz cell [28]. This
cell is useful when discussing the symmetry group of the
lattice.

To proceed further one now needs to analyze the structure
of optical potential (8) inside the primitive cell. In passing,
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we mention here that red-detuned (8<<0) lasers give V,<0
and there is only one potential minimum in each primitive
cell X. Upon trapping atoms in these potential minima, one
gets a triangular lattice that is not of graphene type. This
situation is interesting in view of quantum magnetism and
frustration phenomena [ 14] but it is not the situation we want
to study here.

3. Honeycomb structure

When the optical lattice is instead blue-detuned (6> 0),
Vy is positive and atoms are “weak-field seekers.” The po-
tential minima coincide with the minima of the electric field
strength and the maxima coincide as well. By choice of co-
ordinate system, the maxima locate at the Bravais sites and
the dimensionless potential (8) has its maximal value of
v(0)=9 at the corners O,P,Q,R of the diamond-shaped
primitive cell X; see Fig. 4.

Two different potential minima, given by the zeros of the
total dimensionless field amplitude f(r), are found in % at

1 A
rAzg(a1+a2)=\T§ex and rB=2rA, (15)

respectively. From a crystallographic point of view, X is a
primitive cell with a two-point basis. By applying repeated
Bravais translations on X, one generates two different sub-
lattices of potential minima, one made up of A-type sites and
the other made of B-type sites; see Figs. 3 and 4. Altogether
the potential minima are organized in a honeycomb structure
reminiscent of the positions of the carbon atoms in graphene
sheets.

The three displacements that move an A site to a neigh-

1

»

NN VN VN VNV

FIG. 4. (Color online) Left: the honeycomb pattern composed of the triangular lattices of minima at sites A and B, of maxima at sites C,
as well as of the saddle points between neighboring A and B sites (marked by dots). The bottom plot shows the potential along the x axis
which is one of the ...ABCABC... lines with x=0 at a C site. The saddle points S appear as local maxima here, with a height that is one ninth
of the global maxima at sites C. Cold atoms trapped in this optical potential would be found at the A and B sites. Right: equipotential lines
for the optical honeycomb potential (6). Along the straight black lines that connect the saddle points, we have V(r)=V,. The (red) closed
circular curves filling out a hexagonal area are centered at the points of maximal potential; from inside out the respective values are V(r)
=8V, 5Vi, 2V, and 1.05V,. The closed curves filling out areas of the shape of equilateral triangles are centered at the minima that constitute
the A sublattice (blue) or the B sublattice (green); along the curves the potential has the values V(r)=0.95V, 0.6V, 0.3V, and 0.05V,,. One
primitive diamond-shaped unit tile 3 spanned by a; and a, is traced out. It contains two different minima, one of A type (in blue, on the left
inside) and one of B type (in green, on the right inside). The trine of the A— B displacement vectors (16) is indicated as well. Finally, for
completeness, we also trace out the Bravais Wigner-Seitz unit tile. It is a hexagon centered at a potential maximum and with potential

minima at its corners.
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boring B site—they translate the A sublattice to the B
sublattice—are parametrized by

1
¢\ = g(al +a,) =ae,,

1 -e +\J’§e:
62=§(a2_2al)=a x2 s

’/_
—e.—\3e

2

where a=|c,|=A/\3=4m/(3k)=2)\,/\27 is the honeycomb
lattice constant. It is the distance from an A site to a neigh-
boring B site or the distance from the center of the hexagon
of minima to one of its corners.

Halfway between two neighboring minima, the potential
has saddle points where v(r)=1. They are located at the cen-
ter and at the middle of the edges of 3; see Fig. 4. As the
saddle points on opposite sides of 2 are connected by Bra-
vais displacements, there are, therefore, three nonequivalent
triangular sublattices of saddle points and we thus count
three saddle points per primitive cell.

We also note that the potential is invariant under 120°
rotations around the locations of the potential minima and
maxima and, therefore, that the potential is isotropic in the
vicinity of these points. We anticipate that the local harmonic
oscillator potential at a minimum will be isotropic; see Eq.
(35) below. By contrast, the corresponding local potential at
a saddle point is not isotropic.

All these matters are illustrated in Fig. 4, where we
clearly identify the various triangular sublattices. Cold fermi-
onic atoms trapped in this optical potential would be found at
the A and B sites, similar to the binding of electrons in
graphene to the carbon ions.

As a side remark, it may be worth mentioning that the
saddle points affect the classical dynamics of a particle
evolving in the honeycomb potential with a sufficiently large
energy. Since the potential is nonseparable and angular mo-
mentum is not conserved here, the saddle points could be the
seed for instabilities in which case the motion could turn out
to be nonintegrable and chaotic. If so, this chaotic behavior
should then be revealed, for example, in the statistical prop-
erties of the quantum spectra, whose level spacing fluctua-
tions are expected to be described by the Gaussian orthogo-
nal ensemble [29].

1
c3=§(a1—2a2):a , (16)

4. Optical honeycomb potential and graphene

In graphene sheets, the electrostatic potential that governs
the dynamics of electrons, the sum of the Coulomb potentials
of the carbon ions, exhibits the symmetries associated to a
honeycomb pattern. Of course, in the finer details, the optical
dipole potential of Egs. (6) and (8) differs markedly from the
graphene potential. In particular, the very strong forces that
the electrons in graphene experience close to the ions have
no counterpart in the optical lattice and the interaction be-
tween the atoms loaded into the optical potential is quite
different from the electric repulsion between electrons. Nev-
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ertheless, the common symmetry group implies great simi-
larities between the band structures of the two potentials, and
in the respective parameter regimes where the tight-binding
approximation is valid, the effective Hamilton operators are
virtually identical. In particular, experiments made with at-
oms offer new knobs to play with and, with due attention to
the difference between the two physical systems, these ob-
servations may deepen our understanding about phenomena
observed with graphene samples.

In a very definite sense, honeycomb potential (6) is the
simplest of all graphene-type potentials [30]. Their general
form is a Fourier sum over the Brillouin vectors,

Vir)= >, ¢?"vy with V_g=Up. (17)
Qelg’

The various symmetry properties of a honeycomb potential
ensure that the vys are grouped into sets of closely related
coefficients. If one coefficient in Eq. (17) is nonzero, a whole
set of closely related coefficients have corresponding non-
zero values as well.

Other than the trivial constant solution V(r)=v,, the sim-
plest case is obtained when all coefficients vanish except for
the set associated with v, =V), and, by convention, vy=3V,,.
This yields honeycomb potential (6) with v(r) of Eq. (8).

III. MASSLESS DIRAC FERMIONS

A. Band structure in the hopping picture

In the hopping picture, one envisions the particle as hop-
ping from site to site with some quantum mechanical hop-
ping (or tunneling) amplitude. In the simplest situation, all
sites have the same energy, only hops between nearest-
neighbor sites are considered, and all hopping amplitudes
take on the same complex value #,. The one-particle quantum
dynamics is then conveniently described using second quan-
tization. In the present situation, as we have two different
sublattices, one has to introduce two sets of fermionic anni-

hilation and creation operators, one for the A sites, (g; al ),

10 1o
and one for the B sites (bj(,,b;(,), where i and j label the sites
in the two-dimensional lattices while o stands for the spin
index or any other pertinent quantum number of the particle.

