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We introduce two active-electron classical trajectory Monte Carlo models for ion-He collisions, in which the
electron-electron force is smoothed using a Gaussian kernel approximation for the pointwise classical particles.
A first model uses independent pairs of Gaussian electrons, while a second one employs time-dependent
mean-field theory to define an averaged electron-electron repulsion force. These models are implemented for
prototypical p+He collisions and the results are compared to available experimental and theoretical data.
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I. INTRODUCTION

The classical trajectory Monte Carlo �CTMC� method has
been successfully applied during the past decades to the
study of dynamical processes in one-electron ion-atom colli-
sions �see, e.g., �1–5� and references therein�. This method is
particularly useful in the intermediate impact velocity range
roughly characterized by 1�v /ve�3, where v and ve are,
respectively, the projectile velocity and the orbital speed of
the electron in its initial state, since standard semiclassical
approaches, which quantum mechanically describe the elec-
tron motion by expanding the total wave function on atomic
or molecular basis sets, face difficulties in describing the
strong competition among capture, excitation, and ionization
mechanisms in this velocity regime �6–8�. Moreover, CTMC
calculations provide at about v /ve�1 total and partial cross
sections that adequately coalesce with those obtained by
means of semiclassical techniques �9�; CTMC and semiclas-
sical results can therefore be merged to yield recommended
cross sections over a wide range of impact energies
�E�1–1000 keV /amu� of interest for fusion plasma diag-
nostics using neutral beams �9,10�.

Extension of CTMC calculations to two-electron targets
have mainly been performed within the independent electron
model �IEM� �11,12� using an effective charge �5,13,14� or a
static model potential �15� to represent the interaction of the
active electron with the frozen target core. Some agreement
with experimental data has been obtained for single capture
and single ionization, while double processes have system-
atically been overestimated �5,15,16�, as expected from
semiclassical analysis of multielectronic probabilities and
corresponding couplings �17,18�.

Attempts have therefore been made to explicitly consider
all target electrons in the CTMC description of collisional
dynamics. Most of the works considered the prototypical He
target, whose classical description generally leads to un-
physical autoionization, even in the absence of external per-
turbation. Kirschbaum and Wilets �19� remedied this by add-
ing to the He Hamiltonian a repulsive potential, motivated by
the Heisenberg uncertainty principle which constrains the
phase-space coordinates �ri ,pi� of the electrons to ripi��,
where � is a free parameter of order 1 in atomic units. Alter-
natively, Cohen introduced the energy-bounded approach
�20� in which autonization is precluded by means of a repul-

sive potential that prevents electrons from getting too
bounded while others are ejected. Montemayor and Schiwi-
etz �21� rather drew from the usual IEM and developed a
dynamical screening CTMC �dCTMC� approach in which
the electron-electron repulsion is represented in terms of a
time-dependent model potential in which a bound, yet active,
electron screens the target potential viewed by the other ac-
tive electron. This approach has been extended in �22� to
account for screening around the projectile when both elec-
trons are subject to capture.

In the present work, we first propose a statistical CTMC
method that does not involve any repulsive potential, but
assimilates the two active electrons to Gaussian density dis-
tributions for the calculation of the electron-electron repul-
sion force. This leads to a regularization of the Coulombian
interaction that stabilizes the He system and enables the
study of ion-He dynamics in terms of independent couples of
�ri ,pi , i=1,2� electronic trajectories. We shall refer to this
method as independent pairs of Gaussian electrons �IPGE�.
We shall also consider a CTMC method in which all classical
trajectories evolve simultaneously and where the repulsive
force that each classical electron experiences results from the
�regularized� interaction with the entire set of trajectories that
represent the other electron. This latter approach shall be
labeled averaged collective repulsion �ACR� and its collec-
tive character makes it closer to quantum-mechanical mean-
field treatments of two-electron dynamics than IPGE.

These two methods will be applied to the description of
the following single- and double-electron processes

He�1s2� + H+ → He+ + H single capture, �1a�

→He+ + H− double capture, �1b�

→He+ + H+ + e− single ionization, �1c�

→He2+ + H+ + 2e− double ionization, �1d�

→He2+ + H + e− transfer ionization, �1e�

from low �E=10 keV� to high �E=1000 keV� impact ener-
gies.

PHYSICAL REVIEW A 80, 042708 �2009�

1050-2947/2009/80�4�/042708�9� ©2009 The American Physical Society042708-1

http://dx.doi.org/10.1103/PhysRevA.80.042708


Our paper is organized as follows. After briefly reviewing
the stability conditions for the isolated He atom in Sec. II A,
we, respectively, present the IPGE and ACR approaches in
Secs. II B and II C. Section III contains our dynamical re-
sults, and conclusions are given in Sec. IV. Atomic units are
used throughout unless otherwise stated.

