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We study transmission through a system with N=10 states coupled to K=2 continua of scattering wave
functions in the framework of the S matrix theory by using the Feshbach projection operator formalism for
open quantum systems. Due to the coupling of the system (being localized in space) to the (extended) con-
tinuum of scattering wave functions, the Hamilton operator H. of the system is non-Hermitian. The numerical
calculations are performed for different distributions of both the positions E? (i=1,...,N) of the states of the
isolated (closed) system and the elements of the coupling vectors V¢ between system and continua
(c=1,...,K). The overall coupling strength « simulating the degree of resonance overlapping, is used as a
parameter. In all cases, the complex eigenvalues and eigenfunctions of H.g are controlled by «. In the regime
of overlapping resonances, the well-known spectroscopic reordering processes (resonance trapping) take place
because the phases of the eigenfunctions of H. are not rigid in the neighborhood of singular points (being
crossing points of eigenvalue trajectories). Finally, width bifurcation generates K=2 short-lived and N-K
trapped long-lived states. Thus, narrow (Fano-like) resonances may appear in the transmission at high level
density. They are similar to, but different from the Fano resonances in the scattering theory with K=1. Phase
lapses are related to zeros in the transmission probability. Their number and position (in energy) are determined
by the V¢ and E‘,) but not by a. However, number and position of the resonance states depend on « due to
resonance trapping occurring in the regime of overlapping resonances. As a consequence, universal phase
lapses between every two resonances may appear at high level density while the system will show mesoscopic
features at low level density. The phase lapses are not a single phenomenon. Due to their link to singularities
in the continuum, they are related also to other “puzzling” experimental results such as dephasing at low

temperature.
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I. INTRODUCTION

In experiments [ 1-3] on Aharonov-Bohm rings containing
a quantum dot in one arm, both the phase and magnitude of
the transmission amplitude T=|T|e?? of the dot can be ex-
tracted. The results obtained caused much discussion since
they did not fit into the general understanding of the trans-
mission process. As a function of the plunger gate voltage
V,. a series of well-separated transmission peaks of rather
similar width and height has been observed and, according to
expectations, the transmission phases B(V,) increase con-
tinuously by 7 across every resonance. In contrast to expec-
tations, however, 8 always jumps sharply downwards by 7
in each valley between any two successive peaks. These
jumps called phase lapses, were observed in a large succes-
sion of valleys for every many-electron dot studied. The
problem is considered theoretically in many papers [4-15].

In the most recent experiment [3], the transmission is
studied not only through many-electron dots but also through
few-electron ones. In the last case, the expected so-called
mesoscopic behavior is observed: the phases are sensitive to
details of the dot’s configuration such as, e.g., the potential.
In this regime, universal phase lapses between every two
resonances are not observed. The main difference between
few-electron and many-electron dots is that the level spac-
ings are smaller in the latter case than in the first one such
that the degree of resonance overlapping (ratio of average
level spacing & to average level width I') is different in the
two cases [13,14]. Using the numerical and functional renor-
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malization group approaches, systems with up to four levels
are studied for different values &/I'. If 6=TI', one of the
renormalized effective single-particle levels is typically a
factor of 2 or 3 wider than the second widest, while the
remaining 1 or 2 levels are very narrow [13]. For 6=T, the
phase B(V,) behaves mesoscopically. Universal phase lapses
appear, in these calculations, only in the regime of overlap-
ping resonances. This result is in qualitative agreement with
the experimental ones.

The formation of broad (short-lived) states together with
narrow (long-lived trapped) ones in the overlapping regime
is well known for a long time, see e.g., the recent review
[16]. This so-called trapping effect is generic. It appears in
the regime of overlapping resonances under the influence of
the environment. It is studied analytically as well as numeri-
cally in different small open quantum systems such as nuclei,
atoms, quantum dots. It is found experimentally on a micro-
wave cavity [17]. Mathematically, it can be linked to singu-
larities in the continuum at which two (or more) eigenvalues
of the non-Hermitian Hamilton operator coalesce.

It is the aim of the present paper to show that the phase
lapses are related to the phenomenon of resonance trapping.
Our study is based on the S matrix together with the concept
of the Feshbach projection operator (FPO) formalism. In this
formalism, the Hamiltonian of the system is non-Hermitian.
We show that the phase lapses are a generic phenomenon
appearing at high level density and that they are related to
other “puzzling” phenomena observed experimentally on
small quantum systems. Furthermore, we show that Fano-
like resonances may appear also in the transmission. They
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are however different from the Fano resonances in the one-
continuum case of the scattering theory.

The FPO formalism is formulated about 50 years ago in
nuclear physics for the description of nucleon-induced reac-
tions on heavy nuclei with formation of compound nucleus
states. Due to their high level density (about 10° states in an
energy interval characteristic of single-particle resonances),
the compound nucleus states as well as their coupling coef-
ficients to the continuum are described usually by using sta-
tistical approaches [18]. In reactions on light nuclei however
and in other studies on small systems, the basic equations of
the FPO formalism can be solved directly without any statis-
tical assumptions [16]. The crossover from low to high level
density can therefore be controlled. Most important process
in the crossover region is the alignment of a few resonance
states to the states of the environment (continua of scattering
wave functions) [19] and the decoupling (to some extent) of
the other resonance states from the environment (resonance
trapping). This phenomenon is described by the non-
Hermitian Hamilton operator of the open system. It leads to
changes in observable values, e.g., to an enhancement and
acceleration of the transmission in the regime of overlapping
resonances [16,20,21].

The interaction between the particles of the system is
taken into account in these calculations in the same manner
as in standard (conventional) calculations for the correspond-
ing closed quantum system, see [16]. It influences the details
of the calculation, but not the generic features. The widths of
distant resonance states show usually the so-called mesos-
copic behavior, i.e., the widths of all individual resonance
states differ, although being of the same order of magnitude,
relatively strongly from one another. The situation is another
one in the regime of overlapping resonances. Here, a few
broad short-lived modes are formed while the remaining
states in this energy region become long-lived (trapped) and
are characterized by small decay widths which are similar to
one another. The phenomenon of resonance trapping causes a
dynamical phase transition in the system [16]. An environ-
mentally induced dynamical quantum phase transition is ob-
served recently also in experimental and theoretical quantum
chemistry studies [22].

In Sec. II, we sketch the FPO formalism and the S matrix
derived within this framework. A central role in the formal-
ism plays the non-Hermitian effective Hamilton operator

H.g. This operator describes the open quantum system, i.e., it
takes into account the coupling of the states via the common
continuum of scattering wave functions. In order to study
generic features of open quantum systems, we approximate

ﬁeff by a simple expression for a toy model in which the
overall coupling strength between system and environment
can be controlled by means of the parameter «. In the frame-
work of this model, the cross section including its phase can
easily be calculated.

In Sec. III, we show numerical results obtained in the
two-continua case (K=2) with N=10 resonance states and
regular as well as random coupling coefficients V; of the
discrete states to the continuum. We are interested above all
in the transmission through the system when the two at-
tached leads are identical. We consider the phase of the trans-
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mission as a function of either the level density or the pa-
rameter «. The results agree with those obtained recently by
Karrasch et al. [13,14] by using the renormalization group
approach for N=2 and 4 resonance states. However, the re-
sults with random V¢ and a larger number of resonance states
show some new features. We show explicitly that Fano-like
resonances may appear in the transmission under certain con-
ditions. They differ, however, from the Fano resonances
known to appear in the one-continuum case (K=1).

