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A generalized theoretical description of a light-matter interaction beyond a dipole approximation is devel-
oped on the basis of the multipolar Hamiltonian with the aim of understanding the near-field excitation of
molecules at the 1 nm scale. The theory is formulated for a system consisting of a molecule and a near field,
where a nonuniform electric field plays a crucial role. The nonuniform light-matter interaction is expressed in
terms of a spatial integral of the inner product of the total polarization of a molecule and an electric field so that
the polarization is treated rigorously without invoking the conventional dipole approximation. A nonuniform
electronic excitation of a molecule is demonstrated by solving a time-dependent Kohn-Sham equation in real
space and real time with an implementation of the nonuniform light-matter interaction. The computations are
performed to a linear chain molecule of dicyanodiacetylene �NC6N�. The nonuniform electronic excitation
clearly shows inhomogeneous electron dynamics in sharp contrast to the dynamics induced by a uniform
electronic excitation under the dipole approximation. Despite the inversion symmetry of NC6N, the nonuni-
form excitation generates even harmonics in addition to the odd ones. Higher-order nonlinear optical response
and quadrupole excitation are also observed.
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I. INTRODUCTION

Optical response of molecules is undoubtedly essential for
understanding their physicochemical properties. For ex-
ample, uv-visible light is used to study electronic states of
molecules, far-infrared light for molecular vibrations, micro-
wave for molecular rotations and so forth. In these optical
responses, wavelengths of the lights are usually considered
to be much longer than molecular sizes. Thus, a target mol-
ecule is well approximated by a point dipole and the dipole
feels an almost uniform electromagnetic field. This condition
underlies the conventional dipole approximation. Further-
more, light is an external field to excite molecules and its
wavelength is definitely determined by an apparatus condi-
tion. Since spatial resolution of spectroscopy is limited by
the wavelength of the incident light, it is impossible to gain
molecular properties in a local region shorter than the wave-
length, i.e., diffraction limit. The conventional optical re-
sponse mentioned above is referred here to as a far-field and
matter interaction.

However, recent development of nanofabrication and
nano-optical techniques requires a more general optical re-
sponse theory for the following reasons. �We note that the
light is considered here to be a classical wave determined by
the Maxwell equations, although it should be treated in a
narrow sense by resorting to a quantum electrodynamics
theory.� When noninteracting or weakly interacting nanopar-
ticles are irradiated by an incident laser pulse, electric di-
poles are induced in the nanoparticles. The induced dipoles
generate local electric fields, in addition to far fields, around

the nanoparticles and then the adjacent particles can interact
with each other through the local fields. This local field is
often referred to as a near field in contrast to a far field. The
near-field interaction is significantly different from the far-
field interaction �1–5�. First, as mentioned above, the near
field is a local field around a particle in the presence of laser
radiation and thus it is not an external field supplied from an
apparatus. If the near-field irradiates adjacent particles, the
new near-field is subsequently generated around the par-
ticles. The new near-field recursively irradiates other par-
ticles and these sequential light-matter interactions between
the particles persist self-consistently. As a result of the self-
consistent interaction, an enhanced electric field, which is
closely related to surface enhanced Raman scattering �SERS�
�6�, appears around the particles. Such locally enhanced elec-
tric fields have been observed experimentally �7� and inten-
sively simulated in an effort to understand mechanisms of
SERS by solving the Maxwell equations �8,9�. Second, the
near field is a nonpropagating wave rapidly decaying from
the surface of a radiating-source particle, that is, the spatial
variation of the near field is of the same order of magnitude
as the particle size. Thus, the near-field interaction occurs in
a narrow region comparable with the size of the particle. In
other words, the near-field and matter interaction, in sharp
contrast to the far-field interaction, is a nonuniform one and
the spatial structure of the near field plays a crucial role. This
means that the near field overcomes the diffraction limit and
gives in principle information about molecular properties as-
sociated with local structures even of a 1-nm-sized nanopar-
ticle or molecules. Conversely, those great advantages of the
near-field interaction, that is, the self-consistency and the
nonuniformity, require to describe light-matter interactions in
a more general way.*nobusada@ims.ac.jp; http://raphael.ims.ac.jp/
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Basic frameworks of optical response taking account of
the full nonuniform and self-consistent light-matter interac-
tions have so far been developed �10–13�. Although the stud-
ies were made in various molecular or nanostructure systems
at different levels of theory, the authors drew essentially the
same conclusion that those full light-matter interactions have
a great influence on optical properties of the systems. Very
recently, to confirm the importance of the full light-matter
interactions in optical response, explicit computational dem-
onstrations have been carried out in more specific nanosys-
tems such as nanocrystals, semiconductor quantum dots,
nanoparticles, and molecular compounds �8,9,14–19�. Every
study clearly showed significant effects of the full light-
matter interactions beyond the dipole approximation. An
electric field enhancement due to the self-consistent light-
matter interaction is a key ingredient in understanding a
mechanism of SERS and its computations have been inten-
sively demonstrated as mentioned above �8,9�. Multipole ef-
fects concerning the nonuniform light-matter interaction
were discussed in nanoparticles �15,16�, and molecular com-
pounds �14�. Furthermore, the self-consistent and nonuni-
form light-matter interactions were verified in detail to play a
crucial role in optical response to localized light fields gen-
erated between nanostructures �16–18�. These explicit dem-
onstrations have usually been done for model systems, sim-
plifying the electronic structures of target nanostructures, for
example, the nanostructures were assumed to be dielectric
particles or their optical susceptibilities were given in ad-
vance. This is partly because it is computationally highly
demanding to fully quantum-mechanically solve electron dy-
namics of the target nanosystems coupled with the electro-
magnetic field dynamics, in particular almost impossible for
real nanostructures in a 1 nm size or more. Nevertheless, in
molecular science, it is essential to calculate optical proper-
ties associated with details of electronic structures, such as
geometric structures, bond characters, charge distribution,
and electron correlation, of target nanostructures. To describe
optical response of 1-nm-sized molecules, we split the full-
light matter interaction into the issues of self-consistency and
nonuniformity. We first consider the nonuniform light-matter
interaction as an initial step and leave the self-consistent in-
teraction �i.e., solving the Maxwell-Schrödinger coupled
equation� for the next. Here, a first-principles approach to
treat a nonuniform light-matter interaction in real molecular
systems is developed. We place special emphasis on obtain-
ing full quantum-mechanical solutions of electron dynamics
under the near field �i.e., local field� to elucidate the nonuni-
form light-mater interaction at the level of molecular theory.