The second-quantized Hamilton operator then reads
H= 3 (toblots + 15aighjo) + €2 (a]yi = biohio)

(if).o io
(18)

where (i,j) means that only nearest neighbors are included in
the sum. The model defined by this Hamilton operator ac-
counts for hopping to neighboring lattice sites but does not
permit a change in the internal quantum number o during the
hop. We have also included a possible energy mismatch e
between the A and B sites [3]. Using the Fourier transform in
Q) of the fermionic operators, the right-hand side of Eq. (18)
can be recast into the form

e 3 il %))
%k

(19)
keQ,o —€ bko’

with
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=1, e n, (20)

from which we get the band spectrum
er(k)= = VE+|z ] (21)

As expected from the fact that the honeycomb lattice consists
of two distinct sublattices, we find two bands: a conduction
band (+) and a valence band (). These bands are here inde-
pendent of the spin index ¢ meaning that each k e () accom-
modates 20+ 1 internal states per subband. Without any real
loss of generality, we will stick to spin—% fermions in the
sequel. As readily checked, z; vanishes when

L+ e =0, (22)

which is solved by the corners K and K’ of ) since K-a,
=K'-a,=2m/3. We thus see that the conduction and the va-
lence bands are gapped by €, a situation typical of a metal
when the lattice is filled with particles. When there is exactly
one particle per site (a situation known as half-filling), all
levels in the valence band are filled at zero temperature and
the Fermi energy E (the energy of the highest filled level)
precisely cuts the energy surface at the K and K’ points. In
this case the low-energy excitations of the system can be
described by linearizing the band spectrum in the neighbor-
hood of K and K'. Denoting by g=p/# the small displace-
ment from either K or K’, the linearization of z; gives

3(l|t0|
2

2kl = = lg| = fwolg| = plvo. (23)
where the quantity vy=3alty|/(2%) is called the Fermi veloc-
ity in the solid-state community. We adopt this terminology
although it is somewhat unfortunate, because it has nothing
to do with the standard Fermi velocity v2Ey/m, which de-
pends on the actual mass of the particle.

The dispersion relation now takes on the very suggestive
form

e~(p)= = ymivé +pzv% (24)

that is typical of a relativistic dispersion relation with
particle-hole symmetry. The effective mass m., defined
through e=m*v§, appears thus as the rest mass of the excita-
tions and relates to the energy imbalance of the two sublat-
tices. The Fermi velocity v, is the analog of the velocity of
light in relativity.

The effective Hamilton operator that is derived from these
considerations and describes the dynamics of the excitations
around K and K',

[ (ar) - (i‘y-V+m* 0

= (2m)? wir)

0 iy m*>w(r>, (25)

where i(r) is a four-component Dirac spinor encapsulating

the excitations around K and K’ while = W(Sp )g) generates
an equation of motion that resembles the Weyl-Dirac equa-
tion in two dimensions. This is why the name Dirac points is
given to K and K’ (see Refs. [3,9] for more details). In this
two-dimensional context, the Dirac matrices are y*=(7", %)
:(o-z,iax,iay) in terms of the standard Pauli matrices.
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FIG. 5. The tight-binding band structure of graphene (in units of
the tunneling strength |7g|) as a function of k € Q) in units of «
=3k;. The origin of energy has been chosen at the Dirac points
and the axis ranges are |k,/«|=1/2 and |ky/K| =13/3. The bottom
contour lines are lines of constant ||/ |ty|.

When e vanishes, as is the case in real graphene where all
lattice sites have the same energy, then €. (k)= * |z;| and the
two bands are degenerate at the corners of () where they
display circular conical intersections (see Fig. 5). In the lit-
erature, this situation is referred to as a semimetal or a zero-
gap semiconductor and the corresponding low-energy exci-
tations are known as massless Dirac fermions. The total band
width is W=6|ty| and, at half-filling, the Fermi energy Ej
=3|t,| (taking the energy origin at the lower band minimum)
precisely slices the energy bands at the Dirac points. Hence,
the Fermi surface reduces to these two points, so that the
density of states vanishes there [9]; see Fig. 6.

B. Tight-binding approximation

Mindful of possible experiments, the hopping parameter
t, appears to be an important amplitude to evaluate. We re-
port three different methods for estimating its strength |z|.
We will start with the familiar tight-binding approximation
using localized Wannier functions [31,32] that are further
approximated by Gaussians. We will then develop a more

1.2

1k i

p(€)os i

04 | g

0.2 i

0 I I I I

FIG. 6. The noninteracting density of states per unit cell and per
spin component p(€) as a function of the reduced energy E=E/|t|.
The origin of energy has been chosen at the Dirac points. When &
<1, then p(€)=~2|&|/(V3m) and the density of states vanishes at
£=0, a signature of the semimetal behavior. Note the logarithmic
Van Hove singularity at |£]=1.
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accurate semiclassical calculation based on an instanton ap-
proach [33]. We will compare both results to a brute-force
exact numerical computation.

As a consequence of Bloch’s theorem [28,34], the energy
spectrum of an atom of mass m moving in the honeycomb
lattice potential is obtained from

2¢72

h°vV
Hwnk(r)= |:_ B

m

+ V(r)} Y (r) = €,(k) 4(r), (26)

where we dropped the spin index o which is not essential
here. The Bloch waves i, are given by

lllnk(r) = eik‘runk(r)

with k € ), n the band index, and u,;(r) is a B-periodic
function. The latter can be conveniently expanded using
Wannier functions [28,34,35] in accordance with

wg(r)= 2 e, (r—R).
ReB

(27)

(28)

Wannier functions are very useful in describing models
where particles are localized in space such as the Hubbard
model [36]. They form an orthonormal basis set of functions
centered at different Bravais lattice sites which are copies of
the same “seed” functions defined in a given primitive cell.
The localization properties of the Wannier functions crucially
depend on the analyticity properties of u,; as a function of k
and decay exponentially in the simple cases [37-40].

In the tight-binding approximation, the atoms are assumed
to be sufficiently deeply localized in the different potential
wells where they only populate the lowest vibrational levels.
Vibrational states in different wells are also assumed to have
small overlap: the atomic motion is thus “frozen” except for
the small tunneling amplitude between neighboring wells
and are then effectively confined to move in the lowest bands
of the lattice. Since the Wannier functions display the same
symmetry as the local potential structure [41,42], the natural
idea here is thus to construct tight-binding Wannier functions
from linear combinations of wave functions deeply localized
in the two potential wells of the primitive cell (the so-called
atomic orbitals) [32,43]. This trial wave function exploits at
best the sublattice structure of the honeycomb lattice and
should give good results at least for the first two bands.

After dropping the band index n, this approach, reminis-
cent of the LCAO method (linear combination of atomic
orbitals) [28,34], leads to the ansatz

Uilr) = i ) + Bl ). (29)
where the quasi-Bloch wave functions
B = X s =ry).
A
() = 2 *Tow(r — ) (30)
B

essentially live on the type-A sublattice and the type-B sub-
lattice, respectively. The sublattice Wannier functions w(r)
and wg(r) are normalized to unity. In the present case, we
even have wg(r)=w,(-r) due to the reflection symmetry of
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the potential, V(-r)=V(r) [41]. We define the on-site ener-
gies as E,=(w,|H|w,) (a=A,B) and use the parametrization
E,=Ey+A and Eg=E,—A in the following, with E, the
mean on-site energy and A half the on-site energy difference.
Most importantly, the sublattice Wannier functions are or-
thogonal. However, obtaining their exact expressions is a
difficult task and one often resorts to simple approximations
that do not have this property. This is why, in view of this
very common practical situation, we will consider in the fol-
lowing that the Wannier functions w,(r) and wg(r) can over-
lap.

