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Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force
that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in
relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a
full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay
between photon emission and reabsorption, and the Röntgen interaction as its three sources. For ground-state
atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms
and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can
occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.
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I. INTRODUCTION

The ground-state fluctuations of the electromagnetic field
lead to several inherently quantum effects such as the spon-
taneous decay of excited atoms and molecules as well as
dispersion forces �1�. Forces between isolated atoms that are
mediated by the quantum vacuum are known as van der
Waals forces �2�, while forces between macroscopic bodies
are referred to as Casimir forces �3�. The third type of dis-
persion �in a sense an interpolation between these two ex-
treme cases� is the Casimir-Polder �CP� force exerted on
single atoms near macroscopic bodies �4�.

For a two-level atom with transition frequency �A and
electric-dipole moment d located at a distance zA away from
a perfectly conducting plate, the short-distance �nonretarded�
�4� and long-distance �retarded� �5� limits of the CP potential
take the well-known forms

Unret�zA� = −
d2

48��0zA
3 , Uret�zA� = −

cd2

16�2�0�AzA
4 . �1�

These potentials, acting on atoms at rest, lead to conservative
forces perpendicular to the plate’s surface. CP forces �as well
as all other dispersion forces� play important roles as limiting
factors in efforts to miniaturize atom-optical devices �6� and
have been measured at distances as small as 6 �m �7�.

Casimir-Polder forces are well understood far beyond the
aforementioned special case of a perfectly conducting plate,
with magnetoelectric materials of arbitrary shape �8� and fi-
nite temperature being investigated theoretically �9,10� as
well as experimentally �11�. While most theoretical investi-
gations are based on Lifshitz’s macroscopic treatment �12� or
a linear-response description �13�, full quantum theories
based on electromagnetic-field quantization in magnetoelec-
trics have also been developed �8�. In the latter approach, the
operator-valued Lorentz force

F̂ =� d3r��̂A�r�Ê�r� + ĵA�r� � B̂�r�� �2�

on the atomic charge and current densities due to the body-
assisted electromagnetic fields is computed. In the long-
wavelength approximation, it leads to the well-known ex-
pression

F̂ = �A�d̂ · Ê�rA�� +
d

dt
�d̂ � B̂�rA�� �3�

with d̂ denoting the atomic electric-dipole moment operator.
Intuitively, dispersion forces can be understood as dipole-

dipole forces generated by spontaneous polarization due to
the electric-field fluctuations. Therefore, CP forces on atoms
at rest act either toward �attractively� or away �repulsively�
from the macroscopic body. For atoms in motion, retardation
delays the dipole response, and a force component emerges
along the direction of motion. In most cases, this force com-
ponent acts against the motion and is thus the origin of quan-
tum friction.

Quantum friction forces have traditionally been studied
within a linear-response formalism �14–17�. Evaluating the
correlated quantum fluctuations of moving atom and dielec-
trics, the friction force on ground-state atoms can be ob-
tained in this way. However, the predicted forces are typi-
cally very small. For the stationary case it is well known that
CP forces can be resonantly enhanced for excited atoms
�8,18�. For such nonequilibrium situations, linear-response
methods cannot be applied and a more detailed investigation
of the atom-field dynamics becomes necessary.

In this paper, we develop a full quantum theory of the
velocity-dependent CP force. In particular, we will show that
for atoms and molecules in electronically excited states, both
decelerating and accelerating forces can occur depending on
the relative magnitude of the frequencies of the atomic tran-
sition and the surface plasmon. The paper is organized as
follows. After briefly reviewing the formalism of macro-
scopic quantum electrodynamics in Sec. II, we study the
atom-field dynamics in Sec. III A before investigating the
resulting force in Sec. III B and applying our results to the*s.scheel@imperial.ac.uk
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quantum friction scenario in Sec. III C. We illustrate the
theory with representative examples in Sec. IV, followed by
a summary in Sec. V.

II. BASIC FORMULAS

Let us assume an arbitrary arrangement of dispersing and
absorbing magnetoelectric bodies, characterized by their
complex-valued Kramers-Kronig consistent permittivity
��r ,�� and permeability ��r ,��. The Hamiltonian of the
quantum electromagnetic field and the bodies can be given as
�for a recent review, see Ref. �19��

ĤF = �
	=e,m

� d3r�
0




d� ��f̂	
†�r,�� · f̂	�r,�� , �4�

where the fundamental variables f̂	
†�r ,�� and f̂	�r ,�� are

creation and annihilation operators for the elementary elec-
tric �	=e� and magnetic �	=m� excitations of the system;
they obey the bosonic commutation relations

�f̂	�r,��, f̂	�
† �r�,���� = �		���r − r����� − ��� . �5�

The electric and magnetic fields can be expanded in terms of
the fundamental variables according to

Ê�r� = �
0




d�Ê� �r,�� + H.c.

= �
	=e,m

� d3r��
0




d�G	�r,r�,�� · f̂	�r�,�� + H.c.,

�6�

B̂�r� = �
0




d�B̂� �r,�� + H.c.

= �
	=e,m

� d3r��
0


 d�

i�
� � G	�r,r�,�� · f̂	�r�,�� + H.c.,

�7�

with coefficients

Ge�r,r�,�� = i
�2

c2� �

��0
Im ��r�,��G�r,r�,�� , �8�

Gm�r,r�,�� = i
�

c
� �

��0

Im ��r�,��
���r�,���2

��� � G�r�,r,���T.