The conventional optical response theory is usually for-
mulated starting from the minimal coupling Hamiltonian,
and the formulation often relies on the dipole approximation.
In contrast, we develop a more general theory without the
dipole approximation, on the basis of the multipolar Hamil-
tonian derived from the minimal coupling Hamiltonian by a
canonical transformation �11,20–22�. The light-matter inter-
action in the multipolar Hamiltonian is described in terms of
the space integral of an inner product of polarization and an
electric field, whereas the minimal coupling Hamiltonian
uses momentum and vector potential. The last two variables
are rather inconvenient for practical calculations. Notewor-

thy is the fact that in the multipolar Hamiltonian approach
the polarization in the integral can be treated entirely without
any approximations. This means that infinite orders of mul-
tipole moments are taken into account. Therefore, the present
approach is a generalization of the conventional optical re-
sponse theory with the dipole approximation.

To investigate optical properties of real molecules, ex-
plicit time evolution of electron dynamics should be solved.
To this end, we have incorporated our optical response
theory with the nonuniform light-matter interaction into our
developed electron-dynamics simulation approach in real
space �23–26� based on time-dependent density functional
theory �TDDFT�. The integrated TDDFT approach has been
applied to and computationally solved for a test molecular
system of dicyanodiacetylene �NC6N� as an example, to elu-
cidate the electron dynamics of 1-nm-sized molecules in-
duced by the nonuniform near field.

The structure of this paper is as follows. Section II devel-
ops an optical response theory of the nonuniform light-
matter interaction on the basis of the multipolar Hamiltonian.
The nonuniform light-matter interaction formula is further
implemented into the TDDFT simulation approach with the
aim of elucidating the near-field excitation mechanisms of
1-nm-sized molecules. Section III explains a theoretical
model of the near-field interaction and methods of computa-
tions. In Sec. IV, computed results and their analysis are
presented. The concluding remarks are made in Sec. IV. The
SI unit is used and all the operators are hatted throughout this
paper.

II. THEORY

A. Multipolar Hamiltonian

As mentioned in the previous section, we start our theo-
retical formulation from the multipolar Hamiltonian to in-
clude full spatial variation of an electric field for the nonuni-
form light-matter interaction. It should be noted that in this
study the electric field is considered to be a classical value
and any magnetic interactions are neglected. The intermo-
lecular distances are assumed to be large enough so that their
electronic wave functions do not overlap. The multipolar
Hamiltonian of nonoverlapping molecules interacting with
an electric field is then obtained as �22�

Ĥ = Ĥmol + V̂inter −� drP̂�r� · E��r,t� , �1�

where Ĥmol is the Hamiltonian of the molecules and V̂inter is

the static intermolecular Coulomb interaction. P̂�r�=�iP̂i�r�
is the total polarization operator of the system with P̂i�r�
being the polarization operator of the molecule i. E��r , t� is
the transverse part of the electric field written in the form of

E��r,t� = Elaser
� �r,t� + �

j

E j
��r,t� , �2�

where Elaser
� �r , t� is an incident laser field and E j

��r , t� is the
electric field radiated from the jth molecule obtained by
solving the Maxwell equations using P j

��r� , t− �r−r�� /c� as a
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source with c being the speed of light. The static intermo-
lecular Coulomb interaction is given by

V̂inter =
1

�0
�
i�j
� drP̂i

��r� · P̂ j
��r� , �3�

where P̂i
��r� is the longitudinal part of P̂i�r�. Then, Eq. �1� is

rewritten as

Ĥ = Ĥmol +
1

�0
�
i�j
� drP̂i

��r� · P̂ j
��r� − �

i
� drP̂i�r� · E��r,t� .

�4�

The explicit form of P̂i�r� is �20–22�

P̂i�r� = �
�

e��q̂� − Ri��
0

1

d���r − Ri − ��q̂� − Ri�� , �5�

where e� and q̂� are the charge and the position operator of
the �th electron in the molecule i, respectively, and Ri is the
center of mass of the molecule. The integration in Eq. �5�
with respect to � is introduced to express the polarization in
such a compact form, instead of using multipoles explicitly.