As a result of our study we relate, in Sec. IV, the uniform
phase lapses observed at high level density, to the resonance
trapping phenomenon characteristic of the regime of overlap-
ping resonances. Mathematically, this phenomenon follows

from the non-Hermiticity of the Hamilton operator ﬁeff de-
scribing the open quantum system. It is linked to singular
points (and their neighborhood) in the continuum at which

(at least) two eigenvalues of H g coalesce. Some conclusions
are drawn in the last section. Most interesting is the relation
between phase lapses and resonance trapping, on the one
hand, and other experimental results being puzzling in the
framework of the standard Hermitian Hamiltonian quantum
physics, on the other hand.

As to the notation used in the present paper, we state the
following. In scattering theory, the different continua are de-
noted usually by different decay channels. A two-channel
case is, as a rule, an inelastic process. In the transmission,
however, we have at least two channels: one channel of in-
coming waves and another one of outgoing waves. If the two
attached leads are identical, the process is elastic in spite of
the presence of (at least) two channels. Furthermore, trans-
mission with one channel in each lead is considered often to
be a one-channel process. In order to avoid confusion, we do
not use the terminology decay channel in the present paper.
Instead, we write continuum of scattering wave functions.
It will be shown that the number K of continua is decisive
for all the redistribution processes taking place in the regime
of overlapping resonances. It determines therefore also the
phenomenon of resonance trapping. Furthermore, the Fano-
like resonances appearing in the transmission through a
quantum dot with two identical attached leads (correspond-
ing to K=2), are different from the Fano resonances known
from scattering theory in the one-continuum case (K=1), as
will be shown in Sec. IV A.

II. MODEL

The basic idea of the FPO method is the subdivision of
the whole function space into two subspaces one of which (Q
subspace) contains all wave functions that are localized in-
side the system and vanish exponentially outside of it while
the wave functions of the other subspace (P subspace) are
extended up to infinity and vanish inside the system [16].
The solutions in the two subspaces can be found by means of
standard methods. In particular, it is possible to treat the
many-body problem since the many-body interactions are
incorporated in the Hamilton operator Hy of the O subsystem
and therefore in the solutions of

(Hy~ EP)®F = 0. (1)

The eigenfunctions CID? (i=1,...,N) of Hg are orthonormal-
ized according to the Kronecker delta d; and the solutions of
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(He—E)E;; in the P subspace according to the Dirac 6 func-
tion S(E—E’). Here, ¢ denotes a specific continuum of scat-
tering wave functions, c=1,...,K. It is QP=PQ=0 and P
+0=1, where Q and P are the projection operators to the
respective subspaces.

The Schrodinger equation in the whole function space
reads

(H-E)¥%=0 2)

where H=Hg+H+Vyc+Vp as well as Hg and H- are Her-
mitian Hamilton operators, Hg is defined in the Q subspace,
Hc in the P subspace and Ve, Vg describe the interaction
between the two subspaces. The wave functions W, can be
found, without any approximations, by applying P+Q=1 to
Eq. (2) and finding the expression Wi=P¥ +QW¥,. In solv-
ing Eq. (2), the effective non-Hermitian Hamilton operator

1

Hy=Hg+ >V, V 3
eff = Hp E BCpr_ | _H, CB 3)

appears [23] which contains the Hamilton operator Hy of the
closed (isolated) system with discrete states, see Eq. (1), as
well as an additional symmetric term that describes the cou-
pling of the discrete states via the common environment of
scattering wave functions &5 Further, Ve, Vp stand for the
coupling between the eigenstates of Hy and the environment

that may consist of several continua c¢. The operator ﬁeff
describes the localized part of the problem. It is non-
Hermitian and symmetric,

(ﬁeff_ Zi)(f’z: 03 (5;‘@1) = 0. (4)

Its eigenvalues z,:E,—i /21:,- and eigenfunctions CB; are com-

plex. The eigenvalues provide not only the energies E,- of the
resonance states but also their widths f,- (inverse lifetimes).
The eigenfunctions are biorthogonal according to Eq. (4)

with the consequence that their phases are not rigid in the
regime of overlapping resonances [19-21]. The crossing

points at which two (or more) eigenvalues z; of I?Ieft coalesce,
are singular points. Here, the corresponding eigenfunctions

@, become linearly dependent, ®, — = id,.

Since Heff depends explicitly on energy, so do its eigen-
values and eigenfunctions. The energy dependence of the z;

and <I~J,- is important near decay thresholds and in the regime

of overlapping resonances. The z; and CI~>Z~ describe the spec-
troscopic properties of the system localized in the Q sub-
space and embedded in the P subspace. Using the eigenval-

ues z; and eigenfunctions ®@; of H.g, the solution of Eq. (2)
reads

(P Vorler)

- ( =
gz Q=1+ GV D,

N

V=& + > Q,
i=1

(5)

where ﬁ,- is the wave function of the resonance state i and
Ggf) is the Green’s function in the P subspace. The expres-
sion (5) represents a solution of the problem (2) which is
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exact provided that all interactions are known analytically
and P+Q=1 holds. For a numerical proof of this statement
in the case of resonance scattering on Bargmann-type poten-
tials see [24].

By means of the expression (5) for W, the resonance part
of the S matrix can be derived [16,25]

res_ E 'yc'yc

6
llE Zz ()

with ¥ =\27(D| Vel £)=\27(E| Vey D) when excitation
and decay of the states occur via the same mechanism. In

res
CL!?

involved. The yfyf show a special resonance behavior at the
energy of a branch point where two eigenvalues z; of H g
coalesce [26]. Details of the model can be found in [16].

Using the expressions (2)—(6), numerical studies for small
quantum systems such as nuclei, atoms and quantum dots are
performed, see the review [16]. Of special interest are the
results obtained in the regime of overlapping resonance
states. They show generic features such as level repulsion
and width bifurcation which are caused by the phenomenon
of avoided and true crossings of resonance states in the con-
tinuum. Mathematically, they can be traced back to the non-
trivial topological structure of the continuum, i.e., to the ex-
istence of singular points (exceptional points) in the
continuum [19,27]. The role of these points and their neigh-
borhood for the dynamics of open quantum systems is dis-
cussed recently in detail [16,28].

The width bifurcation appearing at comparably large cou-
pling strength between system and environment causes the
appearance of long-lived (trapped) states together with a few
short-lived ones. The mechanism is the alignment of the
wave functions of a few states to the scattering wave func-
tions of the environment by trapping the rest of the states
(phenomenon of resonance trapping). The alignment is pos-

the elgenvalues z; and eigenfunctions CID of H.y are

sible due to the biorthogonality of the eigenfunctions <1~3,» of
the non-Hermitian operator H.y as a result of which the

phase rigidity of the ®; may break down [16,19-21]. The
coupling coefficients of the trapped resonance states to the
continuum of scattering wave functions are correlated since
(D, de;ﬁi) #0 and (®,|®;)> 1 in the regime of spectroscopic
redistribution processes. Numerical studies for the nucleus
Mg have proven this statement [29].

Number and energy position of distant resonance states
(low level density) are determined, to a good approximation,
by the eigenstates of Hp (which contain the interactions be-
tween the particles of the system). Due to the spectroscopic
redistribution processes taking place in the regime of over-
lapping resonances, number and position of the trapped reso-
nance states (high level density) depend on the overall cou-
pling strength between system and environment. The number
of trapped resonance states is smaller than the number of
eigenstates of Hp.