Plugging now the ansatz [Egs. (29) and (30)] into Eq.
(26), and only considering coupling between nearest-
neighbor lattice sites, we get the 2 X2 homogeneous linear

system
A-E Z.—-ER Q
R I
Z;— ER;, - (A+E)/\B;
where E=¢€(k)-E, and with the matrix entries
Zk = 2 taeik.ca’
ta={wal(H - Eo)|WBa>,
Re=2 (Walwp, e <. (32)

a

Here B,=A+c, is a short-hand notation for the three B sites
next to the A site.

Several remarks are in order. First one notes that the off-
diagonal matrix entries depend on the energy as soon as the
sublattice Wannier functions overlap. Second, as readily
checked, the hopping amplitudes ¢, and E are independent of
any energy shift in the Hamilton operator and are thus inde-
pendent of any particular choice for the energy origin as one
expects. Note also that the values of E, and of Eg do not
depend on the particular choice for point A or point B since
‘H is B-translation invariant. By the same token, the values of
t, and of (w,| wg,) do not depend on the particular choice of
A, but B must be one of its three nearest neighbors.

To have a nonzero solution, the 2 X 2 determinant associ-
ated to Eq. (31) has to vanish, from which we get the band
structure. When the overlaps of the sublattice Wannier func-
tions are small, (w, | wg ) <1, the band structure is very well
approximated by

Et(k) = EO + \*”Az + |Zk 2

) (33)

a form reminiscent of Eq. (21). For the honeycomb lattice,
for which H is B periodic and invariant under reflections, we
further have E,=Eg=FE,; and A=0, which implies that the
effective mass m,, of the Dirac fermions is indeed zero. As a
consequence, we get the two first bands as €. (k)=Ey=*|Z|.
Furthermore, since V(r) is also invariant under 27/3 rota-
tions about any lattice site A, all three tunneling amplitudes 7,
from A to B, acquire the same value and Z; of Eq. (32) turns
into z; of Eq. (20) with
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fo= f (dr)wy(r)(H = Eg)w,(r —c), (34)

where H is the differential operator of Eq. (26) and ¢ is
either one of the three displacement vectors in Eq. (16).

C. Harmonic approximation

To proceed further one needs an approximation for the
Wannier functions w, and wg. One possibility is to rely on
the harmonic approximation of the potential wells around
sites A and B, that is, to approximate w, and wg by the
corresponding harmonic ground-state wave functions. We
find

3 mo,
Vir,+r) = ZVOKZr2 = Torz for a=A,B

with  fiwy=3VV,Ep, (35)

where E R:ﬁzki/(Zm) is the recoil energy of the
atom. In terms of €=\#/(mw,), the familiar length unit of
the harmonic oscillator, the ground-state wave function is

1 1
walra +r)=wglrg +r) = ,Texp(— —r2/€2>. (36)
Nl 2

From this we get E,=Ep=E,=fiw, and the overlap integrals
are simply

27 ﬁ) 1)

Keeping in mind that V> E;> Ej in the tight-binding re-
gime, <wA|wBa>< 1 and we find from Eq. (34)

ty =~ flV Eﬁ 38
0~ 3~ 0 €Xp\ — 9 Ep (38)

at leading order. However, since the hopping amplitude is
given by the overlap integral of the localized wave functions
w, and wg of two neighboring sites, we see that the value of
to crucially depends on the tails of these wave functions.
Wannier functions often decay exponentially and, therefore,
they cannot be realistically approximated by Gaussian wave
functions. Hence, Eq. (38) can, at best, serve as a rough
underestimate [44]. In the next section we will derive a reli-
able and accurate estimate of the tunneling amplitudes in the
tight-binding regime by use of the instanton method.

D. Semiclassical estimate

Using kzl, V’W, Vo, and \e"m/(kiVO) as length, velocity,
energy, and time units, respectively, the Schrodinger equa-
tion can be conveniently recast into a dimensionless form
that features an effective Planck’s constant %, (we keep the
same symbols for the rescaled variables for simplicity),

K2 2F
ih,dp=——Vy+v@r)y, h,=—=,  (39)
2 A

with v(r) given by Eq. (8), here expressed in rescaled units.
In the tight-binding approximation it is assumed that V,
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> FEp, and thus %,<<1. In this situation, semiclassical meth-
ods provide very efficient and very accurate ways for evalu-
ating dynamical and spectral quantities of interest. They gen-
erally amount to evaluating integrals with the aid of
semiclassical expressions for the quantum propagator de-
rived from its Feynman-path integral formulation through
stationary-phase approximations around the classical trajec-
tories [45].

For example, it is well known that the energy splitting
between the two lowest energy levels of an atom moving in
a one-dimensional symmetric double well can be accurately
calculated using the WKB method [45]. This WKB method
can be extended to several dimensions and in the sequel we
will derive a semiclassical estimate of 7, for the honeycomb
lattice using the method proposed in [33]. It amounts to
evaluating 7, using the classical complex trajectory (in res-
caled units) that connects A and B through the classically
forbidden region—the so-called instanton trajectory.

Using hw, as an order of magnitude for the vibrational
level inside a potential well, we see that in the rescaled units,
this energy is fwy/Vo=3%,/V2<1. So we can simply look
for the instanton trajectory at zero energy. In rescaled units,
the hopping amplitude is then expressed as

t —
M = a\h e~ S0/he (40)

0
where S, is the (rescaled) classical action along the zero-
energy instanton trajectory, and the numerical factor a is
obtained from integrating out the fluctuations around the
zero-energy instanton trajectory (see below).

As the zero-energy instanton fully runs in the classically
forbidden region, the variables take on complex values. For
our particular case, the good parametrization turns out to
keep r real while taking t=i7 and p=—ip purely imaginary
with 7and p real. Hamilton’s classical equations of motion in
the new variables are just obtained from the original ones by
flipping V(r) to —V(r). The symmetry of the potential dic-
tates that the zero-energy instanton trajectory is simply the
straight line connecting site A to B (see Fig. 4). In the fol-
lowing we calculate the instanton between A and A+c;. In-
tegrating the equation of motions, one gets the instanton tra-
jectory in the rescaled form ry(7) =k axy(7)e, with

tan[ mxo(7)/3] = — V3 coth[3V274]. (41)

The boundary conditions are xy=1, xy=0 when 7— —o and
Xo=2, Xp=0 when 7— %, meaning that the instanton starts at
A with zero velocity and ends at B with zero velocity; the
whole process requiring an infinite amount of time. This is
indeed what is expected as both end points of the instanton
are instable in the reversed potential picture. Since the en-
ergy associated with this instanton trajectory is zero, the clas-
sical action is simply

2ka - T
So= | dilflxy=0)=4\2|1- —= | =2.237,
ka 3V3

(42)

where f(x,y) is given by Eq. (7).

043411-8



ULTRACOLD FERMIONS IN A GRAPHENE-TYPE OPTICAL...

The computation of a proves technically more demand-
ing. Following [33], it is given by the product a;a, with

B /&\/ det[- &2 + wp]
=N og det'[- &i+ wf(r)] ’
B det[— & + w]]
27N deff- 2+ w29’

Here wZ(T):(&iv)(ro) (a=x,y) is the curvature of the res-
caled potential along the zero-energy instanton trajectory
ro(7) while w, is the curvature of the rescaled harmonic po-
tential approximation around A; see Eq. (35). In rescaled
units, we have wy=3/y2. The prime in the formula for a
means that the determinant is calculated by excluding the
eigenspace of the operator —&i+ a)f with the smallest eigen-
value.