We address here the relation between our optical response
formula and the conventional approach based on a multipole
expansion method. Equation �5� can be expanded in a Taylor
series leading to the dipole, quadrupole, octapole, and
higher-order multipole terms. The present formulation is thus
a generalization of the conventional optical response theory
with the dipole approximation. Applying the Taylor expan-
sion to Eq. �5� and integrating the resulting equation with
respect to �, we obtain

� drP̂�r� · E��r,t�

= 	�
�

e��q̂� − R�i
 · Ei
��R,t�

− 	 1

2!��

e��q̂� − R�i�q̂� − R� j
�iEj
��R,t�

+ 	 1

3!��

e��q̂� − R�i�q̂� − R� j�q̂� − R�k

� �i� jEk

��R,t� − ¯

� �̂iEi
� + Q̂ij�iEj

� + Ôijk�i� jEk
� + ¯ , �6�

where �̂i, Q̂ij, and Ôijk represent the dipole, quadrupole, and
octapole moments of a molecule, respectively, and the in-
dexes denote their �x ,y ,z� tensorial components. These mo-
ments are defined at the molecular center R. �i is the gradi-
ent operator along the ith direction and acts on the electric
field. We here use a contraction of xiyi=�ixiyi. The dipole
moment couples with the field itself, the quadrupole with the
first derivative of the field, and the octapole with the second
derivative of the field, and so forth. If an electric field varies
slowly over a whole spatial region, the optical response can
be reasonably described by only the first term of this expan-
sion �i.e., the dipole approximation�. However, the near-field

interaction requires an infinite number of terms in the expan-
sion because of its nonuniform spatial structure. Therefore,
we use Eq. �5� as is, without performing the Taylor expan-
sion of the polarization.

B. Molecule interacting with a near-field

To demonstrate the electron dynamics in molecules inter-
acting with a near field, we first introduce a theoretical model
consisting of two molecules irradiated by a laser light. Figure
1�a� schematically shows the model. The multipolar Hamil-
tonian Eq. �4� is rewritten for such a model system by

Ĥmol +
1

�0
� drP̂1

� �r� · P̂2
� �r� −� dr�P̂1�r� + P̂2�r�� · E��r,t� .

�7�

As mentioned in the beginning of this paper, the near field is
a nonpropagating local field around nanostructures, gener-

incident laser field

molecule radiation source

oscillating dipole model

near-field

molecule 1

molecule 2

(b)

(a)

scattered light

x

y

FIG. 1. �Color online� �a� Schematic of near-field and scattered
light radiation from distant molecules 1 and 2 in the presence of an
incident laser field. �b� Nonuniform light-matter interaction model
derived from the above molecular system. The molecule 2 is con-
sidered to be a radiation source approximated by an oscillating di-
pole �a blue bold arrow�. The near fields, i.e., nonuniform electric
fields, radiated from the oscillating dipole are shown in the blue
curves.
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ated in the presence of laser irradiation. Although the near
field should be given by solving the Maxwell equations �or
by resorting to quantum electrodynamics theory in a narrow
sense�, it is reasonably approximated by the short-range term
of an oscillating dipole radiation �4,27�. Then, the theoretical
model given by Eq. �7� can be further simplified as follows.
We discuss here optical response of the molecule 1 interact-
ing only with the near field radiated from the molecule 2, in
which the molecule 2 is considered to be an oscillating di-
pole as shown in Fig. 1�b�. This approximation means that
the material Hamiltonian of the molecule 1 is solved quan-
tum mechanically, whereas the molecule 2 is assumed to be a
classical dielectric merely as a radiation source. Furthermore,
we neglect the near field induced around the molecule 1,
which might affect the dielectric molecule 2 �i.e., the self-
consistent effect� when the molecule 1 is electronically ex-
cited in its resonance state �16,18�. Since we focus on roles
of the nonuniform electric field in electronic excitation of a
molecule, the near-field frequency is chosen so that the reso-
nance excitation does not occur principally. In addition, if the
molecule 1 is smaller than the molecule 2, its induced polar-
ization is also relatively smaller than that of the molecule 2.
Thus, it is reasonable for the moment to neglect the induced
near field around the molecule 1. In other words, our light-
matter interaction model is expected to be useful for studies
about spatially resolved local spectroscopy taking advantage
of the nonuniform light-matter interaction in real molecules
because radiations from target molecules are usually weak
compared to those of probe tips. For these reasons, the self-
consistent effect is left for the future investigation. The inci-
dent laser field Elaser

� in the third term of Eq. �7� is required to
induce the polarization associated with the oscillating dipole
in the molecule 2. From our preliminary calculations, how-
ever, the incident field was found to be less important for the
light-matter interaction in the near-field region because the
intensity of the induced near field is larger than that of the
incident field. As a result, the electron dynamics in this re-
gion is qualitatively unaffected even if the incident laser field
is neglected.

Under these conditions, Eq. �7� can be reduced to the
form of

Ĥmol −� drP̂1
� �r� · Ẽ2

� �r,t�

−� dr�P̂1�r� + P̂2�r�� · �Ẽ1
��r,t� + Ẽ2

��r,t�� , �8�

where the longitudinal part of the polarization operator P̂2
� is

replaced with the expectation �or c-number� value −�0Ẽ2
� in

the vicinity of the molecule 1. Ẽ represents the near-field part
of E. Although the far-field part of E can also be included in
this derivation, we only use the near-field part for simplicity.
Equation �8� is rewritten in a more compact form of

Ĥmol −� drP̂1�r� · Ẽ2�r,t� −� dr�P̂1�r� · Ẽ1
��r,t�

+ P̂2�r� · �Ẽ1
��r,t� + Ẽ2

��r,t��
 , �9�

where we used the relations of P̂1
� · Ẽ2

� = P̂1 · Ẽ2
� and Ẽ2

� + Ẽ2
�

= Ẽ2. Since the self-interaction term P̂1 · Ẽ1
� is not important

in this work and P̂2 · �Ẽ1
�+ Ẽ2

�� does not act on the molecule
1, these terms can be omitted. Finally, the Hamiltonian of a
molecule interacting with the near-field becomes