All calculations performed by means of the Feshbach pro-
jection operator formalism show that the number of continua
of scattering wave functions plays the decisive role in the
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redistribution process taking place in the regime of overlap-
ping resonances. Whether or not also an energy loss takes
place is of minor importance. The transmission process
through a quantum dot with two identical attached leads
(corresponding to K=2) shows therefore the characteristic
features of a two-continua process. For example, a few reso-
nance states align each to one of the continua such that the
number of trapped resonance states is smaller than N (where
N is the number of eigenstates of Hp). Mostly, the number of
trapped resonance states is N—2. Fano-like resonances ap-
pearing in the transmission through a quantum dot without
any energy loss in the dot, differ from the Fano resonances
(originally defined for the one-continuum case), as will be
shown in Secs. III C and IV A.

In order to show the generic features of open quantum
systems as a function of the coupling strength between the
two subspaces, the effective non-Hermitian Hamiltonian (3)
can be approximated by the expression

Heff=HO—l.C(VV+, (7)

where the first term H° describes the internal structure of the
system in the Q subspace and aVV* stands for the coupling
between the two subspaces (in terms of the eigenvectors of
H'). Both operators H” and VV* are Hermitian. This expres-
sion for H.g is used in many model calculations in order to
simulate some important features of open quantum systems
at strong coupling to the continuum, see the recent review
[16]. It gives however reliable results only up to values of
somewhat larger than the critical coupling strength a=«, at
which K broad resonance states and N—K trapped states are
formed (where K is the number of continua). The expression
(7) is energy independent and can describe the generic fea-
tures of the system only at energies far from decay thresh-
olds. When « is chosen to be real, the Hermitian part of the
second term of Eq. (3) is effectively taken into account by

considering HS'=H+3 PfdE ’% Alternatively, « can be
chosen to be complex. In such a case, H° remains unchanged
and the principal value integral in H. is simulated by
Re(iaVV*). In both cases, Im(iaVV*) stands for the re-
siduum of the non-Hermitian term of H .

In any case, the parameter « is the mean overall coupling
strength between discrete and continuum states while the
components V of the vectors V describe the coupling of the
individual resonance states i to the continua ¢ (in terms
of the eigenvectors of Hp). The rank of H, is equal to the
number N of states of the system, i=1,...,N. The coupling
matrix V is of rank K XN where K<N is the number of
continua, c=1, ...,K. Thus, the rank of VV* is K. Below the
critical coupling strength, a<a, we have N resonance
states while there are only N—K narrow resonance states
when a> a,. The N-K resonance states at o> «,, and their
coupling vectors to the continuum differ from those at «
< ay,. These results are independent of the number N of
states and hold also in the limit N—, see the analytical
study [30].

It should be underlined here once more that Eq. (7) allows
to describe generic features of open quantum systems that
arise from the coupling of the system to the environment of
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scattering wave functions. The Hamiltonian (7) can, how-
ever, not be used for the description of all details of the
system. For example, the number of short-lived whispering
gallery modes which may appear under certain conditions in
open quantum cavities with convex boundary is larger than K
[20,31]. Also effects arising from the interaction between the
particles of the system cannot be studied directly by using
Eq. (7). In order to receive detailed information for the spe-
cial system considered, the Hamiltonian (3) and all the re-
lated complex matrix elements have to be calculated. Fur-
thermore, the boundary conditions have to be taken into
account correctly. This leads to some restrictions in the ap-
plication of the simple expression (7) as discussed above. In
other words, it is possible to receive generic features of open
quantum systems on the basis of Eq. (7) when the applica-
bility of this simple formula to the description of the system
is controlled by Eq. (3).

The eigenfunctions ®; and eigenvalues &=E;—i/2T"; of
the Hamilton operator H.g, Eq. (7), are complex since H,g is
non-Hermitian. The eigenfunctions &; are biorthogonal,
(®][®;)=6,;. Mathematically, the biorthogonality of the
eigenfunctions of H.y is basic for the dynamics of open
quantum systems in the regime of overlapping resonance
states. The generic features of open quantum systems are
involved in Eq. (7) and can be controlled in a transparent
manner.

Using the energy independent approach (7) for H.g, the
scattering matrix simplifies to

()= 5, 2103 L 8)

i E-&

where a and b denote two continua of scattering wave func-
tions and the coupling vectors W; and Wf’ are written in
terms of the eigenvectors in the biorthorgonal eigenbasis of
H . For trapped resonance states, we have a corresponding
expression and, additionally, a background term. The partial
cross section for the reaction from continuum a to continuum
b is then given by

Uab(E) = |5ab - Sab(E)|2 (9)
with the phase

(Pab(E) = arg[sab(E)]~ (10)

According to this simple toy model, the redistribution of
the spectroscopic features of the system can be controlled by
varying « from zero (corresponding to the closed system
with N levels) to a value at which the second term of H_ g
dominates whose rank is K<<N. Since the eigenfunctions of
H_ ¢ in the regime of the spectroscopic redistribution are bior-
thogonal, the coupling coefficients W; of the different reso-
nance states i to the continuum are correlated in this regime.
Resonance trapping occurs hierarchically [17,20,32-34]. Fi-
nally, the widths I'; of only K states are large such that these
states are no longer localized in the Q subspace and the
simple Hamiltonian (7) does no longer describe the system.
The widths I'; of the rest of the states are small (resonance
trapping) [34]. That means, a dynamical phase transition
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takes place [16] and, as a consequence, the system has only
N-K long-lived resonance states.

We are interested in the simulation of transmission
through small systems coupled to two (almost) identical
leads at zero temperature. The transmission is given by S,
with b#a. According to K=2 continua in this case, two
short-lived states together with N—2 long-lived trapped ones
are formed at strong coupling. Transmission zeros may ap-
pear due to destructive interferences between the wave func-
tions of the resonance states. At the energies of the transmis-
sion zeros, the reflection is maximal and the coupling
between system and environment vanishes. These energies
are therefore independent of « and are determined by Hy and
H°, respectively, and the coupling vectors V¢ and V* to the
continuum. At the energies of the transmission zeros, phase
lapses appear the positions of which are, consequently, also
independent of a. At a= a, and a> a,, the so-called me-
soscopic properties of the resonance states known at small
a<a (low level density), are washed out.

III. NUMERICAL RESULTS

In this section, we show the results of calculations per-
formed with Egs. (7)—(10). In all cases, H® is chosen diago-
nal with the diagonal matrix elements EY. In order to simu-
late the transmission through a cavity with two attached
leads, we restrict ourselves to the two-continua case (K=2).
After fixing the N X2 components of the coupling vectors
V¢, ¢=1,2, we trace the eigenvalues of H; as a function of
the coupling parameter «. We calculate the transmission
probability o,(E) and the transmission phases ¢,,(E) for
different level densities of H° and distributions of the cou-
pling vectors V¢ at some selected values of the coupling
strength «. Furthermore, we choose « to be real or complex
with Im(a)=Re(a) in the last case. In order to illustrate the
resonance trapping effect, the calculations are performed by
varying « from small values to «a.,. and further to values «
> a,.

A. Increasing level density and fixed coupling strength «

First, we show results obtained for N=10 states of H°
with increasing level density coupled to K=2 continua of
scattering wave functions (Fig. 1). The N=10 energies E? of
the unperturbed states are chosen such that the distance be-
tween them is halved with increasing energy, i.e., E?
=5, E0=7.5, E(3)=8.75 and so on. The subfigures on the
right-hand side of Fig. 1 are a magnification of the region
with high level density.