II. METHODS

We employ the impact-parameter approximation �23�
where the �bare� projectile of nuclear charge ZP follows a
rectilinear trajectory R�t� with constant velocity v and im-
pact parameter b so that R�t�=b+vt. The total Hamiltonian
H is split as H=HT+VP, where

HT = H0 + VR �	

i=1

2
pi

2

2
−

ZT

ri
� +

1

�r1 − r2�
�2�

is the unperturbed target Hamiltonian, ri and pi �i=1,2� are
the spatial and momentum coordinates of the two electrons,
ZT=2, and

VP = − 

i=1

2
ZP

�ri − R�
�3�

corresponds to the electron-projectile interactions. The two-
electron phase-space distribution ��r1 ,p1 ,r2 ,p2 , t� consists
of the product

��r1,p1,r2,p2,t� = �1�r1,p1,t��2�r2,p2,t� �4�

and each �i�ri ,pi , t� �with i=1,2� is discretized in terms of N
trajectories, yielding N2 two-electron configurations whose
dynamics are classically described by the Hamilton equa-
tions �24�

ṙi · e� =
�H

�pi · e�

, �5�

ṗi · e� = −
�H

�ri · e�

, �6�

where e� stands for one of the usual Cartesian unitary vec-
tors ��=x ,y ,z�.

A. Isolated helium atom

When ZP=0, the only classical trajectories that remain
unconditionally stable are those whose initial positions are
symmetric with respect to the target nucleus �where the ori-
gin of electronic coordinates is located�

r1 = − r2, �7�

p1 = − p2, �8�

so that all forces, including the electron-electron repulsive
one, are central. To define the initial condition for each pair
of electrons, we locate one electron at the aphelion of an
ellipsis that would correspond, in the one-electron case, to
the distance from the nucleus �1�

r1 =
− ZT�1 + 
1 − ��

2Em
, �9�

where Em is the energy associated with the one-electron part
of the Hamiltonian HT and �= l2 / lmax

2 is the angular-
momentum parameter with 0���1. Em depends on r1 and
is related to the total energy ET of the He atom in the sym-
metric configuration by

ET = 2Em +
1

2r1
. �10�

Substitution of Em in Eq. �9� leads to

r1 =
− 2ZT�1 + 
1 − �� + 1

2ET
= r2, �11�

with associated velocities of magnitude

v1 =
ET −
1

2r1
�1 − 4ZT� = v2. �12�

N initial conditions for electron 1 are thus randomly distrib-
uted in phase space according to Eqs. �11� and �12�, with
r1�v1 and �� �0,1�. The symmetry constraints �8� reduce
the dimension of the two-electron distribution �4� to N. In
Fig. 1, we illustrate the stability of symmetric He for the
cases of trajectories initially defined circular ��=1� and el-
liptic ��=0.5�. The initial �one-electron� character of the tra-
jectories is modified by the repulsive force but the two-
electron system remains stable since the symmetry conserves
the central �radial� nature of all electrostatic forces.

Although all pairs of symmetric trajectories in the isolated
He atom are stationary, the presence of any small perturba-
tion makes this system classically unstable. We have verified
this by placing a proton ZP=1 at 100 a.u. from the He center.
The scenario for unphysical autoionization is displayed in
Fig. 2, considering initial circular trajectories as an example:
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FIG. 1. �Color online� Temporal evolution of stable configura-
tions of classical He atom. The electronic trajectories are initially
defined �a� circular and �b� elliptic, with �=1 and 0.5, respectively
�see Eqs. �11� and �12��, as schematized in the upper figures �which
are not scaled with the lower ones�. Green �light gray� and black
�dark� symbols, respectively, refer to electrons 1 and 2. The selected
configurations pertain to the �x ,y� plane with the He nucleus lo-
cated at �0,0�.
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the electrostatic perturbation breaks the symmetry of the mo-
tions of the electrons so that the repulsive electron-electron
force rapidly exhibits a nonradial component �for t�4 a.u.
in Fig. 2�c��; the electronic trajectories are then severely per-
turbed �see Fig. 2�a�� and both radial and nonradial compo-
nents of the force present sharp peaks as the electrons come
close to each other �see Figs. 2�b� and 2�c��. This leads to a
drastic increase of their kinetic energy which cannot be
counterbalanced by the nuclear potential. Unphysical auto-
ionization thus follows at about t=6.2 a.u. in Fig. 2.

