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Collision-induced absorption by CO, in the far infrared: Analysis of leading-order moments
and interpretation of the experiment
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The diagrammatic theory, developed recently by the authors [Phys. Rev. A 74, 012732 (2006)], is applied to
binary collision-induced properties, with emphasis on induced dipole moments. Assuming rototranslational
dynamics to be classical and using irreducible spherical tensor formalism, exact analytical formulas are worked
out for the two leading order spectral moments of a collision-induced band by two interacting linear molecules.
The formulas are applied to the far infrared absorption by CO,-CO,, and permit interpretation of the experi-
ment. This study provides evidence of the adequacy of the electrostatic induction mechanism, provided that
hitherto missing vibrational terms of static polarizability are considered.

DOI: 10.1103/PhysRevA.80.042703

I. INTRODUCTION

Collision-induced processes by nonpolar gases are espe-
cially relevant to photophysical phenomena, both in Earth’s
atmosphere and in those of other planets. The interactions
between two molecules, a and b, during an encounter induce
variations

Apay = pap — (Mg + ) (1)

in the pair’s dipole moment m,, which is now no longer
equal to the sum of the dipole moments of the molecules.
The same is true also with polarizabilities &,,. Such varia-
tions only last during the brief time-period of the collision,
and fade away as soon as the molecules go apart from each
other. Collision-induced absorption (CIA) and scattering
(CIS) spectra are fingerprints of Au,;, and A&,,. Such spec-
tra, though feeble, can sometimes be easily distinguished
from ordinary absorption or Raman spectra, because they
appear at frequencies at which transitions are forbidden in
single molecules [1,2]. The vast areas of intermolecular
electro-optics and of fluid microdynamics have much ben-
efited from the rather narrow topic of CIA and CIS, and that
is not only true from an academic standpoint. Applied sci-
ence has also benefited a lot from CIA and CIS, which con-
stantly provide literature with new data on the electro-optical
properties of molecules. Those methods are even more ap-
preciable when applied to properties that are hardly acces-
sible by other techniques, providing data as accurate as the
ones offered by the most reliable ab initio computations.
Needless to say, the quality of the multidimensional surface,
used to model the anisotropic interaction potential of a-b, is
crucial for collision-induced spectra. When the collision-
induced polarization solely stems from long-range interac-
tions, explicit, logical, and predictive systematization of the
process is possible by means of Feynman-like diagrams, and
of a theory we have recently developed [3] and applied to
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difficult systems and to delicate situations [4,5].

Collision-induced spectra by carbon dioxide are mainly
prints of long-range interactions. This assertion was a key
element for a successful interpretation of the v; CIS band of
CO,-CO, [6]. A very recent exhaustive analysis of the same
band, in the gas mixture CO,-Ar, validated this assumption
[5]. However, when dealing with absorption, past calcula-
tions by Gruszka and Borysow showed that CO,-CO, spectra
significantly underestimate observation [7,8], thereby raising
questions as to the true relevance of short-range effects. Re-
cent calculations by our group showed that sole responsible
for those substantial discrepancies, observed in the past be-
tween theory and experiment, is the neglect of the vibrational
terms of the CO, polarizability, and that upon inclusion of
these missing terms, agreement with the experiment becomes
equally good [4].

In this paper, we deal with CIA by two CO, molecules in
the far infrared region of the electromagnetic spectrum. Ow-
ing to the symmetry of the molecule, the pure rotational
spectrum of CO, is forbidden in infrared absorption, so the
only absorption spectrum in that region is a collisional spec-
trum. Our purpose is mainly to determine, in light of new
elements and data, to what extent the multipole induction
model can be trusted, since its adequacy has rather clearly
been doubted in the past [7,8]. To this end, we derive and
apply exact formulas for the two leading order spectral mo-
ments, and we provide an analysis of the CO,-CO, rototrans-
lational problem. Hitherto missing vibrational corrections to
the dipole-dipole polarizability of the molecule are intro-
duced, along with a potential energy surface (PES), which
properly accounts for the strong CO,-CO, interaction aniso-
tropy. Systematic analysis and critical comparison with ob-
servation are made. Throughout the paper, classical mechan-
ics is used, which suffices for the working conditions and
system.