We choose the two N=10 dimensional coupling vectors
V¢, ¢=1,2, of the two continua as signy(1+ 7), where signy
is the sign of the elements of the coupling vector and 7 is a
Gaussian random number with zero mean and standard de-
viation 0.1. In Fig. 1, signy is chosen to be +1 for the first
continuum and —1 for the second one. The eigenvalue trajec-
tories are calculated by varying the value of the real and
imaginary part of « between 4 X 1073 and 2 in steps of 4
X 1073. The cross sections o,(E) and the phases ¢,(E) are
calculated with a=(1+17)0.05. The spectroscopic values, i.e.,
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FIG. 1. (a) and (b): eigenvalue trajectories &=E;—i/2[; as a
function of the coupling parameter « (the real energy axis is scaled
according to the positions of the unperturbed states as described in
the text), (c) and (d): transmission probability |oj,(E)|> (normalized
to 1), (e) and (f): scattering phase &(E) in units of 27, (g) and (h):
phase ¢ ,(E)=arg[o,(E)] for N=10 states in units of 2. The dis-
tance AE between every two consecutive states E? is halved suc-
cessively with increasing energy. In (a) and (b), the parameter « is
varied between 4 X 1073 and 2 in steps of 4 X 1073. The cross sec-
tions o ,(E), the scattering phases 8(E) and the phases ¢,(E) are
calculated with @=(1+1)0.05 (marked by squares in the eigenvalue
trajectories). The coupling vectors are 1=v¢='=—v¢% i=1...10.
The density of points in the subfigures (a) and (b) expresses the
“velocity” with which the eigenvalues &; of H.g change as a func-
tion of a. The resonance trapping occurs hierarchically. Note the
different energy scales in the figures on the right-hand and left-hand
side.

energy positions and decay widths of the resonance states for
which cross section and phases are calculated, are marked by
square symbols in the eigenvalue pictures.

In the subfigures (a) and (b), we show the trajectories of
the eigenvalues &=E;—i/2I"; of H. as a function of the
coupling parameter «. The distance between adjacent points
of a given trajectory expresses the “velocity” by which the
eigenvalues move in the complex plane as a function of a.
The two short-lived states arise in the region of high level
density and are continuously shifted to lower energy. Energy
shifts to the low-energy region at large « occur also in cal-
culations with real « though they are smaller in this case.

The eigenvalue pictures confirm the general consideration
given in Sec. II and illustrate some further details of the
reorganization process. At first, all eigenvalues drift from the
real axis into the complex plane such that the real part, i.e.,
the energy position of the resonance states, remains almost
unchanged. In this low coupling regime, the imaginary parts
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and thus the resonance widths increase monotonically with
increasing «. Thereafter, a critical regime is reached where
two neighboring resonance states attract each other in energy
while their widths bifurcate. This region is determined by
true and avoided crossings of the eigenvalue trajectories. The
true crossing points are singular points at which not only the
eigenvalues of two eigenstates of Eq. (7) coincide (&£,=&,)
but also their wave functions become linear dependent from
one another (®,= *id,), for details see [16]. The avoided
crossings appear in the neighborhood of singular points. This
is illustrated, e.g., in Fig. 1 in [35] where the crossing points
are marked on the eigenvalue trajectories, and in [36] where
the eigenvalue trajectories in the neighborhood of the cross-
ing points (double poles of the S matrix) in laser-induced
continuum structures in atoms are shown. The calculations in
the first case are performed by using Eq. (7) and those in the
second case by using Eq. (3). Finally a few short-lived states
appear while the remaining ones get trapped, i.e., become
effectively decoupled from the continuum of scattering wave
functions. In our case, we have K=2 short-lived states that
trap the remaining N—K=8 states.

These spectroscopic reordering processes set in when
neighboring states start to overlap. Therefore, the critical re-
gime is reached at values « which are the smaller the larger
the level density is. The reordering regime covers a finite
range A« of the parameter « since the resonance trapping
phenomenon occurs hierarchically, e.g., [32]. Each of the
two short-lived states is aligned to one of the two scattering
wave functions while the trapped states encounter orthogonal
orientations with respect to the scattering wave functions
[34]. Their widths do not increase with further increasing «.

The subfigures (¢) and (d) show the transmission prob-
ability o, as a function of energy for a fixed value of . The
corresponding complex eigenvalues are marked by squares
in the eigenvalue trajectories of the subfigures (a) and (b).
The decrease of the widths of the resonances at high level
density can be seen immediately in the narrowing of the
resonances.

In the subfigures (e) and (f), the scattering phases &(E) are
shown. They increase regularly by 7r (in accordance with the
Levinson theorem) when the position of a resonance state is
crossed. In the two subfigures (g) and (h), we show the
phases ¢,=arg(S},). They jump by 7 or —7r at the zeros of
the transmission probability o, (see Sec. III B for further
discussion).

Interesting is the variation of the shape of the phases
¢po=arg(S;,) when the level density is increased. In any
case, the increase of ¢, occurs in the energy region A;
=E; £ T, around the position E; of the resonance state i while
a phase lapse appears at the zero in the cross section, i.e., at
an energy between two neighboring resonances. The position
of a resonance state causes a peak in the cross section that is
well separated from zeros if the resonances do not overlap
(regime at low level density with Breit-Wigner resonances).
With increasing level density, the resonance states do no
longer cause peaks, but mostly dips in the cross section, and
the positions of the resonance states are no longer well sepa-
rated from the cross section zeros. Hence, the shape of
¢12(E) changes qualitatively, compare the subfigures (g) and

(h).
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FIG. 2. (a) and (b) eigenvalue trajectories &;=E;—i/2I; for ten
equidistant states as a function of the coupling parameter « (the real
energy axis is scaled according to the positions of the unperturbed
states as described in the text). Re(a)=Im(«) is varied from 0.005
to 2.5 in steps of 0.005. (c), (e), and (g): transmission probability
|o12(E)|? (normalized to 1) calculated with Re(a)=Im(a)=0.01, 0.1
and 2.5 [marked in the subfigures (a) and (b) by +, x and *, respec-
tively]. (d), (f), and (h): the corresponding phases ¢;,(E)
=arg(o»(E)) in units of 2. It is signy+1 for the first and —1 for
the second continuum.

The results shown in Fig. 1 and those obtained for the
case with signy=+1 of both coupling vectors (not shown in
the present paper) have the same characteristic features as
those found by Karrasch et al. [13,14] by using the renor-
malization group theory for the transmission through a mi-
crowave cavity with, respectively, 2 and 4 resonance states.
As our simple schematic model with the Hamilton operator
H.s, Eq. (7), does not contain any specific features of any
particular quantum system, we consider this behavior as a
generic one.

We performed also calculations with random coupling
vectors (including their signs). These results (not shown)
show some unique effects. Typically, the number of zeros in
the cross section may be smaller than in the other two cases
with regular signs of the coupling coefficients. Correspond-
ingly, also the number of phase lapses may be reduced. That
means, it does no longer hold that a transmission zero and
the corresponding phase lapse occur between every two reso-
nances.