B. IPGE

A way to preserve stability in the classical He atom is to
soften the short-range behavior of the electron-electron re-
pulsive force. We have implemented the Gaussian kernel ap-
proximation �GKA� in which the classical electrons are de-
scribed in terms of Gaussian functions, of width 	r, centered
on the positions of the corresponding pointwise particles.
The electron i, located at ri at time t, is then represented by
the charge distribution

f i�r,t� =
1

�2
�3/2	r
3exp�−

�r − ri�t��2

2	r
2 � , �13�

which is normalized so that �drf i�r , t�=1 and travels with
momentum pi conjugate to ri. This approximation is quite
usual in molecular-dynamics studies of complex systems
�see, e.g., �25–27��. In a first step, we only used the GKA to
compute the repulsive potential and corresponding force, act-
ing between the electrons. Furthermore, the potential felt by
electron 1, and due to electron 2, is calculated by assuming
that electron 1 is pointwise while electron 2 is Gaussian. This
yields

V12
IPGE�r1,r2;t� =� drf2�r,t�

1

�r − r1�
=

1

r12
erf� r12


2	r
�

�14�

and the corresponding force, entering the Hamilton’s Eq. �6�,

F12
IPGE�r1,r2;t� = ��r1

r12�	 1

r12
2 erf� r12


2	r
�

−
 2




1

	rr12
e−r12

2 /2	r
2� , �15�

where r1�r1�t� and r2�r2�t� are the coordinates of the elec-
trons, r12=r1−r2, and erf�x�= 2




�0

xe−u2
du. While F12

IPGE

→ r̂12 /r12
2 as r12�	r, GKA softening operates in Eq. �15�

through F12
IPGE→0 as r12→0 since erf�x�→ 2




x for x→0. As

a consequence of this softening, stable two-electron He con-
figurations can be obtained beyond the symmetry restriction
of the previous unscreened case. The value of the parameter
	r is selected under the requirement that all random N2 pairs
of two-electron trajectories, including nonsymmetric ones,
remain stable. In practice, we found that 	r�1 is adequate
and all the following IPGE dynamical results correspond to
	r=1. We demonstrate in Fig. 3�a� that GKA indeed affords
stability to classical He, in the case of p+He collision with
v=1 a.u. and b=10 a.u., where capture and ionization can
be ignored and both electrons are accordingly expected to
remain bound to the target. We effectively obtain that r1,2
�2 a.u. throughout the collision in Fig. 3�a�.

In a second step, we also employed GKA for the compu-
tation of electron-target �VT� and electron-projectile �VP� in-
teractions and considered both electrons to be of Gaussian
type in the computation of the electron-electron repulsion.
Such calculations lead to dynamical results almost identical
to those obtained by means of the IPGE method where GKA
is only employed in the computation �15� of F12. Further,
they do not permit decreasing the value of 	r previously
selected. The results presented in the next section accord-
ingly refer to the former IPGE method.

Concerning the initial conditions, we define �1,2�r ,p , t
→−�� as microcanonical sets, of dimension N, correspond-
ing to the 1s state of a one-electron system with nuclear
charge ZT=2 and energy E�. E� is fixed so that the mean first
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FIG. 2. �Color online� �a� Temporal evolution in the �y ,z� plane
of the initially stable circular electron configuration of classical He
atom, perturbed by a proton fixed at �y=0, z=100�; the continuous
black and dashed green lines correspond to the two electron planar
trajectories. �b� Interelectronic distance r12 as function of time t. �c�
Radial �—� and nonradial �- - -� parts of the interelectronic force.
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FIG. 3. �Color online� Electron-target distances r1,2�t�, as func-
tions of time t, for some randomly sorted trajectories in microca-
nonical �a� IPGE and �b� ACR calculations of p+He collisions with
v=1 a.u. and b=10 a.u.. The thick black line corresponds to the
projectile trajectory R�t�= �b+vt�.
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ionization potential �IP��i
=−�p2 /2−ZT /r+V12

IPGE��i
, calcu-

lated among the N trajectories belonging to �i, equals the
experimental one, −0.903 a.u.. For 	r=1, E�=−1.39. Inte-
gration of the unperturbed Hamilton’s equations �6�, with
ZP=0 and F12

IPGE given in Eq. �15�, maintains �IP��i
constant.

When ZP�0, electron trajectories are propagated, for
given v and b, up to tmax, large enough so that all inelastic
processes have terminated. For each IPGE, we then calculate
the energies of the electrons with respect to the target, Ei

T

= pi
2 /2−ZT /ri, and to the projectile, Ei

P= �pi−v�2 /2−ZP / �ri
−R�, with i=1 or 2, to discriminate between excited �includ-
ing elastic�, captured, and freed trajectories by means of the
respective energy criteria �Ei

T
0, Ei
P�0�, �Ei

T�0, Ei
P


0�, and �Ei
T�0, Ei

P�0�. The inelastic probabilities for all
the processes listed in Eq. �1� are finally calculated as

�i� Single capture �SC�:

P�SC� =
1

N2
 j1,k2=1

N
� j1,c

�j1,k2��k2,e
�j1,k2� + � j1,e

�j1,k2��k2,c
�j1,k2�.