�9�

Here, G is the classical Green tensor as uniquely defined by
the inhomogeneous Helmholtz equation,

	� �
1

��r,��
� � −

�2

c2 ��r,��
G�r,r�,�� = ��r − r�� ,

�10�

together with the boundary condition

G�r,r�,�� → 0 for �r − r�� → 
 . �11�

The Green tensor is an analytic function in the upper half of
the complex frequency plane and it has the following useful
properties:

G�r,r�,− ��� = G��r,r�,�� , �12�

G�r�,r,�� = GT�r,r�,�� , �13�

�
	=e,m

� d3sG	�r,s,�� · G	
�T�r�,s,�� �14�

=
��0

�
�2 Im G�r,r�,�� . �15�

The Hamiltonian describing the internal dynamics of an
atom with eigenenergies En and eigenstates �n� can be given
as

ĤA = �
k

EkÂkk �16�

�Âkk= �k��k� are the atomic flip operators�. Throughout this
paper, we will assume that the center-of-mass motion is suf-
ficiently slow so that it separates from the internal dynamics
in the spirit of a Born-Oppenheimer approximation. The in-
teraction of the atom with the body-assisted electromagnetic
field is then adequately described by the atom-field coupling
Hamiltonian for given center-of-mass position rA and veloc-
ity vA, which in the multipolar coupling scheme and electric-
dipole approximation reads

ĤAF = − d̂ · Ê�rA� − d̂ · vA � B̂�rA�

= − �
kl

dkl · Ê�rA�Âkl − �
kl

dkl · vA � B̂�rA�Âkl

�17�

�dkl= �k�d̂�l��. The first term is the familiar electric-dipole
interaction, while the second term is the Röntgen interaction
associated with the center-of-mass motion. Combining Eqs.
�4�, �16�, and �17�, the total Hamiltonian of the atom-body-
field system reads

Ĥ = ĤA + ĤF + ĤAF. �18�

Finally, the total Lorentz force on the atomic charge and
current distribution can in electric-dipole approximation be
given as

F̂ = �A�d̂ · Ê�rA� + d̂ · vA � B̂�rA�� +
d

dt
�d̂ � B̂�rA��

= �A�
kl

�dkl · Ê�rA�Âkl + dkl · vA � B̂�rA�Âkl�

+
d

dt
�
kl

�dkl � B̂�rA�Âkl� . �19�
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III. CASIMIR-POLDER FORCE ON A MOVING ATOM

The Casimir-Polder force on an atom is the quantum av-
erage of the Lorentz force �19� with the body-assisted field
being in its ground state. To evaluate this expression, we first
need to solve the coupled atom-field dynamics.

A. Atom-field dynamics

Using Hamiltonian �18�, the Heisenberg equations of mo-
tion of the atomic and field operators are found to be

Ȧ̂mn = i�mnÂmn +
i

�
�

k

�dnkÂmk − dkmÂkn� · Ê�rA�

+
i

�
�

k

�dnkÂmk − dkmÂkn� · vA � B̂�rA� , �20�

where �mn= �Em−En� /�, and

ḟ̂	�r,�� = − i�f̂	�r,�� +
i

�
�
k,l

G	
�T�r,rA,�� · dklÂkl

+
1

��
�
k,l

�G	
�T�r,rA,�� � �� �� � vA · dklÂkl

�21�

�by convention, � and �� only act on the first or second
argument of the Green tensor, respectively�. The latter equa-
tion is formally solved by

f̂	�r,�,t� = f̂	,f�r,�,t� + f̂	,s�r,�,t� , �22�

where

f̂	,f�r,�,t� = e−i�tf̂	�r,�� , �23�

f̂	,s�r,�,t� =
i

�
�
k,l
�

0

t

d e−i��t−�G	
�T�r,rA��,�� · dklÂkl��

−
1

��
�
k,l
�

0

t

de−i��t−�

�G	
�T�r,rA��,�� � �� �� � vA · dklÂkl�� �24�

determine the free and source parts of the electromagnetic
field.

We assume that the atom moves with uniform nonrelativ-
istic speed �vA�c� and we are seeking a solution to the
system of Eqs. �20� and �21� within linear order of vA. We
may hence write

rA�� = rA�t� − �t − �vA, �25�

and after substituting Eqs. �22�–�24� into Eq. �6�, using the
integral relation �14�, and applying a linear Taylor expansion
in vA, the time-dependent frequency components of the elec-
tric field are given by

Ê� �r,�,t� = Ê� f�r,�,t� + Ê� s�r,�,t� �26�

with

Ê� f�r,�,t� = e−i�tÊ� �r,�� , �27�

Ê� s�r,�,t� =
i�0

�
�2�

0

t

de−i��t−��
k,l

Im G�r,rA,�� · dklÂkl��

−
i�0

�
�2�

0

t

d�t − �e−i��t−�

� �
k,l

Im G�r,rA,�� · dkl��� � · vA�Âkl��

−
�0

�
��

0

t

de−i��t−�

��
k,l

Im�G�r,rA,�� � �� �� � vA · dklÂkl�� �28�

�rA=rA�t��. The magnetic field �7� only enters the equations
of motion in conjunction with a factor vA, so we only require
its zero-order expansion in the velocity,