B. Equidistant levels and increasing coupling strength o

In Fig. 2, we show the results obtained for ten equidistant
levels coupled to two continua of scattering wave functions.
The N=10 components of the coupling vectors V¢, c=1,2, of
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the two continua are chosen as signy(l+7) where 7 is
a Gaussian random number with zero mean and standard
deviation 0.1. It is signy=+1 for the first and —1 for the
second continuum. The parameter « is complex with Re(a)
=Im(a). In the eigenvalue trajectories, both Re(«) and Im(a)
are varied from 0.005 to 2.5 in steps of 0.005. The cross
sections o, and the phases ¢, are calculated for the three
values Re(a)=Im(a)=0.01, 0.1 and 2.5 which are marked in
the subfigures (a) and (b) by, respectively, +, x and *. The
subfigures (a) and (b) show the same data in order to relate
visually the positions of the resonance states to the cross
sections (left) and to the phases (right).

At small «, the resonances are well isolated and of Breit-
Wigner shape. The regime with intermediate values of «
is the critical one where the resonance states overlap and
most of them become trapped. Characteristic of this regime
is the local interplay of neighboring resonance states. Some
of the states first trap other ones in the neighborhood and
then become trapped by more distant ones. At large coupling
strength «, all but two resonance states are trapped.

In Fig. 2, we see the same generic effects as in Fig. 1
although the level density is constant on the average in this
case. The point is that the effects seen in the two figures are
caused by the increasing degree of resonance overlapping
which is achieved, in the first case, by increasing level den-
sity and, in the second case, by increasing overall coupling
strength a. Mathematically, both situations are equivalent to
one another since resonance overlapping is described, in both
cases, by nonvanishing nondiagonal terms of H.y. In both
figures, we see phase lapses of 7 or —7r at the energies of the
zeros of the transmission probability. Also the energy depen-
dence of ¢, around the phase lapse changes in Fig. 2 in the
same manner as in Fig. 1 when the degree of overlapping of
the resonances is changed.

In Fig. 2, zeros in the cross section appear between every
two resonances. The position of these zeros and of the cor-
responding phase lapses does not depend on the parameter c.
The phase lapses are —r at low and critical values of a. At
large coupling strength, some of the phase lapses change
their sign. The results obtained with signy=+1 for both cou-
pling vectors (not shown) display qualitatively the same
characteristic features as those shown in Fig. 2.

We discuss now in detail the results obtained for ten equi-
distant states with random components of the coupling vec-
tors V¢, c=1,2. In Figs. 3-5, the components V; are chosen
as Gaussian random numbers with zero mean and unit vari-
ance, see Table I. The coupling parameter « is chosen, in
these calculations, to be real and complex, respectively, with
Im(@)=Re(a) in the last case. The corresponding eigenvalue
trajectories &; are shown at the top and bottom, respectively,
of Fig. 3.

In the central part of Fig. 3, we show the cross sections
and phase lapses at small [subfigures (c) and (d)], intermedi-
ate [subfigures (e) and (f)] and large coupling strength «
[subfigures (g) and (h)]. The results with Im(a)=0 (full
lines) and Im(«) =Re(«) (dashed lines) are surprisingly simi-
lar although the corresponding eigenvalue pictures differ
considerably from one another. The cross section obtained
for the large value a=2.5 [Fig. 3(g)] shows two resonance
peaks less than that obtained with the small value a«=0.01
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FIG. 3. The same as Fig. 2 but the coupling vectors V¢, ¢
=1,2, are chosen with Gaussian random numbers with zero mean
and unit variance (Table I). Full lines in (c) to (h): Im(a)=0, dashed
lines: Im(@)=Re(a). The subfigures (i) and (j) show the eigenvalue
trajectories &; with Im(a)=0.

[Fig. 3(c)]. This result corresponds to the fact that the num-
ber of long-lived resonance states is reduced at large « due to
the resonance trapping phenomenon (see the eigenvalue tra-
jectories at the top and bottom of Fig. 3). At large a two
states are short-lived according to their alignment each with
one of the scattering wave functions. They are not visible as
resonances in the cross section but appear as a background
superposing the long-lived resonance states.

FIG. 4. Cross section g, with Im(a)=0 of Fig. 3 in logarithmic
scale. Full line: small « as in Fig. 3(c), dashed line: large « as in
Fig. 3(g).
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FIG. 5. The S matrix corresponding to Fig. 3 with Im(«)
=Re(a). Top: small a as in Fig. 3(c), bottom: large « as in Fig.
3(2).

The number of zeros in the cross section may be much
smaller than the number of resonance states. It is exclusively
determined by the distribution of the E? and the coupling
vectors V¢. When the coupling vectors are those given in
Table I, there are only three zeros for ten resonance states
coupled to two continua, This can clearly be seen in Fig. 4
where the cross section is shown in logarithmic scale for
small (full line) and large (dashed line) value of « [with
Im(a)=0].

Phase lapses appear at every zero in the cross section as
can be seen from Fig. 3 right hand. They are * .

For illustration, we show in Fig. 5 the S matrix for small
(top) and large (bottom) coupling strength . In this calcula-
tion, a is complex with Im(a)=Re(a). We see the rotation of
the S matrix that takes place in the transition from the weak
coupling regime (top, small «) to the strong one (bottom,
large «). It illustrates the alignment of the resonance states
with the scattering states of the continuum [16,19]. The tran-
sition through zero is mostly avoided at both small and large
coupling strength « such that, in the present case, the zero is

TABLE 1. The coupling vectors V; used in Fig. 3.

State i Continuum c=1 Continuum c=2
1 1.887 —-0.658
2 -1.370 —1.456
3 -0.322 0.992
4 —-0.882 -0.187
5 1.741 -0.255
6 -1.312 -1.126
7 1.950 -0.704
8 -2.450 —-1.004
9 -0.359 -0.200
10 -0.424 -0.491
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FIG. 6. The same as Fig. 2 but the components of the first
coupling vector are chosen as +1, the last component of the second
coupling vector as —1 and the rest of the components as +1. In (a)
and (b), Re(a@)=Im() is varied between 0.005 and 2.5 in steps of
0.005. It is @=0.01 in (c) and (d), @=0.1 in (e) and (), @=2.5 in (g)
and (h).

passed only three times according to the three zeros in the
cross section.

C. Fano-like resonances in the transmission probability

We now discuss in more detail the question whether Fano
resonances appear in the transmission probability calculated
in the formalism used in the present paper, Egs. (7)—(10). For
this purpose, we show in Figs. 6—8 the formation of the two
short-lived states at large « and their influence on cross sec-
tion and phase lapses when the coupling vectors are chosen
in the following manner. In the three figures, all components
of the first coupling vector are chosen as +1. In Fig. 6 (with
complex a) and Fig. 8 (with real «), the last component of
the second coupling vector is —1 and the rest of the compo-
nents is equal to +1. In Fig. 7, however, the first component
of the second coupling vector is —1 and the rest of the com-
ponents is equal to +1. In all cases, two broad states are
formed at large « due to the resonance trapping phenom-
enon.

In Fig. 6, the state with the larger width arises from the
state i=1 with coupling matrix elements (1,1) and the other
one from /=10 with coupling matrix elements (1,—1). In Fig.
7, the two states arise from the state i=1 with coupling ma-
trix elements (1,—1) and from /=2 with coupling matrix el-
ements (1,1). In both cases, the state with the largest width is
related to a state with the coupling matrix elements (1,1), i.e.,
to a state with the same sign of both coupling vectors. The
state with the second largest width has the coupling matrix
elements (1,-1). Also in Fig. 7, the state (1,1) is shifted, at
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FIG. 7. The same as Fig. 6 but the first component of the second
coupling vector is chosen as —1 and the rest of the components as
+1.

large «, to lower energy than the state with (1,—1). The two
short-lived states interfere with one another such that the
average cross section decreases with energy in the whole
energy range shown in Fig. 6, while it increases with energy
in Fig. 7 in the same energy range. The narrow resonances
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FIG. 8. The same as Fig. 6 but Im(a)=0. In (a) and (b), « is
varied between 0.01 and 5.0 in steps of 0.01. It is @=0.01 in (c) and
(d), @=0.18 in (e) and (f), @=5.0 in (g) and (h).
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look like Fano resonances with a finite angle between reso-
nance and background. This angle is different in Fig. 7 from
that in Fig. 6. Correspondingly, the phase lapses have differ-
ent signs in the two cases.