�ii� Double capture �DC�:

P�DC� =
1

N2
 j1,k2=1

N
� j1,c

�j1,k2��k2,c
�j1,k2�.

�iii� Single ionization �SI�:

P�SI� =
1

N2
 j1,k2=1

N
� j1,i

�j1,k2��k2,e
�j1,k2� + � j1,e

�j1,k2��k2,i
�j1,k2�.

�iv� Double ionization �DI�:

P�DI� =
1

N2
 j1,k2=1

N
� j1,i

�j1,k2��k2,i
�j1,k2�.

�v� Transfer ionization �TI�:

P�TI� =
1

N2
 j1,k2=1

N
� j1,c

�j1,k2��k2,i
�j1,k2� + � j1,i

�j1,k2��k2,c
�j1,k2�.

�vi� Excitation �including elastic� �E�:

P�E� =
1

N2
 j1,k2=1

N
� j1,e

�j1,k2��k2,e
�j1,k2�.

where, �ij,�
�ij,lk�=1�otherwise 0� indicates that electron i of set j

has been ascribed to excitation ��=e�, capture ��=c�, or
ionization ��= i� at the end of the dynamics of the �ij , lk�
IPGE. For DC, we further verified that the total �two-
electron� energy with respect to the projectile, E1

P+E2
P

+V12
IPGE, is negative; similarly, we checked that E1

T+E2
T

+V12
IPGE
0 for the excitation channel. In the framework of

the impact-parameter model, the cross sections are obtained
according to 	�X��v�=2
�dbbP�X��b ,v�.

C. ACR

Alternatively to the IPGE method, we developed a time-
dependent mean-field CTMC method for two-electron sys-
tems, in which the repulsion force that an electron experi-
ences stems from its interaction with the entire density of the
other electron. The resulting repulsive potential is therefore

local, as in the quantum model-potential or density-
functional approaches �28�. Considering the electron 1 sub-
ject to the repulsion of the whole electronic distribution
�2�r ,p , t�,

V12�r1;t� =� dr�2�r,t�
1

�r1 − r�
, �16�

where �2�r , t�=�dp�2�r ,p , t� �see Eq. �4��. If we assume that
for t→−�, the two electrons are equivalent and can be de-
scribed by 1s-like �isotropic� microcanonical space densities
�1�r , t→−����2�r , t→−��, it is clear from Eq. �16� that
V12�r , t→−�� is radial. Concretely, we start from one-
electron phase-space distributions �1,2�r ,p , t→−��=��E0
− p2 /2+ZT /r−V12�r , t→−��� and derive the spatial densities
�1,2�r , t→−��= �4
�2r2�dpp2�1,2�r ,p , t→−��, using well-
known properties of the � distribution, as

�1,2�r,t → − �� = Nr2
ZT

r
− V12�r;t → − �� + E0,

�17�

where N is a normalization factor and E0=−0.903. The in-
teraction potential V12�r ; t→−�� defined in Eq. �16� then
results

V12�r;t → − �� =
1

r
�

0

r

�1,2�r�,t → − ��dr�

+ �
r

� �1,2�r�,t → − ��
r�

dr�. �18�

Equations �17� and �18� are self-consistently resolved, by
means of an iterative procedure that employs the classical
He+�1s� spatial density, �i�r , t→−��=Nr2
2

r −2, as initial
guess, to obtain self-consistent-field �SCF� initial conditions.
Converged �1,2�r , t→−�� and V12�r ; t→−�� are drawn in
Fig. 4�a� as functions of the radial coordinate r. �1,2�r ,p , t
→−�� are then discretized in terms of N trajectories using
the method of �15� designed for non-Coulombic potentials.
This discretization transforms Eq. �16� into
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FIG. 4. �Color online� Radial electron densities �red �—�� and
screening potentials �black —� corresponding to the initial condi-
tions in �a� microcanonical ACR calculations �see Eqs. �17� and
�18�� and �b� improved ACR model �see Eq. �24��. In �b�, the
dashed green line corresponds to the RHF r2���r��2 quantum radial
density and the dotted black line represents the microcanonical
SCF-ACR screening potential that can be compared to V�RHF�.
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V12�r1;t� =
1

N


k2=1

N
1

�r1 − rk2
�
, �19�

where rk2
, with k2=1 , . . . ,N, corresponds to the positions at

time t of the N trajectories belonging to the discretized set
�2. These N pointwise contributions, randomly distributed in
phase space, cannot reproduce the perfect initial isotropy of
�2 �except as N→��. As a result, neither V12, computed
according to Eq. �19�, nor F12, with F12=−�V12, are per-
fectly radial so that artificial autoionization can occur as soon
as the Hamilton’s equations are propagated.