Ĥ � Ĥmol + Ĥint�t� = Ĥmol −� drP̂1�r� · Ẽ2�r,t� , �10�

This nonuniform light-matter interaction Hamiltonian is used
throughout this study. Our computational model is rather
oversimplified. However, it is computationally demanding
�might be practically impossible� to fully solved coupled
Schrödinger-Maxwell equations, taking account of the prop-
erties of the self-consistency and the nonuniformity due to
the light-matter interaction at the 1 nm scale. This derivation
can also be applied to three or more particle systems, where
only the dynamics of the molecule 1 interacting with the
near-fields generated by the molecules 2 ,3 , . . . is solved
quantum mechanically in a similar way as in the two-particle
system.

C. Near-field radiated from an oscillating dipole

We have next to model the near field. The near field is
known to be a localized, nonpropagating part of the light
generated from a molecule when irradiated by an incident
laser field �see Fig. 1�a��. We describe the near field in this
paper as the near part of the electric field generated from an
oscillating dipole, the simplest model for a radiation. In Fig.
1�b�, the electric lines of the dipole radiation are depicted as
the blue curves, the directions of which are shown by the
arrows on the lines.

The analytical expression of the dipole radiation field
Edip�r , t� generated by the oscillating dipole is given by �27�

Edip�r,t� =
k3

4	�0
� �3n�n · �� − ��

�kr�3 � �11a�

− i
�3n�n · �� − ��

�kr�2 �11b�

�+
��n � �� � n�

�kr�
�e−i
t+ikr �11c�

where k is a wave number, �0 is the vacuum permittivity, n is
the unit vector of r /r, � is a dipole moment of the source
placed at the origin, and 
 is a frequency of the oscillation,
where 
=kc with c being the velocity of light. The radiation
field is classified into three parts in terms of the radial de-
pendencies, r−3, r−2, and r−1. We set the distance between the
target molecule and the radiation source to be several ang-
stroms, which is comparable in size with the molecule. In
this region, the dipole radiation field is dominated by the
local electric field depending on r−3 given by Eq. �11a�. This

local field is referred to as the near-field Ẽ used in the non-
uniform light-matter interaction in Eq. �10�. We can then
neglect the magnetic interacting terms because the magnetic
field from the oscillating dipole, not shown here, has the r−2

and r−1 dependent terms.
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Since we consider an optical interaction between very
closely spaced particles, it is reasonable to use the dipole

radiation field as the electric near-field Ẽ2 without distin-
guishing its longitudinal and transverse components. For
larger systems, however, the longitudinal and transverse
parts should be evaluated separately because there is a dif-
ference in time between them, i.e., the longitudinal interac-
tion is instantaneous, whereas the transverse one is retarded.
The retardation effect can be treated by solving the Maxwell
equations using the time-dependent polarization as a radia-
tion source.

D. Light-matter interaction in the Kohn-Sham equation

For computational applications of the present formal
theory, we will derive the light-matter interaction Hint in the
Kohn-Sham �KS� DFT form. In the following derivations,
we take e�=−1 for simplicity. Although the KS Hamiltonian
is obtained by functional derivative of the expectation value
of the total energy, it is enough to consider here only the
light-matter interaction term of Eq. �10�. The expectation

value of Ĥint is expressed by

�Ĥint�t�� =� dr���r,t�Ĥint�t���r,t�

= −� drdr����r,t�P̂�r����r,t� · Ẽ�r�,t�

=� drdr����r,t��r − R�

� �
0

1

d���r� − R − ��r − R����r,t� · Ẽ�r�,t�

=� dr����r,t���r,t���r − R��
0

1

d�

�� dr���r� − R − ��r − R��Ẽ�r�,t�

� � dr��r,t��r − R� · �
0

1

d�Ẽ�R + ��r − R�,t�

� � dr��r,t��r − R� · Eeff�r,t�

� � dr��r,t�Veff�r,t� �12�

where � is the ground-state wave function of the molecule,
and the electron density ��r�, the effective electric field Eeff,
and the effective potential Veff are given by

��r,t� � ���r,t���r,t� , �13�

Eeff�r,t� � �
0

1

d�Ẽ�R + ��r − R�,t� , �14�

Veff�r,t� � �r − R� · Eeff�r,t� . �15�

The �-integration of Ẽ includes all the contributions of the
spatial variation of the electric field. As is clearly seen from
Eq. �12�, the nonuniform light-matter interaction is straight-
forwardly calculated in the conventional KS-DFT approach
if the effective potential Veff is added to the external potential
term in the KS equation. In the next section, the KS-DFT
computational approach will be explained to demonstrate the
electron dynamics of nanoclusters interacting with a near-
field.