It should be remarked that the results shown in Fig. 6 do
not depend on the fact that « is chosen to be complex in
these calculations and Re(a)=Im(a). Qualitatively, the same
result is obtained for real « as shown in Fig. 8. Furthermore,
the result shown in Fig. 6 differs from that in Fig. 7 obtained
with slightly changed coupling vectors, although the results
in both figures are obtained with complex «. That means, the
Fano-like resonances in the two-continua case (Figs. 6-8)
are different from those in the one-continuum case. In the
last case, the angle of the long-lived resonance state relative
to that of the short-lived state is well defined by the position
of the two resonance states relative to one another (see Sec.
IV A). In the two-continuum case, however, such a simple
relation does not hold. As can be seen from Figs. 6—8, most
important for the interference angle between narrow and
broad states in the two-continuum case are the coupling vec-
tors and not the position of the interfering states relative to
one another.

All phase lapses in the three Figs. 6-8 are 7 at small and
intermediate values of a. The difference between the two
cases with complex « (Figs. 6 and 7) at large coupling
strength is the angle between the short-lived and long-lived
states. Correspondingly, the phase lapses are 7 in the one
case and —r in the other case. That means, the sign of the
phase lapses is influenced by the coupling vectors. It is, how-
ever, almost independent of the fact whether « is complex or
real (Figs. 6 and 8).

IV. DISCUSSION OF THE RESULTS

The numerical results shown in Sec. III illustrate some
generic features of small open quantum systems coupled to
two continua of scattering wave functions. Figures 1-3 show,
under different conditions, probability and phase of the trans-
mission through a quantum dot as a function of the coupling
parameter « as well as the corresponding trajectories of the
eigenvalues of H. From Fig. 4, we see that the positions of
transmission zeros are independent of «, indeed.

Mathematically, the numerical results can be traced back
to the loss of the phase rigidity of the eigenfunctions of the
non-Hermitian Hamilton operator H s in the regime of over-
lapping resonances. The nonrigidity of the phases of the
eigenfunctions is illustrated in Fig. 5. In Figs. 68, we illus-
trate that Fano-like resonances in the two-continua case
(K=2) may appear, but they differ from Fano resonances
observed in the one-continuum case (K=1).

In the following, we will relate the results obtained, above
all, to the appearance of phase lapses in the transmission
through small quantum dots and to Fano resonances. We
consider also the link to other phenomena that are directly
related to the resonance trapping phenomenon, e.g., to bound
states in the continuum and to plateaus in the transmission
probability occurring in the regime of overlapping reso-
nances. As a remark, the calculations in Sec. III, are per-
formed by varying a from small values up to a> «a,. The
results for a> a, have illustrative character.
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A. Fano resonances

Phase lapses are often related to Fano resonances [7]
which have been studied originally in the one-continuum
case [37]. These resonances appear in the cross section due
to the interference of a narrow resonance (the Fano reso-
nance) with some background that is (almost) independent of
energy in the energy region E;,—I'; = E<E;+I"; (where E; and
I'; are energy and width of the narrow resonance). The back-
ground may arise from a state whose width is much larger
than that of the narrow resonance state. The typical picture is
an interference zero in the cross section in the very neigh-
borhood of the resonance peak. The position of the zero in
energy relative to that of the peak of the resonance state
depends on the angle ¢y between resonance state and back-
ground. At ¢p=7/2, the Fano resonance appears as a dip in
the cross section such that the position of the zero of the
cross section and that of the resonance state coincide. Ex-
amples for different angles ¢y are given in textbooks, e.g.,
[38]. An illustrative example is the change of the line profile
of Rydberg autoionizing states due to the overlapping with a
broad resonance in argon [39]. The line shape as a function
of the angle between two resonance states and background is
schematically considered in [40].

For the description of the transmission through quantum
dots, (at least) two spatially separated continua of scattering
wave functions are required. According to the S matrix
theory for the transmission through quantum billiards in
tight-binding approach, fwo short-lived broad states are
formed at strong coupling between billiard and attached
leads [41].

The numerical results for o> a,, presented in Figs. 6—8
may be considered as results for eight equidistant trapped
resonance states with equal coupling coefficients. They are
superimposed on a background. Common to the resonances
and zeros observed in the transmission and the Fano reso-
nances (in the one-continuum case) is that both result from
interference processes. However, the interference picture is,
generally, more complicated and richer in the two-continua
case than that in the one-continuum case. For example, the
angle between narrow resonance and background in the two-
continua case cannot be defined in such a simple manner as
in the one-continuum case. This can be seen very clearly
from Figs. 6-8: the angle is almost the same for all the
narrow states in each of the figures although the position of
the narrow states relative to that of the broadest state is dif-
ferent. In Figs. 8(g) and 8(h), the broadest state is in the
center of the spectrum. However, the line shape of the low-
lying and high-lying resonances is the same, in contrast to
that what is known from the one-channel case (see, e.g., the
line profile of Rydberg autoionizing states [39]).

B. Bound states in the continuum

The appearance of bound states in the continuum is a
generic phenomenon discussed first about 80 years ago
[38,42]. The mechanism is the strong parameter dependence
of the decay widths due to width bifurcation (resonance trap-
ping) as shown in different papers, see [16]. Width bifurca-
tion is (in a similar manner as level repulsion) caused by the

PHYSICAL REVIEW A 80, 042705 (2009)

avoided crossing of the trajectories of the eigenvalues z; of

H._ g, occurring in the neighborhood of singular points in the
continuum (branch points). The topological structure of the
singular (crossing) points is nontrivial. Other examples of
bound states in the continuum are found in laser-induced
structures in atoms (so-called population trapping) [36], in
photonics [43], in mesoscopic systems [44,45] and, e.g., in
Aharonov-Bohm rings [46].

In [44], the FPO formalism has been applied to the trans-
mission through double quantum dots by using the S matrix
formalism together with the tight-binding approach. The tra-

jectories of the eigenvalues of f:leff as well as the transmis-
sion are controlled by an external parameter X. The trajecto-
ries Im[z,(X)]=-2T";(X) depend sensitively on X. Due to this
strong parameter dependence, the unitarity of the S matrix is
guaranteed at all parameter values. Furthermore, the width T’;
of one of the states may vanish at the critical value X=X, if
the system is symmetric in space, or may become very small
if the space symmetry is somewhat broken. In the first case,
a bound state in the continuum with I';=0 appears.

At the positions of bound states in the continuum, phase
jumps by 7 appear. These phase jumps differ however from
the phase lapses discussed in Sec. III. They arise from the
scattering phase &(E) which jumps by 7 when I';—0. An
example of this type of phase lapse is shown in [44], Fig. 5,
for the transmission through a double quantum dot.

The conclusion following immediately from the eigen-
value trajectories shown in Figs. 1-8, is that the zeros of the
transmission probability are not caused by bound states in
the continuum. Though the widths of the trapped states are
small, they are different from zero in all cases considered in
the present paper.