To overcome this computational inconvenience, we calcu-
late within each microcanonical set �i the time-dependent
energy of electron j, Ej�t�= pj

2 /2−ZT /rj +V12�rj , t→−��, and
state that electron j still pertains to the elastic channel,
and thus contributes to the e-e repulsion according to
V12�r , t→−��, if Ej�t��E0+�E, where E0=−0.903 and �E
is small ��0.05� and allows for insignificant numerical de-
viations upon integration of the Hamilton’s equations. Let
Nentry

�i� �t� be the number of electrons which belong to the entry
channel at time t within the set i. The mutual e-e interaction
potential acting on electron 1, and due to the whole set �2, is
then defined as

V12
ACR-m�r1;t� =

1

N	Nentry
�2� �t�V12�r1;t → − ��

+ 

j2,Ej2

�E0+�E

V12
IPGE�r1,r2;t�� , �20�

where the GKA has been employed to smooth the nonelastic
part of the one-electron distribution �2�r , t�, yielding the
V12

IPGE contributions �14� to the total V12
ACR-m. The value of the

smoothing parameter 	r entering V12
IPGE in Eq. �20� is chosen

as small as possible; in practice, we have examined the 0.2
�	r�1 range and shall demonstrate the noticeable stability
of the cross sections within this range. It is worth noting that
the lower bound value 	r=0.2 is significantly lower than the
one used in IPGE. We show in Fig. 3�b� that the present
mean-field ACR approach with 	r=0.2 brings stability to He,
in case of distant p+He collisions with v=1 a.u. and b
=10 a.u., where no significant inelastic processes are ex-
pected to occur.

The self-consistent initial conditions �17� and �18� lead to
a short-range spatial density limited to r�1.17 as shown in
Fig. 4�a�. Such contraction, inherent in any microcanonical
description, is known to yield underestimated cross sections
in the low and intermediate impact velocity ranges of one-
electron ion-atom collisions �3,5�. Improved descriptions
rely on a better representation of the quantum density and
particularly of the tail of the spatial electronic distribution
from which electrons are preferentially pulled out �see, e.g.,
�3,29��. In this work, the quantum reference consists of the
Roothan-Hartree-Fock �RHF� description of He �30� in terms
of a product of one-electron single-� wave functions

�1,2
�RHF��r� =

�3/2


1/2exp�− �r� , �21�

with �=1.6875. To classically describe ��1,2
�RHF��r��2 within

the 0�r�2.5 range beyond which ��1,2
�RHF��r��2�0 �see Fig.

4�b��, we follow guidelines of previous works �see, e.g.,
�3,29�� and build a linear combination of M He+-like micro-
canonical sets of different energies Ek,

�1,2
�RHF��r,p� = 


k=1

M=8

ak�k
�He+��r,p� , �22�

so that �1,2
�RHF��r�=�dp�1,2

�RHF��r ,p� least-squares fits
��1,2

�RHF��r��2. In Eq. �22�, M has been arbitrarily chosen equal
to 8 and the energies Ek are fixed so that the corresponding

maximal radii rmax,k of the one-electron �k
�He+�, which fulfill

rmax,k=2 / �Ek�, verify rmax,k=2.5k /M. We illustrate in Fig.
4�b� how �1,2

�RHF��r� succeeds in describing the tail of
��1,2

�RHF��r��2 up to r=2.5 a.u.. The mutual e-e screening po-
tential is then obtained as in Eq. �18�, with �1,2�r� , t→−��
changed into 4
r2��1,2

�RHF��r���2, or equivalently into
�1,2

�RHF��r�� since �1,2
�RHF��r���4
r2��1,2

�RHF��r���2, to yield

V�RHF��r� =
1 − �1 + �r�exp�− 2�r�

r
�23�

as in �21�. V�RHF��r� slightly differs from the previous SCF
interaction potential in the inner r�1.5 a.u. range �see Fig.
4�b��. Improved initial conditions, with one-electron spatial
densities drawing near to �1,2

�RHF��r� and accounting for mu-
tual screening through �23�, are finally obtained as linear
combinations of microcanonical distributions corresponding
to the non-Coulombic potential −ZT /r+V�RHF��r�,

�1,2
�c� �r,p;t → − �� = 


k=1

M=8

ak�k
�−ZT/r+V�RHF���r,p� , �24�

where each �k
�−ZT/r+V�RHF�� are constructed following the pro-

cedure described in �15�. �1,2
�c� only slightly differ from �1,2

�RHF�

so that the present procedure can also be interpreted as SCF,
yet iterations are stopped at the first step. With respect to the
subsequent time propagation, we follow a procedure similar
to Eq. �20� with the mutual e-e interaction potential

V12
ACR-c�r1;t� =

1

N	Nentry
�2� �t�V�RHF��r1�

+ 

j2,Ej2

�EM+�E

V12
IPGE�r1,r2;t�� , �25�

where Nentry
�2� �t� corresponds to the number of electrons of set

2 belonging to the entry channel at time t, i.e., electrons
fulfilling Ej�t�= pj

2 /2−ZT /rj +V�RHF��rj��EM +�E, with EM
�−0.4, the energy of the most excited microcanonical dis-
tribution forming the improved initial conditions �24�.