III. COMPUTATIONAL APPLICATION

A. Time-dependent Kohn-Sham approach in real space

The time-dependent Kohn-Sham �TD-KS� approach in
real space and time to electron dynamics has so far been
explained elsewhere �23,28–30�. We review the approach
with particular emphasis on extending it to the optical re-
sponse to a nonuniform electric field. A time-dependent
N-electron interacting system is solved through a set of elec-
tronic wave functions 
 j�r , t� satisfying the following
TD-KS equation

i�
�

�t

 j�r,t� = 	−

�2

2m
�2 + VKS����r,t�

 j�r,t� , �16�

where m is the electron mass and � is the electron density
given by

��r,t� = 2�
j=1

N/2

�
 j�r,t��2. �17�

The factor of 2 indicates that each KS orbital is fully occu-
pied �i.e., a closed shell system�. The KS potential
VKS����r , t� is a functional of �, and it consists of four terms
of an ion-electron interaction potential Vion�r�, a time-
dependent Hartree potential, an exchange-correlation �xc�
potential Vxc����r , t�, and an external potential Veff as fol-
lows:

VKS����r,t� = Vion�r� +
1

4	�0
� ��r�,t�

�r − r��
dr� + Vxc����r,t�

+ Veff�r,t� . �18�

The ion-electron interaction potential Vion�r� is constructed
from norm-conserving pseudopotentials of each atomic com-
ponent of the system considered. Following the Troullier and
Martins procedure �31�, the pseudopotentials are numerically
generated so that the pseudowave functions can imitate the
all-electron atomic wave functions. The potentials depend on
the angular momentum components. In this paper, we use the
Kleinman-Bylander separable form to represent the nonlocal
�i.e., angular momentum depending� potential terms �32�.

To represent the xc potential, we use the following adia-
batic local density approximation �ALDA�
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Vxc����r,t� � Vxc
LDA����r,t� = Vxc

LDA��0��r���0�r�=��r,t�,

�19�

where Vxc
LDA��0��r� is the ground-state LDA xc potential

given by Perdew and Zunger �33�. In ALDA, the xc potential
at r and t is approximated by that of the ground-state uni-
form electron gas having the density ��r , t�. Although the
ALDA xc potential does not take account of the nonlocality
in both r and t and more accurate exchange-correlation func-
tionals have been developed lately, the ALDA has practically
provided reasonable results for single-electron excitation
processes sufficiently below the lowest ionization threshold
of systems �34–36�. Furthermore, it is reasonable to use such
a simple functional at this early stage of development prior
to performing highly accurate calculations toward material
science.

In the present theoretical model of the nonuniform light-
matter interaction, the external potential Veff is given by Eqs.

�14� and �15�. As mentioned above, Ẽ in Eq. �14� is approxi-
mated as the oscillating dipole radiation Eq. �11�, the main
contribution of which is given by the r−3 dependent term of
Eq. �11a�. We set the center of mass of the molecule to be the
origin. The temporal shape of the near field is taken as a
pulse. Finally, the effective potential Eq. �15� is rewritten by

Veff�r,t� = − r · Eeff�r�sin�
t�sin2�	t

T
��0 � t � T� ,

�20�

where 
 is the frequency of the oscillating dipole, and T
determines the pulse duration. The pulse profile is approxi-
mated by sin2� 	t

T � in which a few cycles of the electric fields
are included. The field intensity is related to the field strength
by I= 1

2�0cE2.

B. Molecular system and computational details

A linear chain molecule is one of the better choices to
demonstrate the nonuniform light-matter interaction, in par-
ticular for such an electric field proportional to r−3. We
choose a dicyanodiacetylene �NC6N� molecule �37� shown
in Fig. 2�a� as an example of a real molecule. The geometric
structure has been optimized by using the TURBOMOLE V5.10

�38,39� package of quantum chemistry programs, employing
the LDA exchange functional developed by Perdew and
Wang �40� with the basis set of def-SV�P� �41� from the
TURBOMOLE basis set library, which corresponds to the basis
set of 6-31G�. The simplest functional LDA was chosen for
consistency with the functional used in the TD-KS equation.
The vibrational analysis showed no imaginary frequency.
The interatomic distances of the molecule are N1-C2
=1.176 Å, C2-C3=1.354 Å, C3-C4=1.239 Å, and C4-C5
=1.340 Å �42�.

The TDKS Eq. �16� for NC6N is solved numerically by a
grid-based method �23,43� in a three-dimensional Cartesian-
coordinate rectangular box, the lengths of which are 30 Å
along the molecular �x-� axis and 20 Å along the y and z
axes, utilizing uniform grids with a mesh spacing of 0.3 Å.
The Laplacian operator is evaluated by a nine-point differ-

ence formula �44�. The time propagation of the KS orbitals is
carried out with a fourth-order Taylor expansion by using a
constant time step of 0.002 fs. The inner shell structures of
the carbon and nitrogen atoms are approximated by effective
core pseudopotentials, and then the remaining four electrons
�2s22p2� for C and five electrons �2s22p3� for N are explic-
itly treated. In other words, we have carried out 34-electron
dynamics calculations for NC6N.

The effective potential for the dipole radiation on each
grid is computed combining Eqs. �11�, �14�, and �15�, where
the main contribution in Eq. �11� is its near-field part �11a�.
A point dipole � is placed at x=8.0 Å �i.e., the value of
3.56 Å is the distance between the rightmost nitrogen atom
N�8� and the dipole as shown in Fig. 2�a�� so that the non-
uniform electronic excitation due to the near-field is clearly
demonstrated. The dipole is assumed to be y polarized, that
is �= �0.0,� ,0.0� debye �D�, where � is the absolute value
of the dipole moment. The dipole fields generated from �
=4.0 D and 5.0 D are used in this study. The integral of Eq.
�14� is calculated numerically with a constant step of ��
=0.0423 Å. The contribution of the dipole radiation field at
its origin to the integration is evaluated by 4	� /3 �22�. Edip
is also replaced with 4	� /3 if �Edip� is larger than �4	� /3�.
This is done for a few points very close to the dipole, i.e.,
�r��0.2 Å. The intensity of the effective electric field varies
largely as indicated in Fig. 2�b�. The effective field intensity
at the right end of the NC6N molecule is two orders of mag-
nitude larger than that at the left end �i.e., 1011 and
109 W /cm2 at the right and the left ends, respectively�.
Thus, the molecule is nonuniformly excited by the oscillating

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

FIG. 2. �Color online� �a� Geometrical structure of NC6N and
the position of the radiation source. �b� The intensities of the effec-
tive electric fields on the molecular axis calculated from the near
field of the dipole radiation. The near fields are generated by the
oscillating dipole with its absolute value of the dipole moment be-
ing 4 D �dashed red line� and 5 D �black line�, respectively.
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dipole field. All the electric fields used in this study have the
field frequency 
 of 1 eV �the off-resonance condition�. The
pulse duration �T=30 fs� is short enough to avoid consider-
ing the nuclear dynamics.