II. HISTORICAL BACKGROUND

As mentioned above, the quality of the PES has a major
effect on CIA. Effective isotropic PESs are known to be
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unreliable even in systems where interactions are nearly iso-
tropic as is the case in N,---N, [7,9,10]. This is even more
true with CO,---CO,, notoriously known for its anisotropic
interaction. With the advent of high-scale computation tech-
niques, PES modeling has witnessed an impressive progress,
which is even more spectacular in the case of CO,---CO,
[11,12].

Work on moments of induced spectra using isotropic po-
tentials goes back to the 1970s [13-17]. Anisotropic PESs
were first used by Cox and Madden [18], who worked out
expressions restricted to the zero-order CIS moment, within
the dipole-induced dipole (DID) approximation for Ad,,.
Later, Borysow and co-workers [7,9] computed zero-order
and second-order CIA moments, and stressed the insuffi-
cience of the isotropic approximation in CO,---CO,. How-
ever, in spite of the significant theoretical advances over the
last two decades [7,9,18], there are several good reasons why
moment theory should be revised. The formalism of [9] oth-
erwise useful for zero-order and second-order moments can-
not be easily extended to allow for moments of a higher
order, because it uses the collision frame, which is unsuit-
able, and the surprisingly complex expressions in which it
results [10] are merely a consequence of that use. Although
Cox and Madden [18] went beyond the limits set by the
collision frame, their derivation is still incomplete, restricted
to DID and to the zero-order moment. Since the latest update
by Gruszka and Borysow [8], efforts to analytically incorpo-
rate the anisotropy of the potential into the CIA properties
have seemingly ceased. Ironically, the need for a modern and
systematic framework is all the more apparent today, given
the urgent need for innovative models relative to carbon di-
oxide and to its role in the greenhouse effect.

The most appropriate device to overcome the huge com-
plexity of the problem is irreducible spherical tensors (IST)
[19], one of the most powerful mathematical tools. Below,
exact mathematical expressions are worked out. These ex-
pressions, despite the rather specific paper’s main goal, are
general enough to be also applicable to CIS. To specify the
collision-induced property, the more general notation AX",
of a tensor of rank r, seems preferable, and is henceforward
used instead of the familiar Ap,,. As Au,, is a vector, CIA
is only concerned with r=1.

III. IRREDUCIBLE EXPANSIONS OVER SPHERICAL
HARMONICS

A. Electro-optical quantities

Collisions only weakly perturb vibrational motion, so vi-
brational quantum numbers v assigned to single molecules
are good quantum numbers. As a result, matrix elements
(Ax(f))vﬁvi, taken between vibrational states |v;) and [v),
are key quantities for the calculation of electro-optical prop-
erties. These two states, in the particular case of collision-
induced rototranslational spectra, coincide with each other
and with the ground vibrational state, so transition matrix
elements are reduced to expectation values of AX"). What-
ever the situation, the result depends on the orientation of the
two molecular axes (), and (), as well as on the orientation
of the intermolecular vector R=(R,(}), the latter assumed to
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be directed from molecule a to molecule b. In what follows,
we confine ourselves to the situation in which external fields
only excite vibrations in one molecule, while the other mol-
ecule remains in the ground vibrational state. Owing to the
indistinguishable nature of a and b, one has to superpose two
terms: in the first, the vibrating particle is molecule a while
in the second, it is b. Cross terms appearing in the squared
matrix element of AX") are proportional to exp[*i(¢,
—¢,)], with ¢, and ¢, the phases of the vibrational transi-
tions. Those phases are uncorrelated quantities because col-
lisions only slightly perturb vibrational modes, so cross
terms are washed out by statistical averaging. Analogous
considerations make direct terms to contribute equally. In
collision-induced rototranslational spectra, unlike the situa-
tion we just mentioned above, initial and final vibrational
states coincide, thereby generating interference effects. Be-
low, for pedagogical reasons, we consider a as the receptor
and b as the inductor, which is the simplest way to proceed.
Upon this assumption, collision-induced intensities by A,
will be nearly twice as high as those generated by Au,, the
variation of receptor’s dipole moment. In order to account
for interference, we must of course consider the full property
Ap,p, rather than Ap, alone. That property, which in the
absence of short-range interactions reads Ap,,=Ap,+Au,,
was automatically considered in our calculations.
According to IST formalism [19], matrix elements
(AX"), v, can be expressed as an invariant expansion over
irreduci{Jle ternary products of Racah spherical harmonics:
(AXD), =

vai

2 B0 ANRIRY © CV@Q))Y.
AApAN

(2)