From a computational point of view, the present ACR
approach entangles the dynamics of the two electrons
through Eq. �19� so that the number of Hamilton’s equations
to be solved reduces to 12N. Nonetheless, all these 12N
equations have to be solved simultaneously as a function of
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time, whereas IPGE consists in solving N2 independent pairs
of 12 coupled Hamilton’s equations. To derive the inelastic
probabilities at the final integration time tmax, we first pro-
ceed as in the IPGE framework and calculate, within each �i
set, the energies of the trajectory j with respect to the target,
Ej

T= pj
2 /2−ZT /ri, and to the projectile, Ej

P= �p j −v�2 /2
−ZP / �r j −R�. When both Ej

T and Ej
P�0, trajectory j is as-

cribed to ionization; capture corresponds to Ej
T�0 and Ej

P


0 while for excitation �including elastic� processes, Ej
T


0 and Ej
P�0. Since we do not deal anymore with indepen-

dent pairs of electrons, we can now easily define single-
electron capture Pi

c, excitation Pi
e, and ionization Pi

i prob-
abilities by counting, among the N electrons pertaining to set
i, those which fulfill the respective energy criteria. The two-
electron probabilities for all the processes listed in Eq. �1�
are thus computed according to

�i� SC:

P�SC� = P1
cP2

e + P1
eP2

c .

�ii� DC:

P�DC� = P1
cP2

c .

�iii� SI:

P�SI� = P1
i P2

e + P1
eP2

i .

�iv� DI:

P�DI� = P1
i P2

i .

�v� TI:

P�TI� = P1
cP2

i + P1
i P2

c .

�vi� E:

P�E� = P1
eP2

e .

The corresponding cross sections are still obtained as
	�X��v�=2
�dbbP�X��b�.

III. RESULTS

We present in Fig. 5 the electron-target distances rij
�t�, as

functions of time t, for some randomly sorted trajectories in

IPGE and microcanonical ACR calculations of p+He colli-
sions with v=1 a.u. and b=2 a.u.. Ionizing and capture tra-
jectories can be clearly identified: the latter ones coil round
the projectile path in the outgoing phase of the collision �Z
=vt�0�, while the former ones missed to be caught by the
proton in the inner Z�0 region and are mainly emitted in the
forward direction because of projectile focusing effect �31�.
With respect to Fig. 3, Fig. 5 reinforces the stability afforded
by the IPGE and ACR methods: all inelastic processes origi-
nate from the so-called molecular region �Z�0� and ficti-
tious ionization �or anomalous target excitation� do not arise
in either the ingoing �Z�−5 a.u.� or outgoing �Z�5 a.u.�
parts of the collision.

Before turning our attention to the comparison of our
computed cross sections with the existing experimental and
theoretical data, it is worthwhile to check how the IPGE and
ACR methods provide cross sections stable with respect to
the key parameter 	r. We accordingly present in Figs. 6�a�
and 6�b� the single ionization and capture cross sections cal-
culated in the respective IPGE and improved ACR frame-
works using increasing values of 	r. Both methods are
clearly not ill conditioned since the results are almost insen-
sitive to 	r, beyond the specific values ensuring stability of
unperturbed He. Similar behavior has been found for the
cross sections associated with two-electron processes.

A. Single capture and single ionization

The IPGE and improved ACR cross sections for single
capture and ionization in p+He collisions are displayed in
Figs. 7�a� and 7�b�, as functions of the impact energy E with
10�E�1000 keV. They are compared to the experimental
data of Shah et al. �32,33� obtained by means of a crossed-
beam technique combined with electron-ion and ion-ion co-
incidence measurements. Figures 7�a� and 7�b� also include
the theoretical results of Reinhold and Falcon �15�, who em-
ployed a static model potential �and related IPM� to describe
p+He as an effective one-electron system in the framework
of the CTMC method. We also report in Figs. 7�a� and 7�b�
the results of Zajfman and Maor �34� and Cohen �20�, who
independently used the two-electron classical procedure of
Kirchbaum and Wilets �KW�, as well as the cross sections
obtained by means of the two active-electron energy-
bounded approach �20�. Wetmore and Olson �35� introduced
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FIG. 5. �Color online� Electron-target distances r1,2�t�, as func-
tions of time t, for some randomly sorted trajectories in microca-
nonical �a� IPGE and �b� ACR calculations of p+He collisions with
v=1 a.u. and b=2 a.u.. The thick black line corresponds to the
projectile trajectory R�t�= �b+vt�.
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functions of the impact energy E in p+He collisions, computed in
the framework of �a� IPGE and �b� ACR methods using various
values of 	r.
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a two-electron CTMC method that does not account for the
e-e repulsive force; their results are included in the figures.
Semiclassical coupled-state methods have also been applied
to the description of p+He collisions; Slim et al. �36,37� and
Winter �38� employed atomic approaches which consist in
expanding the total two-electron wave function on traveling
atomic states whereas Errea et al. �39� used an expansion in
terms of ab initio molecular wave functions, especially
suited to the description of charge-exchange at low impact
energies.