IV. RESULTS AND DISCUSSION

A. Nonuniform electronic excitation

Let us first demonstrate the electron-density motions in
the uniform and the nonuniform electric fields. Figure 3
shows four snapshots of differences of the electron densities
at t=6, 12, 18, 24, and 30 fs from the initial �t=0� electron
density. The red �black� and green �light gray� colors indicate
an increase and a decrease in the electron density, respec-
tively. Each column of the snapshots illustrates the different
time evolution of the electron density depending on the ways
of electronic excitation. Four schematic illustrations at the
top of the figure display how the light-matter interaction
works. The uniform oscillating-electric-field with its inten-
sity of 1012 W /cm2 is applied to the molecule along the �a�
x or �b� y axis, whereas the nonuniform fields radiated from
the oscillating dipoles �the black bold arrows� with their di-
pole moments being �c� 4 D and �d� 5 D are applied to the
molecule.

The electron densities in Figs. 3�a� and 3�b� oscillate uni-
formly and regularly along the applied field directions, keep-
ing the molecular symmetry. However, as shown in Figs.
3�c� and 3�d�, the nonuniform electric field apparently in-
duces the symmetry-breaking time evolution of the electron
density. Such inhomogeneous electron dynamics clearly re-
flects the spatial distribution of the dipole field. Since the
oscillating dipole is y polarized, the generated electric field
on the x axis is also y polarized, but its intensity sharply falls

as r increases �i.e., �r−3�, where r is the distance from the
oscillating dipole. Furthermore, only the x component of the
dipole field Ex is antisymmetric with respect to the x axis
�i.e., Ex�x ,y ,z�=−Ex�x ,−y ,z��, whereas Ey and Ez are sym-
metric. For these reasons, the time-evolved densities in Figs.
3�c� and 3�d� regularly oscillate to some extent along the y
axis, whereas those are distorted along the x axis. The
electron-density distributions at 12 and 18 fs, for example,
represent the antisymmetric motion along the x axis. Specifi-
cally, the upper and lower half parts of the densities with
respect to the x axis move toward the opposite directions.
These irregular motions are really due to the electronic exci-
tation by the symmetry-breaking, nonuniform electric field.
The electron-density distribution at 30 fs in Fig. 3�d� looks
rather different from the others. The electron-density-
differences in Figs. 3�a�–3�c� almost disappear at the end of
the pulse of the external electric fields because the applied
laser frequency considered is not in tune with any resonance
frequencies. In contrast, the electron-density distribution in
Fig. 3�d�, under the condition of the stronger nonuniform
electric field, still persists even after the end of the pulsed
near field. This is attributed to the nonuniform excitation by
the localized near field. In this study, the near-field frequency
is not tune with any dipole resonance frequencies of NC6N.
Thus, the time evolution of the electron density should not
persist after the end of the near-field radiation �see, Fig.
3�c��. However, higher harmonics are more easily generated
by the nonuniform excitation with increasing the strength of
the dipole radiation field. NC6N has a dipole resonance fre-
quency at 5.75 eV, which is close to the sixth harmonics
�=6 eV�. As the result of this, the resonance excitation acci-
dentally occurs in the case of Fig. 3�d�. Such a resonance
excitation allows the electrons to move persistently after the
end of the pulse. It should be noted that this resonance effect
is due to a high-order nonlinear effect and thus is still minor
in the present nonuniform light-matter interaction model, i.e.,
it hardly affects the radiation from the molecule 2.

Figures 4�a�–4�d� show the induced dipole moments
along the x and y axes, di�i=x ,y�, corresponding to the time
evolutions of the electron densities in Figs. 3�a�–3�d�, re-
spectively. The red and the dashed black curves represent dx
and dy. The insets in Figs. 4�a� and 4�b� schematically draw
the applied field directions. Similar overall time-profiles
have been observed in dx �Fig. 4�a�� and dy �Fig. 4�b�� in-
duced by the uniform field and in dy induced by the nonuni-
form field. In sharp contrast, nonuniformly induced dxs do
not follow the time profile of the applied field. To see this
more clearly, we pick up dx in Fig. 4�d� and plot it in Fig. 5.
In the early times until about 20 fs, dx takes negative values
owing to the sharp gradient in the field intensity. The oscil-
lation frequency becomes much faster than that of the ap-
plied field after �20 fs. Such an irregular oscillation of dx is
a consequence of the antisymmetric Ex of the dipole field
that acts strongly in the right part of NC6N. Thus, the irregu-
lar time evolutions of the density along the x axis in Figs.
3�c� and 3�d� were induced by the nonuniform, antisymmet-
ric dipole radiation field. We have further confirmed that
such an irregular motion cannot be induced even if we use
either an electric field having a similar sharp gradient in the
field intensity or an antisymmetric electric field.