The determinants of the differential operators involved in
the computation of « stem from the linear stability analysis
of the dynamical flow in the neighborhood of the zero-
energy instanton trajectory as encapsulated in the mono-
dromy matrix. They can be straightforwardly computed from
solutions of the linear Jacobi-Hill equations of degree 2 as-
sociated with these differential operators [46]. For example,
a, is solved as

(43)

(44)

where the Jacobi fields J(7) and J,(7) satisfy the differential
equations

2
T _ it =0,
2
d ; 39 w2l o(7) =0, (45)
with initial conditions
Jo(-T)=J(-T)=0,
Jo(=T)=J(-T)=1. (46)

The interested reader is referred to [33,46] for details. We
simply give here the final result for the honeycomb lattice:
272

— =~ 3.486,
a

a, ~0.449, a~1.565.

ap =

(47)

Recasting the semiclassical calculation of the tunneling am-
plitude in units of the recoil energy finally yields

3/4
f V, Vi
Mz 1_861<—O> exp|:— 1.582 —0} (48)
Eg Ex Eg

The same type of scaling laws has been obtained in the case
of the two-dimensional square optical lattice [47,44]. In the
square-lattice geometry, however, the potential is separable
and the semiclassical calculation proves much simpler as it
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FIG. 7. Numerically calculated band structure of the two lowest
energy bands for #1,=0.25 at discrete points in the Brillouin zone ().
The same conventions as in Fig. 5 are adopted. The value of || is
determined by requiring that €. = = 3|t,| at the center T of the Bril-
louin zone. The similarity with Fig. 5 shows that at Vy=32E the
tight-binding regime has already been reached.

reduces to using the well-known Mathieu equation.

E. Numerical computation of the band structure

Using Bloch’s theorem and plugging Eq. (27) into Egq.
(26), we get a family of partial differential equations for the
u,;S labeled by the Bloch vector k e (). After scaling vari-
ables with the same units as in the previous paragraph, the
band structure is then extracted by numerically solving

Hkunk(r) = nkunk(r)9

2

sz%(—iV+k)2+v(r) (49)

for each k € () (expressed now in units of k).
The u,;s being B periodic, they are conveniently Fourier

expanded in the reciprocal lattice B according to

unk(r) = E CnQeiQ'r'
Qeg

(50)

The matrix representation of H; is sparse and banded. It is
then appropriately truncated and diagonalized such that only
a small number of coefficients C,q are actually significant
for the corresponding energy bands. The energy bands ob-
tained in this way are exact and one can investigate their
dependence on 7, as done in Figs. 7 and 8.

The essential feature is to realize that the band degenera-
cies at points K and K’ are generic and do not depend on the
actual value of the effective Planck’s constant. Indeed the
existence of two degeneracy points in the first Brillouin zone
for the honeycomb lattice is a general consequence of the
lattice symmetries [48,49]. The lattice symmetries are encap-
sulated in the point group of the lattice which is the set of
operations that leave fixed one particular point of the lattice.
The corresponding elements are rotations, reflections, inver-
sions, and their combinations. Combined with B3 translations,
one gets the space group of the lattice. The graphene point
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FIG. 8. Band structure for nearly free particles moving in a
weak honeycomb optical potential in units of V. The first two
levels are plotted as a function of k,/k; at k,/k;=\3/2, so along the
vertical edge of ) from K, to K3; see Fig. 2. The solid curves are
obtained for #,=2Ex/ Vo=10 and the dashed ones for ,= V5. As
one can see the band structure is rather flat in the band center but
the level curvature increases when #, is increased. For small V,
values, the energies of the bands are larger than V/, that is, above
the saddle point separating the A and B sites, emphasizing that the
corresponding Bloch states are not anymore localized in these two
sites. The Dirac degeneracies in the ground state obtained at the
Brillouin zone corners are generic and can be inferred from group-
theoretic considerations. Note, however, that the conical intersec-
tions do not extend much over the first Brillouin zone when the
potential is weak but start to spread when 7, is decreased.

group has been analyzed by Lomer [48] and contains 12
elements. In terms of Bloch wave functions ¢, the lattice
space-group operations translate into point-group operations
on k e (), possibly followed by a reciprocal lattice translation
to bring back the resulting new wave vector in (). The key
point is that degeneracies can only occur at Bloch wave vec-
tors which are invariant (up to reciprocal lattice translations)
under the action of a non-Abelian subgroup G of the point
group. For the graphene this happens at the Dirac points. For
example, at corner K;, beside unity, G is made of two rota-
tions of angles =27/3 about the center I' of the Brillouin
zone and three reflexions about the lines connecting I' to the
three points labeled K. This group of order 6 admits an irre-
ducible two-dimensional representation which explains the
band spectrum degeneracy at the Dirac points.

This can be nicely illustrated in the weak V, limit (or
equivalently when #, is large). In this case, the particles are
quasifree; i.e., the energies of the bands are larger than V,,
that is, above the saddle point separating the A and B sites
(see Fig. 8). The band spectrum can be understood in two
steps. First, one folds the parabolic dispersion relation of the
free particle into the first Brillouin zone (repeated-zone
scheme [28]) and then one couples crossing levels at Bragg
planes by the weak potential. At K, three plane waves fold
with the same kinetic energy, namely, K,=k,, K,=k,, and
K;=k; (see Fig. 2). The weak periodic potential then couples
these three plane-wave states and the coupling matrix ele-
ments are all identical. The eigenstates of this 3 X 3 matrix
split into a singlet and a doublet. When Vj, is negative, the
singlet is the ground state which is consistent with the trian-
gular Bravais lattice obtained in this case (6<<0). When V) is
positive (6>0), the doublet becomes the ground state and
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FIG. 9. The hopping parameter |t,| in units of the recoil energy
Ey (crosses) as a function of the inverse of the effective Planck’s
constant f1,=\2Ex/V, as obtained from the exact numerical com-
putation. The harmonic approximation (dashed curve) and the semi-
classical calculation (solid curve) of the hopping parameter have
been added for comparison even if their range of validity is re-
stricted to the tight-binding regime #,<<1.

features the tip of the conical intersection between the two
subbands when the quasimomentum is moved away from K;
see Fig. 8.

From the exact numerical calculation, one can extract the
slope of the dispersion relation at the Dirac points and then
the corresponding tunneling strength |¢,| as a function of ﬁ;l;
see Fig. 9. Figure 10 gives the comparison between the exact
calculation, the harmonic, and the semiclassical calculations
as a function of ﬁ;l in the tight-binding regime where 7,
< 1. As one can see, the harmonic approximation is way off
whereas the semiclassical estimate proves excellent.

F. Reaching the massless Dirac fermion regime

To access the massless Dirac fermion regime one first
needs to completely fill the ground-state band alone, a situ-
ation known as half-filling. This is achieved by having ex-
actly one fermion with spin state o= % 1/2 per Bravais cell.

0.1 F T T T T T

0.01 [

| to | 0.001 |

ERr 0.0001 |

10° | e

10-6 L 1 1 1 1 1
3 3.5 4 4.5 5 5.5 6

1/he

FIG. 10. The hopping parameter |fy| (in units of the recoil en-
ergy Eg) as a function of the inverse effective Planck’s constant
h,=V\2Eg/V, in the tight-binding regime where 7,< 1. As one can
see, the harmonic approximation (dashed curve) is completely off.
For example at Vy=32E (or #,=0.25) |t is underestimated by a
factor 10 and the discrepancy gets worse as V|, increases. On the
other hand, the agreement between the semiclassical calculation
(solid curve) and the exact numerical computation (crosses) just
proves excellent.

043411-10



ULTRACOLD FERMIONS IN A GRAPHENE-TYPE OPTICAL...