Concerning single capture, most of the theoretical calcu-
lations, including the present ones, are in reasonable agree-
ment with the experimental data, even if the classical calcu-
lations do not represent the maximum of the cross section
around E=25 keV. In this respect, it is to be noted that
CTMC-like calculations cannot describe underbarrier transi-
tions which determine a large part of the capture process at
low impact energies �23,29�. The KW results significantly
depend on the � parameter that constrains the electrons to
ripi��: Zajfman and Maor took �=1.257 to reproduce the
mean electronic momentum obtained from Hartree-Fock cal-
culations, while Cohen successively considered �=1 and �
=1.0844 which, respectively, allow one to obtain correct ion-
ization potentials for He+ and He.

The agreement between experimental and theoretical re-
sults is not as good for single ionization as for capture. The
IPGE method yields a cross section in agreement with the
static model potential CTMC calculations of Reinhold and
Falcon �15� for E�50 keV. These results are also close to
the two active-electron CTMC results of Wetmore and Olson
�35� and to the �=1.0844 KW calculations of Cohen. All

these computed cross sections are significantly below the
measurements of Shah et al. �32,33�. In this respect, the im-
proved initial conditions �24� used in the ACR approach lead
to a single-ionization cross section in better agreement with
the experiments from low to intermediate impact energies. At
higher energies, discrepancy with �32,33� still persists; this
may be due to the fact that the linear combination �24� of
microcanonical distributions does not succeed in represent-
ing perfectly the quantum momentum distribution �RHF�p�
which determine the ionization process at high E �40�.

B. Double capture, double ionization, and transfer ionization

The IPGE and ACR cross sections for H− formation are
presented in Fig. 8�a� and compared to the experimental re-
sults of Williams �41� and Toburen and Nakai �42� who both
employed the technique based on the dependence on target
pressure of I− / I+, where I− and I+, respectively, stand for H−

and H+ signal intensities, to determine the double capture
cross section. Figure 8�a� also includes the perturbative four-
body continuum-distorted-wave �CDW� results of Belkić and
Mančev �43�, as well as the cross section computed by Lin
�44� who used an independent electron approximation to
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FIG. 7. �Color online� �a� Single-capture and �b� single-
ionization cross sections in p+He collisions, as functions of the
impact energy E. Present IPGE �� . . .�� and ACR �� . . .�� calcu-
lations. Previous theoretical results: static model potential CTMC ��
�15��, �=1.257 KW �- - - �34��, �=1 KW �� . . .� �20��, �
=1.0844 KW �� . . .� �20��, two-electron CTMC �— �35��, energy-
bounded CTMC �� . . .� �20��, and semiclassical atomic �+
�36,37�� and �� �38�� and molecular �� �39�� calculations. Experi-
ments: � and � �32,33�.
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FIG. 8. �Color online� Cross sections for �a� double capture, �b�
double ionization, and �c� transfer-ionization processes in p+He
collisions as functions of the impact energy E. Present IPGE
�� . . .�� and ACR �� . . .�� calculations. Previous theoretical re-
sults: static �� �15�� and time-dependent �- — — - �21�� model
potential CTMC, �=1 KW �� . . .� �20��, �=1.0844 KW �� . . .�
�20��, two-electron CTMC �— �35��, energy-bounded CTMC
�� . . .� �20��, semiclassical monopole approximation �- - - �44��,
and perturbative CDW �…, �43�� calculations. Experiments: � and
� �32,33�, 	 �41�, and � �42�.
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simplify the computation of the electron-electron interaction
in the framework of a three-state two-center atomic expan-
sion. The IPGE and ACR cross sections are quite similar in
the whole impact energy range and adequately reproduce the
shape of the experimental results, even though our classical
calculations lead to a flat shape at low E as for single cap-
ture. Nevertheless, our results lie above the experimental
data, similar to the two active-electron calculations of Wet-
more and Olson �35�. As analyzed in �17,18�, such an over-
estimation could stem from an underestimation of e-e repul-
sion on the projectile center. In our mean-field ACR
approach, the repulsion is indeed averaged over all the N
trajectories wherever are centered the corresponding elec-
trons. If such a procedure is well founded in the molecular
Z�0 region, it soon becomes questionable as the two nuclei
recede from each other. For instance, if Nc electrons of one
set have been captured by the projectile, one electron of the
other set approaching this center feels a repulsion diminished
by a factor �Nc /N because of Eq. �19�. A mean-field proce-
dure that accounts for the location of the electron and the
number of electrons trapped by the nuclear centers can be
constructed; it would be much more involved than the
present one which yields results as accurate as �35�. In the
IPGE method, the underestimation of the e-e repulsion
comes from the smoothed short-range character of V12 �see
Eq. �14��. Smaller values of 	r would probably remedy this,
but they do not stabilize He.