In this expression, q)g\A;\b denotes contraction of two molecu-

lar Racah spherical harmonics [20] into an IST of rank A
[19],

O =1CM(Q,) ® M), (3)

The aforementioned expansion is subject to the momentum
coupling sequences ):a+ ):bzli and A+N=F. Weighting coef-
ficients B,(\,,\,, A, \;R) are radial functions. Owing to the
central symmetry of the nonvibrating molecules, ranks A,
and A, are even integers. By inversion symmetry restrictions,
(=1)M*a*M=(~1)", and hence \ is an odd integer. Hencefor-
ward, initial and final quantum state labels are dropped for
the sake of notational simplicity.

B. Pair distribution function

In classical mechanics, intermolecular potential V for non-
vibrating molecules and absolute temperature 7 is all one
needs to fully define a pair distribution function. The latter,
normalized over the gas volume, reads

1 Vv
R,Q;0,0,)=— -—. 4
G( s SN = b) 161726Xp< kBT) ( )

As G is a scalar, it can be expanded as follows:
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G(R0:0,0p) = ﬂzE Gy, (RN(@}7. D), (5)

L1,

where (<I>(1‘h CD(€))) denotes the scalar product of <IJ( and

CM(Q)). Radial functions Guy, (R) are obtained by ﬁrst mul-
tiplying both sides of Eq. (5) by (q)(L) cY(Q))* and inte-
grating over (), (), and . For two hnear rotors, inversion
symmetry dictates (—1)5*a*=1, otherwise Gy ,=0. If, in
addition, a and b are symmetric molecules, which is the case

of CO,-CO,, then ranks /, and [, are even integers and so too
is L.

IV. SPECTRAL MOMENTS

Spectral moments M<’) (n=0,1,...) of an induced prop-
erty, AXD) are deﬁned as statistical mean values of the
squared time derivatives of that property,

(r) d”AX(r) dnAX(r)
My = pamt " . (6)
dr dt

In this expression, double brackets designate statistical aver-
aging. While in the case of M \") statistical mean values imply
that the sole (AX"),AX")G functlon is integrated and that
the integral is taken over coordinate space, in the case of M, ("

statistical mean values require (AX"”), AX")G to be further
multiplied by the velocity Boltzmann density distribution.
Needless to specify, in that case integrals must be taken over
the complete phase space. Velocity averaging is, in most
cases, quite straightforward. Angular integration is done ana-
Iytically.

A. Zero-order moment

Upon using the definition of zero-order moments, we ob-
tain

Mg)r) = <E Br()\la’)\lb’Ah)\l ;R)Br()\Za’)\Zh’AZs)\2;R)

® C(M)}(’) {q)(Az})\ ® C2) } r))

22b

xR,
X Gy, (@) CP(@)), (7

where single brackets designate

Xy=—— 67 f f f XR?*dRdQd(),dS),. (8)

To further analyze the Mf)’) expression, successive IST recou-
plings are needed [19]. This allows one to analytically inte-
grate over solid angles, so an analytic expression for ME)’) is
obtained, which reads
L7ALED 0 O NP NTIVIVED NI SH SVIVE) SH A A 2T
a'b

)

In this expression, I, j, are radial integrals
ab
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Iy, = 47Tf Gy g, (R)B, Ny Ny ArsN )
XB,()\za,)\2b,A2;)\2)R2dR. (10)

They depend on N\, Ny Ay Njs Nags Aapy Ay, and Ny, which,
for the sake of notational simplicity, were omitted from Eq.
(9). Weighting coefficients K, are expressed as products of
3nj-symbols and Clebsch-Gordan coefficients, according to
the formula

Kr()\la’)\l}ﬂAl ;)\1 ;)\Za’)\Zb»AZ;)\Z;lmlh’L)

11 )\la )\lb Al

Y W e
- ( l) Hrr I )\Z(l )\Zb A2
Ialb la lb L

Al )\1 r 0 1o 10
X{)\Z A2 L}C)\IO)‘QOCX O}‘Zaoc)‘lbmzbo’ (11)

with CZY?)BO the Clebsch-Gordan coefficient and II,, .
=[Qa+1)(2b+1)...2c+1)]"2.