C. Brachistochrone problem

In [20,21], the transmission through small quantum dots is
considered in the regime of overlapping resonances. As a
result, the transmission does not show individual peaks in
this regime. It is rather characterized by some “plateaus” in
which some long-lived resonance states may appear as dips.
One example are quantum billiards with convex boundary to
which the leads are attached in such a manner that whisper-
ing gallery modes are supported [20,31]. Another example is
the transition from the weak coupling to the strong coupling
regime where transmission and phase rigidity are correlated
and the transmission is enhanced [20,21].

These results show the characteristic features of the reso-
nance trapping phenomenon in the two-continua case. Obvi-
ously, the system tries to find the most efficient way to con-
nect the two continua of scattering wave functions, i.e., to
solve the brachistochrone problem [16,19]. This happens in
the following manner. Two different short-lived states align
with the two scattering wave functions in an energy region in
which the transmission probability does not vanish. The
spectroscopic redistribution takes place in such a manner that
a plateau appears in the transmission probability instead of
two single resonance peaks. As a consequence, the transmis-
sion probability connecting the two continua of scattering
wave functions is enhanced and the transmission process is
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accelerated. The correlation between phase rigidity and
transmission through quantum dots in the regime of overlap-
ping resonances [20,21] supports this interpretation.

Some local plateaulike structures in the transmission
probability can be seen also in the toy-model calculations of
the present paper, see Fig. 7(e) around E~1 and Fig. 8(e)
around E£~9.5. In these schematical calculations, they ap-
pear instead of zeros and are not related to any phase lapses.
However, they are related to the reduced phase rigidity of the
resonance states in the regime of overlapping also in this
case.

D. Zeros in the transmission probability and phase lapses

An analysis of scattering phases in quantum dots is per-
formed on the basis of lattice models by Yeyati and Biittiker
[5]. As a result of this study, abrupt jumps of 7 in the phase
of the transmission amplitude are shown to be associated
with the occurrence of transmission zeros and, further, the
zeros of the transmission are characteristic of the isolated dot
structure. They do not depend on the strength of the coupling
to the leads.

These results are in agreement with those shown in Sec.
III. The relation of the phase lapses to the zeros of the trans-
mission probability follows from the S matrix. The indepen-
dence of the transmission zeros of «a can be seen best in Fig.
4. At energies where the transmission probability gets zero,
the whole scattering process occurs via reflection. That
means, at these specific energies the incoming flux is com-
pletely reflected and the coupling strength a between system
and continuum does not play any role at this energy.

Consequently, number and location of the transmission
zeros, and also number and location of the phase lapses, are
determined exclusively by the distribution of the unperturbed
levels EY (eigenstates of H’) and the matrix elements V¢ that
characterize their coupling to the continua c. They are inde-
pendent of the coupling strength a. Only the energy depen-
dence of the phase ¢, in the neighborhood of the phase
lapse depends on the degree of overlapping (and on a,
respectively).

E. Resonance states at small and large coupling strength o

The S matrix (8) contains the coupling matrix elements
W¢ and Wf in terms of the eigenvectors of H.g. These cou-
pling matrix elements depend on «. Therefore also number
and location of the peaks of the transmission probability de-
pend on a. At small «, the number of peaks is equal to the
number N of resonance states. At large «, the number of
peaks is reduced to N—-K, i.e., it is reduced by the number K
of continua of scattering wave functions to each of which
one of the K short-lived states is aligned (resonance trapping
caused by width bifurcation). These broad short-lived states
appear as background on which the N—K long-lived trapped
resonance states are superimposed. The energy shifts of the
resonance states as a function of « and the reduction of their
number by K=2 at large « can be seen in all our eigenvalue
trajectories (Figs. 2, 3, and 6-8).

Trapping of the individual resonance states depends on
the overall coupling strength « and on the local distribution
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of the E? as well as on the coupling vectors V¢: the values of
the ith components of V determine whether the state i traps
the neighboring state j (if I'; <I';) or will be trapped by it (if
I;>T).

The nearest-neighbor spacing distribution of the long-
lived trapped resonance states at large « differs from that of
the individual resonance states at small «. This has been
shown in [47] by using the non-Hermitian Hamiltonian (7)
with real a. As a result of this study, even when the E? are
randomly chosen according to a Poissonian distribution, the
trapped resonance states at large « tend to show level repul-
sion similar to that of the Gaussian orthogonal ensemble
(GOE). This tendency gets the more pronounced, the larger
the number of continua is. Taking into account an imaginary
part of « in the Hamiltonian (7) [corresponding to the prin-
cipal value integral in Eq. (3)] would amplify the effect. This
is due to the well-known fact that any perturbation of a Pois-
sonian distribution by a Hermitian interaction term in the
Hamilton operator induces level repulsion in the system [48].
Thus, the distribution of the resonance states at large « tends
to be more uniform than the corresponding one at small «. In
other words, the mesoscopic properties of the resonance
states at small « are lost at large «. In order to be closer to
the experimental results, the notion small (large) « used in
this section, may be replaced by low (high) level density, see
Sec. III B.

F. Regular features at high level density

The results discussed above (Secs. IV D and IV E) show
the following features:

(i) number and position of the phase lapses do not depend
on «,

(ii) number and position of the resonance peaks do de-
pend on a.

The first feature follows from the relation of the phase
lapses to the transmission zeros and the fact that the coupling
between system and environment does not play any role at
the position of a transmission zero. The second feature fol-
lows from the resonance trapping phenomenon appearing in
the regime of overlapping resonances. It corresponds to the
existence of a dynamical phase transition [16].

As a consequence of these two features, regular features
in the appearance of phase lapses at high level density can be
caused only by the changes in number and position of the
narrow resonance states occurring with increasing «. Such
changes are caused by the spectroscopic redistribution pro-
cesses (resonance trapping) arising in the regime of overlap-
ping resonance states. These processes cannot be traced ana-
lytically due to their relation to the singular crossing points
of eigenvalue trajectories at which resonance trapping (width
bifurcation) originates. The trapped resonance states are
more uniform distributed than the original resonance states
as calculations on the basis of the toy model (7) have shown
[47], see Sec. IV E.

The results for the appearance of Fano-like resonances
shown in the subfigures (g) and (h) of Figs. 6-8, may be
considered as the results for eight equidistant trapped reso-
nance states with (almost) equal coupling coefficients. In re-
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alistic cases, the trapped resonance states are, of course, nei-
ther completely equidistant nor do they all have the same
coupling coefficients. The results obtained represent an ide-
alized situation which is however not far from the realistic
situation in the regime with trapped resonance states. They
show clearly that the Fano-like resonances appearing in the
two-continua case differ from the well-known Fano reso-
nances in the one-continuum case. They agree qualitatively
with the experimental results.

We underline here the following: the coupling strength «
simulates, on the one hand, the degree of opening of the
system and, on the other hand, the degree of overlapping of
the resonance states. Controlling an open quantum system by
means of « allows therefore to obtain unambiguous informa-
tion on the influence of the environment (continuum) onto
the system and on the resonance trapping phenomenon in-
duced by it. Particularly with regard to the experimentally
observed regular behavior at high level density, such a study
is expected to provide clear results that allow an unambigu-
ous interpretation.

G. Comparison with other calculations

Some of the results discussed above agree with results
obtained in other theoretical studies based on other methods.
For example, the relation between phase lapses and zeros in
the transmission probability as well as their independence of
the coupling strength have been discussed in [5].