B̂� �r,�,t� = B̂� f�r,�,t� + B̂� s�r,�,t� �29�

with

B̂� f�r,�,t� = e−i�tB̂� �r,�� , �30�

B̂� s�r,�,t� =
�0

�
��

0

t

de−i��t−�

��
k,l

� � Im G�r,rA,�� · dklÂkl�� . �31�

We can next substitute our solutions �27�–�31� for the
time-independent electromagnetic fields into the equation of
motion �20� for the atomic flip operators. Noting that the

total field operators Ê� �r ,� , t� and B̂� �r ,� , t� commute with
the atomic flip operators at equal times, we arrange all prod-

ucts such that creation operators f̂	
†�r ,�� are always at the

left and annihilation operators f̂	�r ,�� are always at the
right. Assuming the field to be initially prepared in its
vacuum state and taking expectation values, all contributions
from the source fields vanish. For weak atom-field coupling,
the time integrals can be evaluated with the aid of the Mar-
kov approximation,

�
0

t

de−i��t−��Âij�t�Âkl��� � �Âij�t�Âkl�t���
−


t

de−i��−�̃lk��t−�

= �Âil�t��� jk	���� − �̃lk� − iP 1

� − �̃lk

 �32�

�here P represents the principal value�; similarly we have
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�
0

t

d�t − �e−i��t−��Âij�t�Âkl���

� �Âil�t��� jk
d

d�
	P 1

� − �̃lk

+ i���� − �̃lk�
 , �33�

where the shifted atomic transition frequencies

�̃mn = �mn + ��m − ��n �34�

have yet to be determined.
For a nondegenerate atom, the resulting equations of mo-

tion for the off-diagonal atomic flip operators decouple from
each other as well as from the diagonal ones. In addition, we
consider an atom whose internal Hamiltonian �16� is time-
reversal invariant, so that we may assume real dipole-matrix
elements. After a lengthy but straightforward calculation, we
finally obtain the following equations of motion for the in-

ternal atomic density matrix elements �mn= �Ânm�:

ṗn = − �npn + �
k

�k
npk, �35�

�̇mn = �− i�̃mn − ��m + �n�/2��mn for m � n , �36�

where we have introduced the probabilities pn=�nn. The
equations of motion for a moving atom have exactly the
same form as for an atom at rest: the population of the diag-
onal density matrix elements is governed by spontaneous
decay, while the off-diagonal ones undergo damped oscilla-
tions. However, the respective transition rates

�n = �
k

�n
k �37�

and frequency shifts

��n = �
k

��n
k �38�

are affected by the atomic motion,

��n
k = ��n

k�rA� + ��n
k�rA,vA� , �39�

��n
k�rA� =

�0

��
P�

0




d�
�2dnk · Im G�1��rA,rA,�� · dkn

�̃nk − �
,

�40�

��n
k�rA,vA� =

�0

2�
���̃nk��vA · �A�

� ��2dnk · Im G�rA,rA,�� · dkn��=�̃nk
� ,

�41�

�n
k = �n

k�rA� + �n
k�rA,vA� , �42�

�n
k�rA� =

2�0

�
���̃nk��̃nk

2 dnk · Im G�rA,rA,�̃nk� · dkn,

�43�

�n
k�rA,vA� = −

�0

��
�vA · �A�P�

0




d�

�
��2dnk · Im G�1��rA,rA,�� · dkn��

�̃nk − �
�44�

�the primes indicate derivatives with respect to ��. Here, we
have decomposed the Green tensor into its bulk �free-space�
and scattering parts according to

G�r,r�,�� = G�0��r,r�,�� + G�1��r,r�,�� �45�

and have discarded the Lamb-shift contribution due to G�0�

from the frequency shift ��n
k�rA� �as the free-space Lamb

shift is assumed to be already included in the bare transition
frequencies �mn�. We have further exploited the symmetry
�13� of the Green tensor which implies ��� 1

2�A, showing
that the translationally invariant bulk Green tensor does not
contribute to the velocity-dependent shifts and rates.

It is worth noting that for real dipole-matrix elements, the
contributions from the Röntgen interaction exactly cancel.
As a result, the velocity dependence of these quantities is
entirely due to the fact that the moving atom emits and re-
ceives the electromagnetic field at different positions. The
velocity-dependent contributions are proportional to the total
derivative of the scattering Green tensor along the direction
of motion. As a consequence, the decay rates and frequency
shifts are unaffected by uniform motion in a direction along
which the environment is translationally invariant �e.g., mo-
tion parallel to a plate or a cylinder�. It is worth pointing out
that such a vanishing of velocity-dependent frequency shifts
does not necessarily imply that the velocity-dependent part
of the CP force must also be zero. One should bear in mind
that all of the above have only been shown within linear
order in the velocity.

B. Casimir-Polder force

Having solved the coupled atom-field dynamics, we can
now evaluate the quantum average of the Lorentz force �19�.
We restrict our attention to the pure dispersion force by again
assuming the field to be initially prepared in its ground state.
The atom may initially be in an arbitrary incoherent super-
position of internal energy eigenstates. For an atom at rest, it
has been found that the third term in Eq. �19�, which in-
volves a total time derivative, does not contribute to the force
on atoms in incoherent internal states. We have explicitly
checked that the same is true here, so that we only need to
consider the force

F = �A�d̂ · Ê�rA� + d̂ · vA � B̂�rA��

= �A�
kl

�dkl · �Ê�rA�Âkl� + dkl · vA � �B̂�rA�Âkl�� .