The expression of Eq. (9) is a major result. It extends
theory, so that anisotropic interactions between a and b are
included, while generalizes the expressions we have previ-
ously reported for the less general situation of a collision
between a linear molecule and an atom [5]. The isotropic
interaction potential approximation, which is the situation
most often studied in the literature, is now reduced to noth-
ing but the particular case of [,=1,=L=0, N;,=N2,=N\,4 \p
=Nyp=N;, A|=A,=A, and A\;=\,=A\. Then, the expression is
much simpler mathematically,

MG =T1,, 2 Iooo(Nas Ny AN N N A, )\)Hx e (12)

B. Second-order moment

Second-order moments are more complicated, because ki-
nematical considerations are now involved. The procedure is
as follows. The first step consists in taking the first time

derivative AX™” at instant Z€ero,

AXV] o =[(v,V) + (A, V) + (A, V) JAXY. (13)

Here, v is the translational velocity of the pair relative to the
center of mass, A, and A, are the angular velocities (), and

Q, of the molecules, and V,, V,, and V are gradient opera-
tors associated with ,, (),, and R, respectively. The next
step consists in squaring the previous expression. Owing to
the statistical independence of all three velocities, cross

terms appearing in (AX"), AX"")) are washed out, so additive

partial contributions are assigned to the various degrees of
freedom.

1. Translational motion

Relative translation of the molecular pair only involves
(v,V), thereby resulting in a partial contribution to the
second-order moment, which reads
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M5 = (v, V)AX, (v, V) AX"))). (14)

Here, index “7T” denotes translation. To analyze this quantity,
algebra is rather lengthy but straightforward, and will be
omitted here. Since velocities and positions are uncorrelated,
simplifications take place upon statistical averaging, and a
simple formula is finally obtained. We content ourselves with
the final expression, which is elegant and simple,

kT
M) = m 2 K[FO DI, + 15, 1. (15)

In this expression, M stands for the pair’s reduced mass,
FONp N, L) =[N N+ D400+ 1) -L(L+1)]/2 and K, is
given by Eq. (11). This is a remarkable result, which shows
contributions to M(Z’) from radial “R” and angular “A” trans-
lational degrees of freedom to be independent, whatever the
potential and its anisotropy may be. As before, I(Lf}jlb and I(Llf I,
designate radial integrals. Their expressions are formally
1dent1ea1 to that of Eq (10) for Iy, . up to the substitution

B, . % and B, . dR, respectively. It is easy to verify that in
the absence of angular modulation in AX"), that is for \,
=N\,=0, angular contributions vanish. The spemal case of
isotropic potential is treated exactly in the same way as was
done above.

2. Rotational motions

Here, we outline the derivation of the rotational compo-
nent of the second-order moment M (2’,3 and give final expres-
sions. For details, we address the reader to a subsequent
more technical publication [21]. As mentioned above, M
the sum of two individual contributions, M5 (“)(’) and Mﬁg(
which read

MED = (A VIAXD, (AL VIAXD)Y),  (16)

with k=a, b. In order to reach final analytic expressions,
Racah harmonics angular gradients must first be calculated.
This is possible through the matrix elements of the gradient
operator, which are known quantities [19]. Note however
that, here, a difficulty arises from the fact that {A} (1)
®A 1)}(3) gives rise to two distinct ISTs with ranks g=0 and
2. This situation is met for the first time, as in the somehow
analogous translational motion problem only g=0 was in-
volved. While the integration of the g=0 term over the Bolt-
zmann distribution is straightforward, the case with g=2
needs more Racah algebra, because each of the velocities A,
and A, is compelled to be perpendicular to the respective
molecular axis. Finally, we obtain

My =kT 2 K,

]lela
F()\ah}\aZ?la) + T F()\bh)\bblb) 5
a b

(17)

where 7, is the moment of inertia of molecule k, and K, are
the weighting coefficients met above. In the case of ro-
totranslational CIA by identical molecules, that is, the case
we are mainly concerned with here, interchange of the indi-
ces of the two molecules has no effect on the radial integrals
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FIG. 1. Feynman graphs depicting the collision-induced polar-
ization in the case when molecule b is the inductor. Time evolves
from bottom to top. Intermolecular interaction and absorbed photon
are depicted by a horizontal line and by an arrow, respectlvely
Particular cases discussed in the text are: quadrupole induction Q
(k,=1, N\p=2), hexadecapole induction Q(4) (k,=1, \p=4), and
induction by the second gradient of the quadrupolar field of mol-
ecule b (k,=3, \p=2).

of Eq. (10) or on the K, coefficients, hence each molecule
contributes equally to M(21R).