Starting from a spin-unpolarized cloud of fermions, half-
filling is thus reached by loading the optical honeycomb lat-
tice with exactly two fermions per Bravais cell, correspond-
ing to an average number density p=1 in the tight-binding
picture. When this is achieved, the Fermi energy slices the
band structure at the Dirac points. For experiments that study
transport phenomena, one would also need to subsequently
dope the sample away from half-filling such that the Fermi
energy of the system is varied in the linear part of the band
structure.

In a usual experiment, atoms are generally held in an
external harmonic potential and the optical lattice potential is
superimposed. Reaching half-filling could then be done in
two steps, first by significantly increasing repulsive interac-
tions U between fermions through a Feshbach resonance and
then by driving the system into the Mott-Hubbard phase with
one fermion per site as done in [50,51]. Then setting U to
zero again should maintain the system at number density p
=1. Obvious candidates for such experiments are *°K as well
as °Li atoms [50-52]. In the external trap, the Mott insulator
appears first where the local filling is approximately one
atom per site and one needs to ensure that adding more at-
oms (or increasing the chemical potential u) does not favor
the appearance of the doubly occupied Mott phase. This will
be the case for very strong repulsion U> u,t,,kgT in which
case one expects the entire center of the trap to contain a
Mott insulating phase with single occupancy and negligible
thermally activated doubly occupied sites. In the case of the
honeycomb lattice, starting from a spin-unpolarized sample,
it is known that half-filling is reached for U, ~ 5t,, the atoms
displaying at the same time an antiferromagnetic order [18].
Note that U,~ W, where W=2E;=6|t,| is the bandwidth.

Doping the system could be done in the following way.
The external harmonic confinement (with angular trap fre-
quency (),) defines a characteristic length {=+2|to|/(m€},)
over which the energy is shifted by precisely the tunneling
energy f, [53-55]. This length defines the distance over
which one given lattice site is coupled by tunneling to its
neighbors. In turn, having loaded N fermions into the trap,
one can define a characteristic filling factor through p
=Ng(al{)?. Varying [t;| by changing the lattice potential
height V|, or tightening or loosening the trap by changing (),
would thus allow to tune p in a controlled way and hence to
dope the system.

For the conical intersection at the Dirac points to signifi-
cantly spread over the Brillouin zone (), one needs to reach
the tight-binding regime where V,, is large enough (typically
Vo> 10ER will do). Inspection of the Taylor expansion of Eq.
(20) then shows that it is sufficient to have |gla<2 (g being
the small displacement from a Dirac point) for the band
structure to be well approximated by a linear dispersion re-
lation around the Dirac points. The available energy range
AE is thus set by the bandwidth itself, namely, AE<W. So
tuning the filling factor away from half-filling and residual
thermal fluctuations will keep the system in the massless
Dirac fermion regime provided w,kzT<W (Fig. 11). For ex-
ample, at V(=32Ej, the temperature constraint, as derived
from Eq. (48), is T<Ty/50 whereas it is T<<Tg/2 at V,
=10Eg. There is thus room left for reaching the massless
Dirac fermion regime within the current state-of-the-art cool-
ing technology.
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FIG. 11. Cut of the linear dispersion approximation along Oy at
k,=0 in the first Brillouin zone () as compared to the actual band
spectrum in the tight-binding regime. At half-filling, the Fermi en-
ergy cuts the band spectrum at the Dirac points K and K’. Doping
the system away from half-filling moves the Fermi energy up or
down but the system can still be described in terms of massless
Dirac fermions provided alg| <2, i.e., provided the change in the
Fermi energy is much less than the bandwidth W=6|¢y| itself. By the
same token, thermal excitations of the system can still be described
as thermal massless Dirac fermions provided kgT<<W.

IV. ROBUSTNESS OF THE MASSLESS DIRAC FERMIONS

As the very existence of the massless Dirac fermion re-
gime rests on the two conical degeneracies in the band struc-
ture, one may wonder if this regime would resist imperfec-
tions of the system. Indeed the argument we gave to explain
the conical degeneracies relied on group-theoretic arguments
which were specific to the hexagonal symmetry of the hon-
eycomb structure. In practice, it is impossible to control the
laser configuration to the point where all intensities and
alignment angles would all be exactly equal. Such imperfec-
tions in the system would obviously break the hexagonal
symmetry and one could think that the Dirac fermions would
just be destroyed. In fact, as we will see shortly, massless
Dirac fermions are quite robust and survive small imperfec-
tions that are easily within experimental reach.

A. Imbalanced hopping amplitudes

To understand why massless Dirac fermions are robust,
we will start by analyzing the case of imbalanced hopping
amplitudes as done in [56]. For real graphene, this would
correspond to stretching the graphene sheet. In this case, the
tight-binding band structure is given by €..(k)= *|Z;|, where
Z; is defined in Eq. (20). The degeneracies are found at
points k; € Q) canceling Z; =0. This condition boils down to
sum up three vectors to zero in the two-dimensional plane;
see Fig. 12. As such, a solution is only possible provided the
hopping amplitudes satisfy one of the norm inequalities
given by

[t2] =[]l = || = leal + 1]

(51)

and cyclic permutations. If this is the case, defining the
angles ¢ ,=arg 1, 3—arg t;, the Dirac points solve

|5 = |6 = |1,
kp - - =
cos(kp -a; - ¢) 2|t1t2|
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FIG. 12. The condition Z;=0 is equivalent to cancel the result-
ant vector u of three vectors, each with length |¢,| and polar angle
a,=k-c,+arg(t,). There will always be a solution provided one of
the norm inequalities ||t,|—|t3]| =<|¢;| =|t,]+|t5] (and cyclic permuta-
tions) is satisfied.

_ | = |3]* = |1

cos(kp -a, — @) = e , (52)
143

subject to the condition
|tofsin(kp - @) = @1) + |t3[sin(kp - @y — ;) =0.  (53)

We find the important result that the system self-adapts to
changes in the hopping amplitudes by shifting the Dirac
points away from the corners of the Brillouin zone until the
norm inequalities (51) break and degeneracies disappear.
Thus, provided the hopping imbalance is not too strong, the
massless Dirac fermions do survive imperfections in the sys-
tem and the hexagonal symmetry breaking.

We illustrate this important feature in the simple case of
only one imbalanced hopping amplitude, namely, ¢, =y¢, and
t,=ty=t,. We further choose 7y real and 0<|y|=2 for the
Dirac points to exist. We then find two Dirac points D., and
D/, given by kp=—k},=¢)(b,~b,) where ¢, €[0,1/2] solves
cos(2mgy)=—y/2. This means that the two Dirac points D,
and D; move along opposite paths in the Brillouin zone ().
The fact that Dirac points always come in by pairs of oppo-
site location in () is generic [57]. When v is increased from
0to 2, D, starts at ky=(3k,/4)e, for y=0, then moves along
axis Oy and reach corner K; at y=1. Note that when y—0,
the physical situation is that of weakly coupled “zigzag” lin-
ear chains. For y>1, D, leaves () but a translation in recip-
rocal lattice brings it back on the vertical edges of () (tech-
nically we get two copies of the same point). D, reaches the
middle of the vertical edge at y=2 where it merges with D’y
into a single Dirac point; see Fig. 13. Interesting physics
occurs at y=2 in connection with the quantum Hall effect
[17,58]. As soon as y>2, the degeneracy is lifted and the
massless Dirac fermions do not exist anymore. For negative
¥, D, and D’y move back from *(3k,/4)e, to the center I" of
the Brillouin zone where they merge and disappear; see Fig.
13. The fact that Dirac points can only merge at the center
and mid-edge points of ) is also generic [57]. Hence, far
from being a nuisance, we see that controlling the hopping
amplitude imbalance proves an interesting way of exploring
the massless Dirac fermions physics under different circum-
stances by moving around the Dirac points in the Brillouin
zone.
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K1