�46�

We begin by substituting the time-dependent electromag-
netic fields �26�–�31� where again we retain only terms up to
linear order in vA and we arrange all products such that the
contributions from the free fields vanish. The source fields
give rise to intra-atomic correlation functions. By virtue of
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the quantum regression theorem, Eq. �36� implies that the
relevant correlation functions are of the form

�Ânk�t�Âln��� = �kle
i�nk�t−��nn�� �47�

with

�nk = �̃nk + i��n + �k�/2. �48�

We evaluate time integrals in the spirit of the Markov ap-
proximation

�
0

t

d e−i��t−��Ânk�t�Âln��� � �nn�t��kl�
−


t

d e−i��−�nk��t−�

= −
�nn�t�i�kl

� − �nk
�49�

and similarly

�
0

t

d�t − �e−i��t−��Ânk�t�Âln��� � −
�nn�t��kl

�� − �nk�2 . �50�

Again assuming real dipole-matrix elements, the resulting
expression for the CP force can be written in the form

F�t� = �
n

pn�t�Fn �51�

with

Fn =
�0

�
�

k
�

0




d��2�dnk · Im G�1��rA,rA,�� · dkn

� − �nk
+

i�0

�
�

k
�

0




d��2��vA · ���dnk · Im G�1��rA,rA,�� · dkn

�� − �nk�2

+
i�0

�
�

k
�

0




d��
��� − ��dnk · vA � �� � Im G�1��rA,rA,��� · dkn

� − �nk
+ c.c. �52�

Note that the two contributions from the Röntgen interaction
have been collected in a single term as given on the second
line of the above equation by making use of the symmetry
�13� of the Green tensor. In addition, the �vanishing� contri-
butions from the free-space Green tensor have been dis-
carded.

Next, let us separate the forces Fn into their position- and
velocity-dependent parts. The shifted and broadened atomic
transition frequencies �nk are velocity dependent, so that the
first term in Eq. �52� also contributes to the velocity-
dependent part of the force. Again retaining only terms up to
linear order in the velocity, we find

Fn = Fn�rA� + Fn�rA,vA� , �53�

with

Fn�rA� =
�0

2�
�

k
�

0




d��2

�
�Admk · Im G�1��rA,rA,�� · dkn

� − �nk
+ c.c. �54�

and

Fn�rA,vA� =
�0

�
�

k
�

0




d��2�nk�vA� � dnk · Im G�1��rA,rA,�� · dkn

�� − �nk�2

+
i�0

�
�

k
�

0




d��2��vA · ���dnk · Im G�1��rA,rA,�� · dkn

�� − �nk�2

+
i�0

�
�

k
�

0




d��
��� − ��dnk · vA � �� � Im G�1��rA,rA,��� · dkn

� − �nk
+ c.c., �55�

where �nk��nk�rA� and �nk�vA���nk�rA ,vA�. The
velocity-independent force �54� is just the well-known CP

force on an atom at rest. We will in the following restrict our
attention to the velocity-dependent force �55�, which consists
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of three terms: The first generalized Doppler term is due to
the velocity dependence of the atomic transition frequencies.
The second delay term is associated with the time interval
between emission and reabsorption of the electromagnetic
field. The third Röntgen term is due to the coupling of the
current density associated with the moving atom to the mag-
netic field.

In close analogy to the case of an atom at rest, the force
can be separated into its resonant and nonresonant parts us-
ing contour-integral techniques. Writing Im G= �G
−G�� / �2i�, using the property �12� of the Green tensor, and
employing Cauchy’s theorem to transform integrals along the
real axis to integrals along the positive imaginary axis plus
contributions from the poles, one can show that

�
0




d�
� Im G�1��r,r�,��

� − �nk
= �

0




d�
�2G�1��r,r�,i��

�2 + �nk
2

+ ��nkG
�1��r,r�,�nk����̃nk� ,

�56�

�
0




d�
�2 Im G�1��r,r�,��

�� − �nk�2

= − �
0




d�
�2��nk

2 − �2�G�1��r,r�,i��
��2 + �nk

2 �2

+ ���2G�1��r,r�,����=�nk
� ���̃nk� . �57�

Substituting these results into Eq. �55�, one finds

Fn�rA,vA� = Fn
nr�rA,vA� + Fn

r �rA,vA� �58�

with

Fn
nr�rA,vA� = −

��0

2�
�

0




d��2 � tr��n�vA,i�� + �n�vA,− i��� · G�1��rA,rA,i���

−
i��0

2�
�

0




d��2 � �vA · ���Tr��n��i�� + �n��− i��� · G�1��rA,rA,i���

+
��0

2�
�

0




d����� − ��Tr��n�i�� − �n�− i��� · vA � �� � G�1��rA,rA,i���� �59�

and

Fn
r �rA,vA� = �0�

k

���̃nk��nk�vA���2 � dnk · G�1��rA,rA,�� · dkn��=�nk
�

+ i�0�
k

���̃nk���2 � �vA · ���dnk · G�1��rA,rA,�� · dkn��=�nk
�

+ i�0�
k

���̃nk��nk��� − ��dnk · vA � �� � G�1��rA,rA,�nk�� · dkn + c.c. �60�

Here,

�n��� =
1

�
�

k
	 dkndnk

� − �nk
� −

dnkdkn

� + �nk

 �61�

is the polarizability for an atom at rest and

�n�vA,�� =
1

�
�

k
	�nk

� �vA�dkndnk

�� − �nk
� �2 +

�nk�vA�dnkdkn

�� + �nk�2 
 �62�

is the correction to this polarizability for a moving atom within linear order of the atomic velocity.
It is instructive to consider the perturbative limit �nk→�nk �i.e., ��n/k, �n/k→0�. The resonant force can be represented by