The cross sections for double ionization are presented in
Fig. 8�b�. The IPGE and ACR approaches yield similar re-
sults but the improved initial conditions used in the ACR
make the agreement with the experimental data of Shah et al.
�32,33� better for E�30 keV. For higher E, our results,
which again coincide with the two-electron CTMC calcula-
tions of Wetmore and Olson �35�, lie above the measure-
ments. The overestimation is relatively smaller than for
double capture and less than the one obtained by means of
the static model potential CTMC method �15�. The probable
underestimation of e-e repulsion around the projectile center,
previously discussed, can be responsible for the observed
effect since it underlies an exaggerated pulling force from
the projectile when this latter crosses the target. Neither the
time-dependent target-screening approach �21� nor the
CTMC methods including constraining potentials �20� suc-
ceed in fitting the measurements; the latter ones further ex-
hibit structured shapes with respect to E besides the strong
dependence on � of the KW cross sections.

Finally, the cross sections for transfer ionization are
drawn in Fig. 8�c�. The shapes of the IPGE and ACR cross
sections are in noticeable agreement with the experimental
one �32,33�. As for the previous cases, our approaches pro-
vide results in close agreement with the two-electron CTMC
simulations of Wetmore and Olson �35�; all of them still
overestimate the measurements. While various KW calcula-
tions seriously fail at all E, the energy-bounded approach of
Cohen �20� strikingly succeeds in reproducing the experi-
mental cross section despite the fact that both the KW and
the energy-bounded methods rely on the use of similar con-
straining potentials which prevent one electron from getting
too bounded while the other one is unphysically ionized.

IV. CONCLUSIONS

In this paper, we have proposed two active-electron
CTMC models for ion-He collisions, inspired by classical
molecular-dynamics studies �25–27� in which repulsion
forces are smoothed using a Gaussian kernel approximation
for the pointwise classical particles. Our first model uses N2

independent pairs of Gaussian electrons �IPGE� and initial
conditions are defined as a product of two identical microca-
nonical distributions corresponding to a He+ state with effec-
tive energy E�, so that the subsequent propagation of the
Hamilton’s equations, including the smoothed repulsion
force, yields the correct first ionization potential of He. Our
second model �ACR� rather draws from time-dependent
mean-field theories and the repulsion force that one electron
experiences stems from the average of binary forces with the
N electrons belonging to the other set. Self-consistent micro-
canonical initial conditions have been built in this frame-
work, but improved cross sections are obtained at low and
intermediate impact energies if one mimics better the quan-
tum electron densities, as is usual in one-electron collisional
systems.

These models have been applied to p+He collisions. No-
ticeable stability of the computed cross sections with respect
to the 	r smoothing parameter has been obtained. For one-
electron dynamical processes, both models yield quite accu-
rate results in comparison to the available experimental data.
Concerning two-electron transitions, our methods lead to
well-shaped but overestimated cross sections. With respect to
the mean-field ACR model, we mentioned that it can be due
to an underestimation of the averaged e-e force when elec-
trons localize around the nuclear centers as these approach or
recede from each other, out from the molecular Z=vt�0
region. A future stage of development of mean-field classical
approaches should accordingly incorporate an averaging pro-
cedure which depends on the location of electrons on or be-
tween the nuclear centers. Within the IPGE framework, it
does not seem feasible to correct for the underestimation of
the e-e force as r12→0 since it would imply the use of small
	r smoothing parameters which do not allow stability of the
unperturbed two-electron target.

However, we believe that the results shown in Figs. 7 and
8 indicate that our present two-electron models are competi-
tive with previous classical methods, built from Hartree-
Fock perspective �35�, or including constraining potentials to
impede unphysical autoionization �19,20,34�. The accuracy
of these methods seems to increase with increasing projectile
charge �despite the sensitivity of the Kirschbaum and Wilets
procedure on the selected value of the constraining param-
eter�; in this respect, our present models are promising and
corresponding calculations, of considerable interest for fu-
sion plasma research, will be performed. Further, the ACR
model is particularly adapted to the study of multielectron
dynamics since mean-field theory implies the propagation of
�only� m�N Hamilton’s equations, where m is the number
of active electrons and N is the dimension of each electronic
phase-space set. More complex targets than He can then be
considered. Work along all these lines will be performed in
the near future.
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