FIG. 13. When the three hopping amplitudes ¢, are unbalanced,
the Dirac points are shifted in the Brillouin zone () and disappear
when the norm inequality ||,| - |t5]| =< |¢;| = |t2| +|#3] is no longer sat-
isfied. We depict here how the Dirac points D, and D; move in )
when only one hopping amplitude is imbalanced, namely, #; =t
and #,=13=1,. Points D, (thick path) and D/, (thin path) move along
opposite paths. Increasing y from 0, point D, starts at D, and
moves upward. It reaches point K; at y=1 (balanced amplitudes
case) then moves along the vertical edge of ) where it reaches its
middle point D, at y=2. The Dirac points cease to exist when y
>2. For negative vy, D, moves downward from Dy (dotted thick
path), reaches the zone center I" for y=-2, and then ceases to exist
for y<-2.

B. Optical lattice distortions

The previous discussion concentrated on the impact of
imbalanced hopping amplitudes irrespective of the change in
symmetry of the lattice potential. We will now analyze these
lattice distortions in more detail and give quantitative esti-
mates about the experimental degree of control which is re-
quired to target the massless Dirac fermion regime. We will
consider in-plane laser beams with different (positive)
strengths E,=s,F, and with respective angles away from
2/ 3; see Fig. 14. It is important to note that we will always
stick to imperfections which are compatible with a two-point

J

S

)

Q)

/

(@) (

FIG. 14. (Color online) (a) The asymmetric in-plane three-beam
configuration. Three monochromatic and linearly polarized laser
beams with wave vectors k,, interfere with different strengths E,
=s5,Ey (n=1,2,3). The respective angles depart from 27/3. (b)
Distorted optical lattice obtained with ¥;=1,=5X 1072 and s,=1,
s,=1.03, and 53=0.97. The color convention is the same as in Fig.
4. For weak enough distortions, the primitive diamond-shaped cell
3, still contains two field minima as evidenced in the plot.
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Bravais cell. They will only induce distortions of the hexago-
nal spatial structure of field minima but without breaking this
pattern.

The new optical lattice potential is now given by V'(r)
=V,lf' (r)|> with the new total dimensionless field amplitude

f1(r)=s,+s,exp(—ib| -r)+s;exp(iby-r). (54)

Here the b) (n=1,2) feature the new reciprocal lattice basis
vectors. They define in turn a new set of Bravais lattice basis
vectors a, giving rise to a new primitive diamond-shaped
cell X', Unless the angle mismatches vanish, the new Bra-
vais and reciprocal lattices are no longer hexagonal but ob-
lique with no special symmetry except for inversion. As a
consequence, the new first Brillouin zone €}’ is still a hexa-
gon but no longer a regular one.

Since we assume a two-point primitive cell, the minima of
the new optical potential still identify with zeros of f’(r).
Similarly with the case of imbalanced hopping amplitudes,
we find two solutions if and only if the field strengths s,
satisfy one of the norm inequalities |s,—s3| <s; =s,+s53 (and
cyclic ones). In this case the minima are given by

L S3-si-st
cos(b;-r)= ,
2S1S2
2 2 2
S5—55—S
cos(by-r)= 2 3 1 (55)
251S3

subject to the condition s, sin(b{-r)=s3 sin(b;-r). In the fol-
lowing we will examine separately the effect of strength im-
balance and angle mismatch.

1. Critical field strength imbalance

To give an estimate of the critical field strength imbalance
beyond which the Dirac points cannot survive, we consider
the simple case of only one imbalanced laser beam and no
angle mismatch, namely, 6,=6;=0, s;=1+%, and s,=s3=1.
In this case the Bravais lattice, the reciprocal lattice, the
primitive cell X, and the Brillouin zone () are not modified.
The new optical potential V' (r)=Vyv'(r) reads

v'(r)=v(r) +2n6v(r) + n(n+2),

Sv(r)=cos(b, -r)+cos(b, - r), (56)

where v(r) is given by Eq. (8). Note that when only one field
strength is imbalanced, the corresponding potential still dis-
plays a reflection symmetry. In the present case, it is the
Ox-reflection symmetry because V' (r) is invariant under the
exchange b, b,. Requiring now that the primitive cell %,
exhibits two field minima imposes —1 = »=1. Their posi-
tions in 3 are given by rjpz=@spl@;+a,) with
cos(2mp)=—(1+7)/2. Their midpoint rg=(ry+rg)/2
=(a,+a,)/2 is a saddle point and defines the potential barrier
height Vg to cross to go from A and B in 2. One finds V;
=(n-1)*V,.

As a whole the field minima organize in a hexagon which
is stretched (7 negative) or compressed (7 positive) along
Ox; see Fig. 15. As a consequence two of the three new
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FIG. 15. (Color online) Slightly distorted lattice obtained with
vanishing mismatch angles and one imbalanced field strength,
namely, s;=10/9 and s,=s3=1. The color convention is the same as
in Fig. 4. In this particular case the hexagon of field minima is
slightly squeezed along the horizontal axis Ox and the vectors c;,
connecting a given minimum to its three nearest neighbors have
now different lengths. In the situation depicted |c)|=|c;| #|e;|. In
turn, due to the reflection symmetry about Ox, the tight-binding
hopping amplitudes satisfy |t,|=|t;| # |1,

vectors ¢, joining one minimum to its three nearest neigh-
bors will have equal length. In the present situation we get
les|=lci] # |e|. The potential barrier height V5 to cross to go
from A to B along ¢; and ¢} is given by the corresponding
saddle points located at the middle of the edges of 3. One
finds Vi=(n+1)*V,.

Now, when 7 is increased from 0, the minima move
closer along ¢| and move away along ¢ and c¢}. At the same
time, the potential barrier Vg along ¢; is lowered and the
potential barrier V¢ along ¢, and cj is increased. As a net
effect, in the tight-binding picture, we expect the tunneling
amplitude || to increase while |t,| and |¢;] decrease. We get
the opposite conclusion when 7 is lowered from 0. Since the
potential is invariant through b, < b,, we further have |t,|
=|t3] and we recover the case of one imbalanced hopping
amplitude analyzed in the previous section.

One could try to derive a semiclassical expression of the
t, as a function of 7 using the instanton method but, actually,
such a tedious calculation proves unnecessary, at least when
n is small. Indeed, by inspection of the semiclassical expres-
sion (40), we expect the ratio |t;/t,] to scale as
exp[AS(#n)/#,] at leading order, where AS(#) is the action
difference between the two instanton trajectories linking sites
A and B along ¢5 and ¢}, respectively. For small enough 7 we
expect AS(7) to grow linearly with 7, the slope being posi-
tive since the ratio |t,/t,| should increase with 7. The Dirac
degeneracies disappear when this ratio is 2 (see previous
section), thus we get the semiclassical prediction that this
will happen when 7o #,. This result can also be inferred by
saying that the Dirac points will disappear as soon as the
perturbing potential 278V(r), see Eq. (56), strongly mixes
the unperturbed states. This will happen when the corre-
sponding coupling energy equals the mean level spacing of
the unperturbed system and we get back to the prediction
n*h,.