its zero-order approximation in ��n/k and �n/k which reads
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Fn
r �rA,vA� = 2�0�

k

���nk����n�vA� − ��k�vA����2 � dnk · Re G�1��rA,rA,�� · dkn��=�nk
�

− �0�
k

���nk���n�vA� + �k�vA����2 � dnk · Im G�1��rA,rA,�� · dkn��=�nk
�

− 2�0�
k

���nk���2 � �vA · ���dnk · Im G�1��rA,rA,�� · dkn��=�nk
�

− 2�0�
k

���nk��nk��� − ��dnk · vA � �� � Im G�1��rA,rA,�nk�� · dkn. �63�

The nonresonant velocity-dependent force vanishes to zeroth order in the frequency shifts and decay rates in contrast to the
force observed for an atom at rest. The leading nonvanishing contribution is linear in these quantities and it reads

Fn
nr�rA,vA� = −

2�0

�
�

k
�

0




d��2 ���n�vA� − ��k�vA����kn
2 − �2�

��kn
2 + �2�2 � dnk · G�1��rA,rA,i�� · dkn

+
2�0

�
�

k
�

0




d��2�kn��n + �k���kn
2 − 3�2�

��kn
2 + �2�3 � �vA · ���dnk · G�1��rA,rA,i�� · dkn

−
2�0

�
�

k
�

0




d��2�kn��n + �k�
��kn

2 + �2�2 ��� − ��dnk · vA � �� � G�1��rA,rA,i��� · dkn. �64�

For an isotropic atom, these results reduce to

Fn
r �rA,vA� =

2�0

3 �
k

���nk��dnk�2���n�vA� − ��k�vA����2 � Tr Re G�1��rA,rA,����=�nk
�

−
�0

3 �
k

���nk��dnk�2��n�vA� + �k�vA����2 � Tr Im G�1��rA,rA,����=�nk
�

−
2�0

3 �
k

���nk��dnk�2��2 � �vA · ���Tr Im G�1��rA,rA,����=�nk
�

−
2�0

3 �
k

���nk��nk�dnk�2��� − ��TrvA � �� � Im G�1��rA,rA,�nk��� �65�

and

Fn
nr�rA,vA� = −

2�0

3�
�

k

�dnk�2�
0




d��2 ���n�vA� − ��k�vA����kn
2 − �2�

��kn
2 + �2�2 � Tr G�1��rA,rA,i��

+
2�0

3�
�

k

�dnk�2�
0




d��2�kn��n + �k���kn
2 − 3�2�

��kn
2 + �2�3 � �vA · ���Tr G�1��rA,rA,i��

−
2�0

3�
�

k

�dnk�2�
0




d��2�kn��n + �k�
��kn

2 + �2�2 ��� − ��TrvA � �� � G�1��rA,rA,i���� . �66�

C. Motion parallel to a planar interface

Up until this point, all results are valid for arbitrary ge-
ometries. In order to gain physical insight, we restrict our-
selves to the generic quantum friction scenario of an atom
moving parallel �vA=v� = �vx ,vy ,0�T� to a homogeneous di-
electric or metal of permittivity ���� whose plane surface
defines the �x ,y� plane �see Fig. 1�. The Weyl expansion of
the Green tensor,

vA

FIG. 1. Atom moving with a velocity v near a planar surface.
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G�r,r�,�� =� d2k�

�2��2eik�·��−���G�k�,z,z�,�� , �67�

with r= �� ,z� can then be used to calculate explicit expres-
sions for the terms that contribute to the velocity-dependent
force. The relevant Weyl components G�k� ,z ,z� ,�� of the
Green tensor for z ,z��0 are given by �Gij
�Gij�k� ,z ,z� ,���

Gxx =
i

2kz
eikz�z+z��	rs

ky
2

k�
2 − rp

kz
2kx

2

k2k�
2
 , �68�

Gxy =
i

2kz
eikz�z+z��	− rs

kxky

k�
2 − rp

kz
2kxky

k2k�
2 
 , �69�

Gxz = −
i

2kz
eikz�z+z��rp

kzkx

k2 , �70�

Gzz =
i

2kz
eikz�z+z��rp

k�
2

k2 , �71�

with

rs =
kz − k1z

kz + k1z
, rp =

����kz − k1z

����kz + k1z
�72�

being the Fresnel reflection coefficients of the surface for s-
and p-polarized waves �k2=�2 /c2 , k1

2=�����2 /c2 , k�1�z
2

=k�1�
2 −k�

2�. The other components of the Green’s tensor
can be obtained by using the reciprocity condition
G�r ,r� ,��=GT�r� ,r ,��, which translates into
G�k� ,z ,z� ,��=GT�−k� ,z� ,z ,��, and the replacement rules
Gyy =Gxx�kx↔ky�, Gyz=Gxz�kx↔ky�.