(a) (b) (c) (d)

x

y

FIG. 3. �Color online� Snapshots of difference of the electron
density at t=6, 12, 18, 24, and 30 fs from the initial �t=0 fs� static
electron density. The uniform fields ��a�, �b�� and the nonuniform
�oscillating dipole� fields with their dipole moments being �c� 4 D
and �d� 5 D are applied to the molecule. The red �black� and green
�light gray� colors represent an increase and a decrease in the elec-
tron density, respectively. Four schematic illustrations at the top of
each snapshot display the ways of electronic excitation.
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We next calculate the emission spectra for each electron
dynamics to analyze the uniform and nonuniform electronic
excitations in an energy domain. Since the emission spec-
trum is associated with the dipole acceleration �45,46�, we
here take the second derivative of the induced dipole mo-
ments and then perform a Fourier transform. Figure 6 shows

the power spectra of the dipole acceleration �d̈i�
��2�i=x ,y�
in the unit of Å2 fs−2 as a function of energy. We refer to the
power spectra of the dipole acceleration as harmonic-
generation �HG� spectra. The HG spectra in Figs. 6�a�–6�d�
correspond to the induced dipole moments in Figs. 4�a�–4�d�,
respectively. The red and the dashed black curves represent

�d̈x�
��2 and �d̈y�
��2. Comparing Figs. 6�a� and 6�b�, the har-

monics along the x axis �d̈x� seem relatively easier to gener-

ate than that along the y axis �d̈y�. A comparatively large
peak appears at around 6 eV in Fig. 6�a�. As discussed in the
time evolution of the electron density in Fig. 3, this large
peak is due to the fact that the sixth harmonics is accidentally
close to a dipole resonance peak �=5.75 eV� of NC6N. De-

spite the inversion symmetry of NC6N, the nonuniform elec-
tric field, in contrast to the uniform one, causes the even
harmonics in addition to the odd harmonics as shown in Figs.
6�c� and 6�d�. Interestingly, the even and odd harmonics are,
respectively, due to the induced dipole moments along the x
and y axes. The even harmonics, therefore, have proved to be
generated by the nonuniform electric field breaking the sym-
metry along the x axis. Furthermore, in comparison with the
HG spectra by the uniform electric field, relatively higher
harmonics are clearly seen in the HG spectra by the nonuni-
form electric field. In addition, their peak intensities do not
decay linearly against the order of the harmonics. The inves-
tigation on the physics behind this nonlinear behavior is un-
derway.

Before ending this section, we demonstrate that the non-
uniform electronic excitation also induces the quadrupole
moment, which is never induced by the uniform electric
field, as one of the phenomena beyond the dipole approxi-
mation. Such nondipole excitation was observed in an ex-
periment �47�, and suggested in a theoretical study �18�, al-
though both nanostructure systems are different from the
present one. The xy component of the quadrupole moment
�Qxy� for the time evolution of Fig. 3�d� and its HG power
spectrum are shown in Figs. 7�a� and 7�b�, respectively. The

0 10 20 30
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(b)
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FIG. 7. �a� xy component of the induced quadrupole moment as
a result of the nonuniform excitation with �=5 D and �b� its power
spectrum.
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FIG. 4. �Color online� Induced dipole moments along the x and
y axes, di�i=x ,y�. The dipole moments, respectively, correspond to
the time evolutions of the density in Figs. 3�a�–3�d�. Insets in �a�
and �b� are schemes of the applied field direction.
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FIG. 5. �Color online� Magnification of dx in Fig. 4�d�.
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FIG. 6. �Color online� Power spectra of the dipole acceleration.
The ways of electronic excitation correspond to those in Figs.
3�a�–3�d� and also in Figs. 4�a�–4�d�, respectively.
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quadrupole moments both in the time and the energy do-
mains provide the structural patterns quite similar to those of
the dipole ones. To verify that Qxy is non-negligible in the
nonuniform excitation, we consider the charge distribution
that causes dipole and quadrupole moments. The calculated
value of the quadrupole moment in the unit of Å2 is about an
order of magnitude larger than that of the dipole moment in
the unit of Å. The dipole moment of two charges q and −q
with the inter charge distance a is qa Å, whereas the quad-
rupole moment of two positive q� and two negative −q�
charges disposed at the corners of a square with its side
being a is q�a2 Å2. Then, �Qxy��10�dy� �see Figs. 4�d� and
7�a�� and a is �10 Å for NC6N. Thus, we have q�q� be-
cause q�a2�10�qa→q�a�10�q→q��q. This indicates
that the dipolelike and quadrupolelike charge distributions
have been induced in almost the same amount as a conse-
quence of the nonuniform light-matter interaction.

B. Even and odd harmonics

Let us next carry out a perturbation analysis of the HG
power spectra generated through the nonuniform light-matter
interaction. As shown in Figs. 6�c� and 6�d�, the even har-
monics appear despite the inversion symmetry of NC6N. The
even and odd harmonics are due to the induced dipole mo-
ments dx and dy, respectively. This even and odd alteration is
easily understood in terms of the symmetries of the molecu-
lar wave functions and the external field.