To check our semiclassical prediction we have computed,
for each value of the effective Planck’s constant #,, the
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FIG. 16. The band diagram for the two lowest levels as a func-
tion of 7 for Vy=80E (%,~0.158). The bands are plotted along the
vertical straight line joining the Dirac points K, and Kj of the
balanced situation; see Fig. 2. The origin of energy is fixed at the
Fermi energy for a half-filled band and all bands have been shifted
such that the upper and lower bands intersect at zero energy
difference.

ground-state and first-excited-state levels for different values
of 7 and we have extracted the corresponding critical value
1. for which the Dirac degeneracies are lifted. Figure 16
gives_an example of the band structure obtained at 7,
=1/40~0.16 for n ranging from 0 to 0.054. We have then
plotted 7, as a function of #,; see Fig. 17. We have fitted the
data with the quadratic fit function af,+ ,Bﬁﬁ and found «
~(0.1074 and B~ 0.0624 enforcing the very good agreement
obtained with our linear prediction in the semiclassical re-
gime i, <1. The quadratic correction could certainly be in-
ferred from semiclassical higher-order corrections.

We would like to emphasize at this point that increasing
or decreasing # from O is not symmetrical. When 7 is de-
creased from 0, the Dirac degeneracies are predicted to dis-
appear when |t,/t,|] — 0. However, the best that we can do is
to let »— —1. This unfortunately means that one laser beam
is almost extinguished and the situation is more that of very
weakly coupled one-dimensional chains, a situation we post-

0.07

0.06

0.05 Dirac points disappear

0.04

Te 0.03

0.02 Dirac points exist

0.01

0 \ \ \ \
0.1 0.2 0.3 0.4

hie

<
o
n

FIG. 17. The critical laser strength imbalance 7, at which the
Dirac degeneracies are lifted as a function of the effective Planck’s
constant #,=V2Eg/V;. The solid line corresponds to a quadratic fit
of the numerical data. The linear coefficient is a=0.1074 while the
quadratic one is 8~0.0624. As one can see our numerical results
are in good agreement with our semiclassical prediction 7.%7%,.
The degree of control of the intensity imbalance of the laser fields
gets more stringent as the optical lattice depth V|, is increased. Nev-
ertheless, at already V,=20E (f,~0.3), the laser intensities should
all equal within 8% which does not sound particularly demanding.
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FIG. 18. (Color online) Distorted lattice obtained with balanced
field strengths s,=1 and angle mismatch 6;=—6,=—7/10. The
color convention is the same as in Fig. 4. In this particular case the
hexagon of field minima is stretched along the horizontal axis Ox
and the vectors ¢, connecting a given minimum to its three nearest
neighbors have now different lengths. In the situation depicted
les|=lei] # lel. In turn, due to the reflection symmetry about Ox,
the tight-binding hopping amplitudes satisfy |t,|=|t5] # |1,].

pone to future study as it proves interesting for high-T,. su-
perconductivity [59]. We thus see that decreasing slightly 7
from O does not harm the Dirac degeneracies. They move
inside () but do survive. By contrast, increasing slightly #
from O does destroy the Dirac degeneracies as soon as 7
~f,.

As one can see from the plots, the tolerance about the
intensity mismatch of the laser beams increases with 7, or
equivalently when the optical lattice depth V|, decreases. On
the other hand, as we already saw, the Dirac cones do not
extend much over the Brillouin zone if V|, is too small. So
there is a trade-off to make. The situation is, however, really
favorable since the intensity mismatch tolerance is already in
the 10% range for V~ 10E. This means that the massless
Dirac fermions prove quite robust and should be easily ac-
cessed experimentally.

2. Critical in-plane angle mismatch

We now estimate the critical angle mismatch when all
laser beams have the same intensities (s;=s,=s3=1). We see
from Eq. (54) that the new optical potential still displays the
exchange symmetry b« b, and thus a reflection invariance
with respect to their bisectrix. In the following we stick to
the simple case where 3=—6,=6 and 6 is small. In this case
both the Bravais lattice, the reciprocal lattice, the Brillouin
zone ) and the diamond-shaped primitive cell 3 get modi-
fied. The new reciprocal basis vectors turn out to be b{=b,
+6b, _and bi=b,+ b, where & ,=(0/\3)b, and &b,
—(9/\3)b1 Since the exchange symmetry b, b, is again
preserved, the new potential continues to display the
Ox-reflection invariance. Figure 18 gives a plot of the new
potential structure for §=-/10.

This situation boils down again to the case of one imbal-
anced tunneling amplitude. Indeed, the angle between the b
and b} decreases when 6 is increased from 0. In turn the
angle between the corresponding a, increases and the hexa-
gon structure made by the A and B minima get compressed
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FIG. 19. The critical angle mismatch 6, (in units of ) beyond
which the Dirac degeneracies disappear as a function of the effec-
tive Planck’s constant #i,=V2ER/V,. The dashed line corresponds to
a quadratic fit of the numerical data. The linear coefficient is 0.109
while the quadratic one is —0.0577. As one can see our numerical
results are in good agreement with our semiclassical prediction 6.
«f,. The degree of control of the angle mismatch gets more strin-
gent as the optical lattice depth V is increased. Nevertheless, at
already V,=20Ep (f,~0.3), the angle mismatch should be less than
5° which is not particularly demanding.

along Ox. The opposite conclusion holds when 6 is de-
creased from 0. We get again the situation where |t,|=|t]
#|t,| and |t,/t,)=1 when #=0 and vice versa. Like for the
field strength imbalance, the situations >0 and <0 are
not symmetric. The massless Dirac fermions prove more sen-
sitive to closing the angle between the b, so for 6;=—0,
=60>0 because [t,/t,] then increases and the threshold
|t\/1,|=2 is more rapidly hit. This is the situation we explore.

Applying the same reasoning as before, we thus predict
the critical angle mismatch beyond which the massless Dirac
fermions are destroyed to scale as 6. #,. Again, to get 6, as
a function of 7,, we numerically compute the band structure
at a given 7, for different in-plane mismatch angles 6 and
then extract the value 6, for which the Dirac degeneracy is
lifted. We then repeat the procedure for different #,. As one
can see, our prediction is in very good agreement with the
numerical calculations, see Fig. 19, and well supported by a
quadratic fit. As 6. increases with 7,, there is a trade-off to
make between reaching the tight-binding regime where V, is
large and achieving an experimentally reasonable angle mis-
match tolerance which requires V|, to be small. The trade-off
turns out to be a favorable one since already for V,=20Ej
(f,=~0.3), one gets a tolerance of about 5° on the laser beam
alignment. We expect the same type of scaling for small
out-of-plane angle mismatches. Furthermore, when several
small distortions combine, their effects should add up and

thus the critical imperfection threshold should still scale with
h

e

As an overall conclusion we see that massless Dirac fer-
mions are quite robust to moderate lattice distortions. Dem-
onstrating them in an experiment should not be particularly

demanding in terms of the control of the laser configuration.

C. Inequivalent potential wells

We finally briefly mention how to distort the optical lat-
tice in a systematic manner as it allows for an experimental

PHYSICAL REVIEW A 80, 043411 (2009)

control of the mass of the Dirac fermions as well as for a
continuous switch from a honeycomb lattice to a triangular
one. In Sec. II B 4, we observed that honeycomb potential
(6) is the simplest of all graphene-type potentials character-
ized by choosing vy and v, real (in fact, positive) while
putting all unrelated coefficients in Eq. (17) to zero. Now,
letting Up, tO acquire a phase ¢, such that e"“va1 is positive,
will break the reflection symmetry of the honeycomb poten-
tial [30].