For the assumed motion parallel to the surface, the
velocity-dependent shifts and rates vanish ��n

k�rA ,vA�
=�n

k�rA ,vA�=0 �cf. the remark at the end of Sec. III A� and
so do the generalized Doppler contributions to the resonant
force �65� �first two terms� and the nonresonant force �66�
�first term�. To calculate the delay and Röntgen contribu-
tions, we require second derivatives of the Green’s tensor as
given above. It is useful to note that derivatives vanish unless
they contain an even number for each of the Cartesian indi-
ces �x ,y ,z�. For example, terms such as �x�yGxx or �y�yGxz
will not contribute, whereas terms such as �x�yGxy or �y�yGzz
will. For simplicity, we restrict our attention to the nonre-
tarded or near-field limit, where the dominant contribution to
the Green’s tensor is due to evanescent waves with k1z�kz
� ik�. With this replacement, we have

rs = 0, rp =
���� − 1

���� + 1
�73�

and Eqs. �67�–�71� lead to

��v� · ���Tr G�1��rA,rA,�� =
3c2v�

16��2zA
5

���� − 1

���� + 1
, �74�

��� − ��Trv� � �� � G�1��rA,rA,���� = 0 . �75�

In the near-field limit, the Röntgen contribution hence also
vanishes and quantum friction is entirely due to the delay
effect.

Substituting Eqs. �76� and �75� into Eqs. �65� and �66�, we
find the friction forces,

Fn
r �rA,v�� = −

v�

4��0zA
5 �

k

���nk��dnk�2	 Im ����
����� + 1�2
�=�nk

�

�76�

and

Fn
nr�rA,v�� = −

v�

8��0zA
5 �

k

�dnk�2�kn��n + �k�

� �
0




d�
�kn

2 − 3�2

��kn
2 + �2�3

��i�� − 1

��i�� + 1
. �77�

If we further assume a single-resonance Drude-Lorentz
model for the permittivity,

���� = 1 +
�P

2

�T
2 − �2 − 2i��

, �78�

with plasma frequency �P, transverse resonance frequency
�T, and linewidth �, we find that for a weakly absorbing
medium ����P,T� the resonant and nonresonant forces are
given by

Fn
r �rA,v�� =

v�

8��0zA
5 �

k

���nk��dnk�2
��P

2��S
2 + 3�nk

2 �
��nk

2 − �S
2�3

�79�

and

Fn
nr�rA,v�� = −

v�

32��0zA
5 �

k

�dnk�2
sgn��kn���n + �k��P

2

�S���kn� + �S�3

�80�

��S=��T
2 +�P

2 /2 is the surface-plasmon frequency�.
Let us discuss our results. We first note that in a quantum

friction scenario of an atom moving parallel to a plane sur-
face, a generalized Doppler effect does not contribute to the
velocity-dependent force; this will be different for an atom
moving perpendicularly toward the surface. In the near-field
limit, the magnetic Röntgen coupling becomes negligible as
well; it will become relevant for larger distances. Near-field
quantum friction forces are hence dominantly caused by a
delay effect.

For a ground-state atom, only a nonresonant force com-
ponent �80� is present. With both �k0 and �k being positive
quantities, Fn

nr�rA ,v�� is strictly antiparallel to the velocity
and hence presents a genuine friction force. Note that this
force is proportional to the rates of spontaneous decay �k, the
absorption parameters of the atom. In the near-field limit,
these decay rates are given by �20–22�
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�n = �
k

�nk = �
k

���nk�
�dnk�2

6���0zA
3

Im ���nk�
����nk� + 1�2

= �
k

���nk�
�dnk�2

12���0zA
3

��nk�P
2

��nk
2 − �S

2�2 . �81�

Inserting this into Eq. �80� yields a friction force that is ex-
tremely short ranged and falls off as zA

−8. This is in contrast to
previous theories �14� that predict a zA

−5 scaling, resulting
from a disregard of the distance dependence of the sponta-
neous decay rate.

For an excited atom, resonant forces arise as a conse-
quence of possible transitions to lower lying atomic energy
levels. They will dominate the velocity-dependent force in
particular if one of them is near resonant with the surface-
plasmon frequency �S. Depending on whether the respective
atomic transition frequency �nk is smaller or greater than the
surface-plasmon frequency, the velocity-dependent resonant
force will either be a decelerating friction force antiparallel
to the velocity or it may be a quantum acceleration force
parallel to the velocity. This can be qualitatively understood
from an energy consideration. The energy ��nk emitted dur-
ing a downward transition of the atom is resonantly absorbed
by the surface and leads to the excitation of a surface plas-
mon with energy ��S. The energy difference between these
two reservoirs leads to a change in the atom’s kinetic energy.
If the emitted energy is smaller than the absorbed one, the
atom has to decelerate; if the emitted energy is greater than
the absorbed one, the atom will accelerate. Note also that the
off-resonant contribution �80� consists of strictly accelerating
downward contributions as well as strictly decelerating up-
ward contributions which, as before, have a zA

−8 scaling and
can be safely neglected with regard to the zA

−5 scaling of the
resonant forces. It is known from previous studies �23� that
the rate of spontaneous decay increases for atoms in motion.
This mechanism leads to a more rapid dissipation of the
internal energy initially stored in the atom, restricting the
lifetime of resonant forces; it needs to be taken into account
in a more quantitative analysis of energy conservation.