According to the time-dependent perturbation theory
�48,49�, nth dipole moment d�

�n� �n=1,2 , . . . and �=x ,y ,z� in
powers of the perturbation Veff can be evaluated by the fol-
lowing matrix elements,

�21�

where �0� and �i� are the ground and the excited eigenstates
of the nonperturbative Hamiltonian of the molecule, respec-
tively. As typical examples, dx

�2�, dy
�2�, dx

�3�, and dy
�3� are con-

sidered. Table I summarizes the evaluation of the matrix
elements of dx

�2� and dy
�2�. The symmetries of the eigen states

and the applied field are labeled as “e” for the even symme-
try and “o” for the odd one. Since NC6N has mirror symme-
tries in every direction, the eigenstate ��i�
 is either even
or odd with respect to x, y, or z axis, namely, 
�x ,y ,z�
= �
�−x ,y ,z�, 
�x ,y ,z�= �
�x ,−y ,z�, or 
�x ,y ,z�
= �
�x ,y ,−z�. The effective potential Veff given by Eq. �15�
is neither an even nor an odd function of x, an odd func-
tion of y, and an even function of z, i.e., Veff�x ,y ,z�
�Veff�−x ,y ,z�, Veff�x ,y ,z�=−Veff�x ,−y ,z�, and Veff�x ,y ,z�
=Veff�x ,y ,−z�. Thus, the brackets can be estimated by de-
composing them into the integrations with respect to the x, y,
and z coordinates. �d���=x ,y ,z� in Table I denotes each
component of the integrations. The symmetries of the ground
state �0�, the operators �x and y�, and the potential Veff are
specified in bold characters. The symmetries of �i� and �j� are
then specified so that the matrix elements have nonzero val-
ues. As a result, dx

�2� becomes nonzero, but dy
�2� must be zero

because the integral of �j�Veff�0� with respect to the y coor-
dinate vanishes. The same analysis can be applied to d�

�3�

�see, Table II�. Then, dx
�3� must be zero but dy

�3� becomes
nonzero. The above analysis clearly explains the even-odd
alteration appears in the HG power spectra obtained by the
nonuniform excitation.

C. Control of harmonic generation

Finally, it is demonstrated that the harmonics induced by
the near field can be controlled. Figure 8 shows the HG
power spectra obtained when both ends of the NC6N mol-

TABLE I. Matrix elements of the second-order dipole moments along the x and y axes in the power of
Veff. e and o denote even and odd symmetries, respectively. The symmetries of the ground state and Veff are
indicated by bold characters.

dx
�2� �0�x�i� �i�Veff�j� �j�Veff�0�

�dx �e�o�o� �o�eo�eo� �eo�eo�e� �0

�dy �e��e� �e�o�o� �o�o�e� �0

�dz �e��e� �e�e�e� �e�e�e� �0

dy
�2� �0�y�i� �i�Veff�j� �j�Veff�0�

�dx �e��e� �e�eo�eo� �eo�eo�e� �0

�dy �e�o�o� �o�o�e� �e�o�e� =0

�dz �e��e� �e�e�e� �e�e�e� �0

TABLE II. Same as Table I but for the third-order dipole moments. As in the case of Table I, �dxdz is
always nonzero, and thus only �dy is summarized here.

dx
�3� �0�x�i� �i�Veff�j� �j�Veff�k� �k�Veff�0�

�dy �e��e� �e�o�o� �o�o�e� �e�o�e� =0

dy
�3� �0�y�i� �i�Veff�j� �j�Veff�k� �k�Veff�0�

�dy �e�o�o� �o�o�e� �e�o�e� �o�o�e� �0
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ecule are excited by the near fields radiated from two oscil-
lating dipoles with different phases by 	 /2. The inset illus-
trates the schematic of the near-field excitation by two
radiation sources. It is clearly seen from the figure that har-
monics selectively appear every 4
in starting from the sec-
ond harmonics �2
in�. The forth and eighth harmonics �4
in
and 8
in� completely disappear as a result of the interference
between the two near-fields having different phases. We ex-
pect that this idea of the near-field excitation with different
phases can control intensities and orders of HG spectra.

V. CONCLUDING REMARKS

We have presented a generalized theoretical description of
optical response in an effort to understand a nonuniform
light-matter interaction between a near field and a 1-nm-
sized molecule. The light-matter interaction based on the
multipolar Hamiltonian was described in terms of a space
integral of the inner product of the total polarization of a
molecule and an external electric field. Noteworthy is the

fact that the polarization in the integral can be treated en-
tirely without invoking any approximation such as a dipole
approximation. Therefore, the present light-matter interac-
tion theory allows us to understand the inhomogeneous elec-
tron dynamics associated with local electronic structures of a
molecule at the 1 nm scale, although the wavelength of an
incident laser pulse is much longer than the size of the mol-
ecule. For a computational application, we have studied the
near-field-induced electron dynamics of NC6N by using the
TD-KS approach incorporated with the present nonuniform
interaction theory. The electron dynamics induced by the
nonuniform light-matter interaction is completely different
from that by the conventional uniform interaction under the
dipole approximation. Specifically, in the nonuniform elec-
tronic excitation high harmonics were generated more easily
and much more interestingly the even harmonics were also
generated in addition to the odd ones despite the inversion
symmetry of NC6N. Perturbation theory clearly explained
that the even harmonics were generated owing to the
symmetry-breaking �nonuniform� electric field along the x
axis radiated from the oscillating dipole. It has also been
found that the nonuniform fields with different phases con-
trol HG though their interference effect. We expect that the
nonuniform electronic excitation can induce unprecedented
electron dynamics giving information about local electronic
structures, electronic transitions beyond the dipole approxi-
mation, and high-order nonlinear optical phenomena. Fur-
thermore, the present nonuniform light-matter interaction/
TD-KS approach incorporated with the Maxwell equations
will enable us to elucidate electron and electromagnetic field
dynamics in nanostructures.
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