In the r-dependent part of the dimensionless potential (8),
this phase ¢ is introduced by the replacement

3 3
> cos(b,-r) — > cos(b,-r+¢),

a=1 a=1

(57)

where by;=-b—b,. This can be implemented by superimpos-
ing three independent standing waves, of the same wave-
length and with equal intensity, whose wave vectors form the
trine of Fig. 1 [60]. As a consequence of the incoherent su-
perposition, the ¢ replacement of Eq. (5) is not available and
the r replacement alone cannot remove all three phases of the
standing waves. One can, however, shift r such that the three
phases are the same, and then one has an intensity pattern
proportional to the right-hand side of Eq. (57).

Most of the hexagon structure of Fig. 4 remains un-
changed by this modification: lattice sites A, B, and C con-
tinue to be the locations of local minima and maxima,
whereas the saddle points S acquire new positions on the
...ABCABC... lines.

Figure 20 confirms that, for small ¢ values, the minima of
the honeycomb dipole potential are still organized in a hex-
agonal pattern but we now have different potential depths at
sites A and B. The potential energy mismatch is 2e
~8Vy|e|/\3. In view of Egs. (21) and (24), this means that
the Dirac fermions acquire a mass m,, |go| or, in other words,
that the Dirac degeneracies are lifted. The possibility of fine
tuning the mass of the Dirac fermions through the parameter
¢ is an interesting experimental knob to play with.

Increasing |¢| further, one can also see that, for the par-
ticular values |@|=7/6 and /2, the three sublattices of
saddle points merge into a single triangular lattice, which
coincides with the A, B, or C lattice, respectively; see Fig. 20.
This merging of a potential minimum or maximum with
three saddle points leads to a peculiar third-order saddle
point. For ¢=1/6, say, the S sites merge with the B sites and
we have

S cosb, 4 @l yms =~ <D b, ()’ (58)

for [r—rg|<«7!, hence a cubic saddle point rather than the
usual quadratic saddle point.

An unpolarized ultracold gas of spin—% fermions loaded
into such a potential at half-filling would lead to two fermi-
ons per well. By driving the system through attractive inter-
actions, one could even get a Mott insulator of fermion pairs.
By switching off all interactions and setting ¢=0, one should
be able to study oscillations of atoms between the A and B
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FIG. 20. For various values of the phase parameter ¢ of Eq.
(57), the plot shows the potential energy along a ...ABCABC... line
in Fig. 4. The top plot, for ¢=0, repeats the bottom-left plot of Fig.
4 for reference. The degeneracy between sites A and B is lifted for
the small ¢ value of ¢=1/24; the saddle points have moved closer
to the B sites, where we continue to have local minima. In this
situation the Dirac fermions acquire a mass m.|@|. When ¢
=1/6, the saddle points S coincide with the B sites and we have
cubic saddle points there. Finally, in the bottom plot, we have ¢
=/3 and the saddle points are halfway between adjacent B and C
sites, with potential maxima at both of them. Except for a displace-
ment, the potential in the bottom plot is the negative of the potential
in the top plot and thus identical with honeycomb potential (6) for
red rather than blue detuning of the three running wave lasers. For
ease of comparison, the potential constants are adjusted such that
the maxima and minima are at V=0 and V=9V, respectively, for
all ¢ values.

sublattices. We will analyze this situation in a follow-up pa-
per.

V. CONCLUSION

Motivated by the vivid field of graphene physics, we have
explained and analyzed how to reproduce massless Dirac fer-
mions by loading ultracold fermions in an optical lattice with
honeycomb structure. We have described the two-
dimensional laser configuration that gives rise to an optical
potential where field minima are organized in a honeycomb
structure (with lattice constant a) and we have thoroughly
detailed the corresponding crystallographic features. The be-
havior of atoms propagating in such an optical potential in
the tight-binding regime is in one-to-one correspondence
with the behavior of electrons propagating in a graphene
sheet. The ground-state and first-excited levels of the band
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structure exhibit two conical degeneracies located at the cor-
ners of the first Brillouin zone, as dictated by symmetry ar-
guments. In the neighborhood of these degeneracies, the
band spectrum is linear.

When the lattice is loaded with fermions at half-filling,
the Fermi energy slices the band structure at these degen-
eracy points known as the Dirac points. Around half-filling,
the tight-binding Hamilton operator can then be recast in a
form reminiscent of the relativistic Weyl-Dirac Hamilton op-
erator and featuring so-called massless Dirac fermions. The
important parameter driving the dynamics turns out to be the
hopping amplitude #, between nearest-neighbor sites as it
gives the bandwidth W=6|t;| and the “Fermi velocity” v,
=3alty|/(2h). We have derived a semiclassical expression for
|t in terms of the effective Planck’s constant of the problem,
namely, 7,=\2Eg/V, (with V|, the optical potential strength
and Ej the recoil energy) and have compared it to an exact
numerical calculation of the band spectrum. From this we
have derived quantitative experimental criteria (such as the
required initial temperature of the atomic gas) to reach the
massless Dirac fermion regime.

We have also examined the robustness of the massless
Dirac fermions to imperfections of the laser configuration
(field strengths imbalances and angle mismatches). Massless
Dirac fermions turn out to be quite robust as the equality of
the beam intensities should be controlled within the few per-
cent range while the respective beam angles should equal
2m/3 within the few degrees range. By appropriately con-
trolling these lattice distortions, one can even control and
move the Dirac points in the Brillouin zone. Lastly, we in-
troduce an irremovable phase to the honeycomb potential,
hence lifting the degeneracy between two sublattices. In turn,
the Dirac fermions acquire a mass proportional to this phase.
We also briefly mention the peculiar properties of saddle
points and the possibility to study oscillations of atoms be-
tween two sublattices as a consequence of this irremovable
phase.

As an overall conclusion, mimicking graphene physics
with ultracold fermions is within experimental reach. For
noninteracting fermions, one could think of implementing
transport experiments (in the presence of disorder or not).
For example, by rotating the whole honeycomb lattice
around a given axis perpendicular to the lattice plane [61] or
by implementing the scheme proposed in [62], one would
mimic effective magnetic fields able to reproduce the quan-
tum Hall effect situation. In the rest frame of the atoms, the
centrifugal effects are described by a fictitious vector poten-
tial. This leads to Landau levels and paves the way to physi-
cal effects analogous to the quantum Hall effect. The possi-
bility to move the Dirac points in the Brillouin zone even
offers new physical effects to test [17].

Interacting systems on a lattice prove also particularly in-
teresting as they can be mapped (at least for strong interac-
tions) on Heisenberg models and thus offer ways of explor-
ing quantum magnetism [63]. In the case of the honeycomb
lattice, quantum phase transitions are predicted to occur
when the interaction strength |U| is strong enough. For re-
pulsive interactions, quantum Monte Carlo calculations pre-
dict antiferromagnetic order to occur at half-filling [18]. For
attractive interactions, mean-field calculations have started to
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analyze the BEC-BCS crossover and predict a semimetal/
superconductor transition [19]. Recent Monte Carlo studies
have even started to analyze this BEC-BCS crossover [64]
and one can expect an increase in such studies in the near
future. On the other hand, Wu and Sarma have begun studies
on the higher-energy orbitals on a honeycomb lattice and
they conclude that the band structure leads to enhanced in-
teraction effects giving rise to various charge and bond or-
dered states at commensurate fillings [65]. Very recently,
implementations of massless Dirac fermions in square lat-
tices have been proposed [66,67]. The situation seems thus
mature for an experimental effort toward loading ultracold
fermions in a honeycomb optical lattice.
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