In [4], it is shown that the transmission amplitude may
vanish generically in quasi-one-dimensional (quasi-1D) sys-
tems only if time reversal symmetry holds. These results are
confirmed in [41,44,45] by using the tight-binding approach,
but they hold only in the case of 1D systems. Generally, the
existence of transmission zeros is related to that of singular
points in the continuum [41]. Also in the case with time
symmetry breaking, singular points exist [49]. That means,
the numerical results given in Sec. III are applicable to two-
dimensional (2D) and three-dimensional (3D) systems with
and without symmetry breaking.

Interesting results are obtained by Oreg [12] by using a
noninteracting toy model consisting of a ladder of narrow
levels and a wide level. In this model, interferences between
the nonresonant level and the narrow ones lead to universal
phase lapses. The results are similar to ours in the regime of
strongly overlapping resonances. However, the existence of a
wide nonresonant level is not inherent in the model used in
[12]. Instead, it is assumed to exist. This is, of course, in
contrast to our studies where wide levels are shown to be
formed generically at high level density (or strong-coupling
strength @) due to width bifurcation.

Our results agree qualitatively with those obtained by
Karrasch et al. for four resonance states [13] by using the
numerical and functional renormalization group approaches.
In [13], the results are shown as a function of V,/I" (where
V, is the plunger gate voltage and I' the average coupling
strength). This corresponds, qualitatively, to a representation
of our results as a function of E/« (instead of E). The cross
section as well as the phase lapses seem therefore to be more
regular at large level density than at small one in [13]. The
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experimental data are represented as a function of V, at low
and high level density [3].

The results for N=4 resonance states obtained by Karra-
sch et al. [13] and those for N=10 states in our calculations
agree, above all, in the fact that the widths of two resonance
states are much larger than those of the rest of N—2 states at
large resonance overlapping. This result follows from the
resonance trapping phenomenon as discussed above.

V. CONCLUSION

In the present paper, transmission through systems with
N=10 resonance states coupled to K=2 continua of scatter-
ing wave functions is studied in the toy model defined by
Egs. (7) and (8). The S matrix contains the eigenvalues and
eigenfunctions of the non-Hermitian Hamilton operator H g
that describes generic features of open quantum systems
coupled to the continuum of scattering wave functions (for
details see [16]). The coupling strength between states and
continua can be controlled by means of the parameter a.

The transmission probability is determined by interfer-
ences between the individual resonance states. In the regime
of overlapping resonance states, width bifurcation causes the
appearance of K=2 short-lived states together with N—K
=8 long-lived ones. The two short-lived states are aligned
each with one of the continua of scattering wave functions.
As a result, they cease to be localized at a> «,.. The long-
lived states are trapped, i.e., they are almost decoupled from
the continuum of scattering wave functions. They are well
separated from one another and their wave functions are lo-
calized (in the short-time scale). Nevertheless, they differ
from the individual resonance states at low level density.

The transmission probability may or may not vanish be-
tween consecutive resonance states. The position of the zeros
in the transmission probability is determined by the proper-
ties of the closed system (described by the Hermitian Hamil-
ton operator H’) and the coupling vectors V¢ of its states to
the continua of scattering wave functions. It is independent
of the overall coupling strength «. At the energies at which
the transmission probability vanishes, phase lapses appear.
Their number and locations are, therefore, also independent
of a.

Number and position of peaks in the cross section depend,
however, on « due to the resonance trapping phenomenon
occurring in the regime of overlapping resonances around
the critical value of a. The narrow trapped resonance states
at high level density are distributed more regularly than the
individual resonance states at low level density. The so-
called mesoscopic behavior of the resonance states at low
level density is lost at high level density. Hence, the prob-
ability for the occurrence of universal phase lapses between
every two peaks is larger at high level density (large average
coupling strength «) than at low level density (small «).
These results are generic and do not depend on the particular
type of interaction between the particles. They appear in cal-
culations for concrete realistic systems with account of
many-body forces [16] as well as in calculations on the basis
of the toy model (7) and (8).

The variable characterizing the resonance trapping phe-
nomenon is the number K of different scattering wave func-
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tions to which the system is coupled. Thereby it is of no
relevance whether or not an energy loss appears. The trans-
mission process is (at least) a two-continua process also
when it is elastic. The number of trapped (narrow) resonance
states superimposed on a background at strong coupling be-
tween system and environment, is N—K. The N—2 narrow
Fano-like resonances that may appear when K=2, differ
from the Fano resonances in one-continuum case of the scat-
tering theory: the angle between resonances and background
is more complicated in the two-continua case than in the
one-continuum case.

Summarizing the results of the present study, we state that
the appearance of phase lapses may be related to the well-
known resonance trapping phenomenon in the regime of
overlapping resonances. According to this statement, the
phase lapses are environmentally induced. Mathematically,
environmentally induced effects (and resonance trapping) are
related to the biorthogonality of the eigenfunctions of the

non-Hermitian Hamilton operator H g and I?Ieff, respectively,
that describes the open quantum system. As a consequence
of the biorthogonality, the phases of the eigenfunctions of the
Hamiltonian are not rigid: in approaching a singular point at
which the eigenvalues of two resonance states coalesce, the
corresponding eigenfunctions become linearly dependent.
The singular points are of measure zero. However, the phase
rigidity is reduced in a comparably large parameter range
what leads to measurable effects in the regime of overlap-
ping resonances [16]. A convincing explanation of phase
lapses on the basis of conventional (standard) Hermitian
quantum mechanics with rigid phases of the wave functions
seems therefore to be impossible. Indeed, an interpolation
procedure between the two limiting cases with isolated reso-
nances at low level density and narrow resonances at high
level density is introduced in [50] in order to describe the
intensity pattern in an open cavity. According to the results
presented in this paper, the phase lapses are generic (directly
linked to singular points in the continuum). They are related
therefore also to other “puzzling” results observed experi-
mentally.

In order to prove experimentally the results obtained in
the present paper, the phase lapses should be studied as a
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function of the degree of opening of the quantum dot, i.e., as
a function of the overall coupling strength «. The advantage
of such a study is that the number of states of the closed
(isolated) system (described by Hy or H’) and their coupling
matrix elements V; to the continuum are fixed such that the
observed results can clearly be related to the phenomenon of
resonance trapping. Under this condition, it should be pos-
sible to study the influence of the overlapping of the reso-
nance states onto the spectroscopic properties of an open
quantum system in a definite manner. It contains the feed-
back from the environment of scattering wave functions onto
the system.

The results of such experimental and theoretical studies
on phase lapses in concrete systems will contribute to find an
answer also to other problems raised by unexpected (and
often counterintuitive) experimental results on quantum dots.
It is interesting to remark that an environmentally induced
dynamical phase transition is recently observed in experi-
mental and theoretical quantum chemistry studies [22]. Both
phenomena are related to one another [16]. They show that
the feedback between environment and system can generally
not be neglected. Another question related to the same phe-
nomenon, is whether or not bound states in the continuum
exist in small quantum systems such as quantum dots (see
Sec. IV B). They cause an unexpected high stability of quan-
tum systems at certain values of external parameters. An-
other problem are the many experimental data on dephasing
which are summarized in, e.g., [51,52], see also [16]. A quan-
titative description of these data by using the theory of open
quantum systems with the non-Hermitian Hamilton operator

H._g, is not performed up to now.

All these questions are related to one another. They are of
fundamental interest and may be important for applications
as well. They need to be studied theoretically as well as
experimentally in detail for concrete small quantum systems.
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