IV. EXAMPLES

In order to illustrate the effect of velocity-dependent
forces on atoms, we present a selection of numerical ex-
amples. We will concentrate on forces that are dominated by
a single atomic transition between a ground state �0� and an
excited state �1� with frequency �A and �isotropic� dipole-
matrix element d. In this case, the nonresonant ground-state
force �80� reduces to the simpler expression

F0�rA,v�� = −
v�d2

32��0zA
5

��P
2

�S��A + �S�3 , �82�

where the decay rate . �81� now reads

� =
d2

12���0zA
3

��A�P
2

��A
2 − �S

2�2 . �83�

The excited-state force is dominated by the resonant force
component, F1�rA ,v��=F1

nr�rA ,v��+F1
r �rA ,v���F1

r �rA ,v��,

F1�rA,v�� =
v�d2

8��0zA
5

��P
2��S

2 + 3�A
2�

��A
2 − �S

2�3 . �84�

As a first example, we consider a ground-state 87Rb atom
moving parallel to a gold surface. We consider the lowest
electronic transition D2�52S1/2→52P3/2� with wavelength
	A=780 nm ��A=2.41�1015 rad s−1� �24� and dipole mo-
ment d=4.23ea0=3.58�10−29 C m �25�. The permittivity of
gold may be characterized by a plasma frequency �P=1.37
�1016 rad s−1 and an absorption parameter �=4.12
�1013 rad s−1 �22�. Note that the transverse resonance fre-
quency vanishes for metals, �T=0, so that the surface-
plasmon resonance is located at �S=�P /�2. With these pa-
rameters, we find a deceleration of the rubidium atom as
�m87Rb=1.44�10−25 kg�

a� = − v��9.6 s−1�	1 nm

zA

8

. �85�

The force is extremely short ranged and is negligible for any
reasonable values of the velocity and atom-surface distance.

In contrast, for an excited rubidium atom with the same
data as above, the deceleration becomes

a� = − v��5.0 � 104 s−1�	1 nm

zA

5

. �86�

In comparison to the ground-state force, excited-state quan-
tum friction is strongly enhanced and has a much longer
range. For an atomic velocity of v=200 ms−1, the decelera-
tion at an atom-surface distance zA=10 nm can be as large
as a=−100 ms−2. Even at zA=100 nm the deceleration is
still a=−10−3 ms−2.

Results for other atoms and metallic surfaces can be eas-
ily obtained by noting that in most cases, the relevant atomic
transition frequency is much smaller than the surface-
plasmon frequency of the metal, hence �A��S. Under this
approximation, the excited-state force �84� and the decay rate
�83� read as

F1�rA,v�� � −
v�d2

2��0zA
5

�

�P
2 �87�

and

� �
d2�A

3���0zA
3

�

�P
2 . �88�

Typical values for the material parameter �P
2 /� are tabulated

in Ref. �22�. Note that unless the excitation is maintained by
continuous repumping, the excited-state force only acts dur-
ing a time interval �t��−1. The relative velocity change
during this time is approximately

�v
v

�
F1

�mv
� −

3�

mAzA
2

1

2�A
. �89�

In this limit ��A��S�, the relative change in velocity is in-
dependent of the strength of the atomic dipole transition and
all material parameters.

Upon inspection of the excited-state force �84� one no-
tices that this force can be resonantly enhanced if an atomic
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transition matches the frequency of a surface-plasmon reso-
nance. An example of such a close match has been pointed
out in Refs. �26,27� and involves a sapphire substrate with its
principal surface plasmon at 	S=12.21 �m ��S=1.54
�1014 rad s−1� and the 6D3/2→7P1/2 transition in 133Cs
with a wavelength of 	A=12.15 �m ��A=1.55
�1014 rad s−1�. Near this plasmon resonance, the permittiv-
ity of sapphire is well approximated by �27�

�sapphire��� = � +
��P

2

�T
2 − �2 − 2i��

�90�

with �=2.71, �P=0.84�S=1.29�1014 rad s−1, �T=0.70�S
=1.08�1014 rad s−1, and �=7.5�10−3�S=1.16
�1012 rad s−1; note that �S=��T

2 +�P� / ��+1�. With this
model and introducing the atom-plasmon detuning �=�A
−�S, we find that the force �76� and the decay rate �81� in the
vicinity of the surface-plasmon resonance may be given as
���� ,���S�

F1�rA,v�� �
v�d2

4��0zA
5

�

�� + 1�2

�P
2

�S

��

��2 + �2�2 �91�

and

� �
d2

12���0zA
3

�

�� + 1�2

�P
2

�S

�

�2 + �2 . �92�

With the dipole moment of the above-mentioned transi-
tion being d=5.85�10−29 C m �28�, one finds �m133Cs

=2.21�10−25 kg�

a� = + v��7.1 � 1011 s−1�	1 nm

zA

5

. �93�

Compared with the result �86� for the excited-state force near
a metal, we find a significantly enhanced force. Note also
that, because �A��S �i.e., ��0�, the force is accelerating
rather than decelerating. As a numerical example, for a par-
ticle velocity of v=100 ms−1 and an atom-surface distance
of zA=100 nm, one would observe an acceleration of a=7
�104 ms−2. As before, without continuous repumping this
force acts only for a very short time, leading to a net relative
change in velocity

�v
v

�
3�

mzA
2

�

�2 + �2 . �94�

V. SUMMARY

We have shown that atoms or molecules in relative mo-
tion with respect to an electric surface experience velocity-
dependent CP forces. Solving the coupled atom-field dynam-
ics for a slowly moving atom, we have found an expression
for the linearized velocity-dependent force on an atom in an
arbitrary incoherent internal quantum state moving near an
arbitrary arrangement of magnetoelectric bodies. In general,
three effects contribute to the velocity-dependent Casimir-
Polder force: a generalized Doppler effect due to the velocity
dependence of the atomic transition frequencies; the delay
between the emission and reabsorption of photons by the
atom; and the Röntgen interaction, i.e., the coupling of the
current density associated with the atomic motion to the
magnetic field.

In order to illustrate the general theory, we have studied
the near-field force on an atom that moves parallel to a pla-
nar dielectric or metallic surface. Due to the translational
invariance of the system, the Doppler term does not contrib-
ute in this case. Furthermore, the delay term dominates over
the Röntgen term. For a ground-state atom the force is a
genuine friction force, i.e., a force antiparallel to its velocity.
It is proportional to the atomic linewidth and hence very
small. In contrast, excited-state atoms can be either deceler-
ated or accelerated depending on the relative magnitude of
their transition frequency with respect to the characteristic
frequency of the substrate material. For metals, the force is
always decelerating while for dielectric substrates with suf-
ficiently small surface-plasmon frequency, acceleration of
excited-state atoms can be realized.

In addition, the force on such atoms is strongly enhanced
when atom and substrate are near resonant. Much stronger
enhancement can be achieved when the atom moves through
resonator structures, in close analogy to the stationary case
�29�.

ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with T.
Freegarde and P. Horak. This work was supported by the
Engineering and Physical Sciences Research Council �UK�
and the Alexander von Humboldt Foundation.

�1� P. W. Milonni, The Quantum Vacuum �Academic Press, New
York, 1994�.

�2� J. D. van der Waals, Ph.D. thesis, Leiden University, 1873.
�3� H. G. B. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 �1948�.
�4� H. G. B. Casimir and D. Polder, Phys. Rev. 73, 360 �1948�.
�5� J. E. Lennard-Jones, Trans. Faraday Soc. 28, 333 �1932�.
�6� R. Fermani, S. Scheel, and P. L. Knight, Phys. Rev. A 75,

062905 �2007�.
�7� D. M. Harber, J. M. Obrecht, J. M. McGuirk, and E. A. Cor-

nell, Phys. Rev. A 72, 033610 �2005�.

�8� S. Y. Buhmann, L. Knöll, D.-G. Welsch, and Ho Trung Dung,
Phys. Rev. A 70, 052117 �2004�.

�9� M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 70,
053619 �2004�.

�10� S. Y. Buhmann and S. Scheel, Phys. Rev. Lett. 100, 253201
�2008�.

�11� J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S.
Stringari, and E. A. Cornell, Phys. Rev. Lett. 98, 063201
�2007�.

�12� E. M. Lifshitz, Sov. Phys. JETP 2, 73 �1956�.

STEFAN SCHEEL AND STEFAN YOSHI BUHMANN PHYSICAL REVIEW A 80, 042902 �2009�

042902-10



�13� A. D. McLachlan, Proc. R. Soc. London, Ser. A 274, 80
�1963�.

�14� A. A. Kyasov and G. V. Dedkov, Surf. Sci. 463, 11 �2000�; G.
V. Dedkov and A. A. Kyasov, Nucl. Instrum. Methods Phys.
Res. B 183, 241 �2001�; Phys. Solid State 44, 1809 �2002�; A.
A. Kyasov and G. V. Dedkov, Nucl. Instrum. Methods Phys.
Res. B 195, 247 �2002�; G. V. Dedkov and A. A. Kyasov,
Phys. Lett. A 339, 212 �2005�; Nucl. Instrum. Methods Phys.
Res. B 237, 507 �2005�; G. V. Dedkov, Phys. Solid State 48,
1387 �2006�.

�15� I. Dorofeyev, H. Fuchs, B. Gotsmann, and J. Jersch, Phys. Rev.
B 64, 035403 �2001�.

�16� A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115419
�2002�.

�17� B. L. Hu, A. Roura, and S. Shresta, J. Opt. B: Quantum Semi-
classical Opt. 6, S698 �2004�.

�18� J. M. Wylie and J. E. Sipe, Phys. Rev. A 32, 2030 �1985�.
�19� S. Scheel and S. Y. Buhmann, Acta Phys. Slov. 58, 675

�2008�.

�20� M. S. Yeung and T. K. Gustafson, Phys. Rev. A 54, 5227
�1996�.

�21� C. Henkel and M. Wilkens, Europhys. Lett. 47, 414 �1999�.
�22� S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds,

Phys. Rev. A 78, 052901 �2008�.
�23� L. G. Boussiakou, C. R. Bennett, and M. Babiker, Phys. Rev.

Lett. 89, 123001 �2002�.
�24� C. E. Moore, Atomic Energy Levels: As Derived from the

Analyses of Optical Spectra �U.S. Government Printing Office,
Washington, D.C., 1971�, Vol. II.

�25� D. A. Steck, Cesium D Line Data, 2009, http://steck.us/
alkalidata

�26� M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, Phys. Rev. A
51, 1553 �1995�.

�27� M.-P. Gorza and M. Ducloy, Eur. Phys. J. D 40, 343 �2006�.
�28� A. Lindgård and S. E. Nielsen, At. Data Nucl. Data Tables 19,

533 �1977�.
�29� S. Å. Ellingsen, S. Y. Buhmann, and S. Scheel, Phys. Rev. A

80, 022901 �2009�.

CASIMIR-POLDER FORCES ON MOVING ATOMS PHYSICAL REVIEW A 80, 042902 �2009�

042902-11