V. ROTOTRANSLATIONAL ABSORPTION BY PURE CO,
A. Collision-induced dipole moment

Only long-range dipole moment components are here
treated, which scale linearly with the total interaction energy
W of two nonoverlapping charge distributions. In order to
work out analytic expressions, we first express W as a sum of
multipole-multipole interactions WKHM’ over all possible
ranks k, and A, and then apply our diagrammatic theory [3].
We assume that the molecule that intercepts the photon, de-
noted a, is also polarized by the multipolar electric fields
generated by b. The situation is illustrated by the two graphs
of Fig. 1. In the first graph, radiative coupling precedes in-
termolecular coupling, while in the second it follows it. In
order to account properly for interference effects, two more
graphs must be considered (not shown), in which receptor is
molecule b. In the calculation, this was done automatically.

According to our theory [3], A, reads as a sum over the
virtual vibronic transitions 0,—k, in molecule a, whereas
molecule b remains in the ground state |0),

<ka | M’a|oa><oaob| W| ku0b>
Ap,=—
Bo=—2 ( E E

k,

a

+ <kaob| W|anb><0a|”’a|ka>) ) (1 8)

Ek{l - E()LI

E, and E, are the energies of the corresponding states.
Any particular term of W can be written in the form of a
scalar contraction [22],

Wwb =(- l)xAxabux{{szK“) ® ng}()\) ® CMV(Q)MNORMT
(19)
withA, =(=DM mand \=k,+\;,. Quantities Q("“)

and Q()‘b) denote the 2%a-pole and 2M-pole moment tensor
operators, with ranks «, and A,, of molecules a and b, re-
spectively. These operators depend on the electronic and
nuclear coordinates of molecules a and b, and so does the
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resulting multipole-multipole interaction Wi\,

The final expression for the coefficients 5, introduced in
Eq. (2), reads

1

Bl()\a’ )\b’A5)\7R) == TEE (_ 1)}\AKa7\bH)\a)\A
N9 «,
N, N, A
X Q()\b)P(Km)\a)
N1k,
XRM - (=1D)Ma=0b). (20)

Note that for linear molecules, any IST can be written as a
product of an amplitude factor and a Racah harmonic, which
depends on the orientation of the molecule. In the formula of
Eq. (20), Q(\,) is the amplitude of the Qg‘b) tensor operator
matrix element, once Racah harmonic C™) has been re-
moved. Quantity P(x,,\,) is likewise the amplitude of the
P(l):;; tensor operator matrix element, upon extraction of its

angular dependence. Index M\, in P(l}:;'), stands for tensor

a

rank; 1 and «, indicate that we are only concerned with a
dipole-2“e-pole polarizability, as a result of the fact that di-
pole field coupling (2!) is assumed between the molecule a
and the photon. According to standard conventions [23],
Q(\y) is equal to Oy, . 7, a component of the Cartesian mul-
tipole tensor in the frame where OZ is the axis of molecule k
(=a,b). More algebra is needed to express P(x,,\,) in terms
of independent Cartesian components. Useful relations can
be found in Ref. [23]. Symbol (a=5) in Eq. (20) denotes
that the part of the expression preceding this symbol must be
considered with interchanged labels. For identical molecules,
the interchange makes the \,=\, even-A terms vanish. Note
that in all cases, indices are subject to momenta addition
rules ):a+)tb=/§, A+N=1, f+:?a:):a, and 1+ Ebz):,,. For
given A, and N\, the first two of these rules put restrictions
on the allowed values of A.

1. Multipolar induction mechanisms

Quadrupole induction (“Q2”) scales with intermolecular
separation as R™%, and is by far the dominant mechanism.
Hexadecapole induction (“Q4”) falls off like R, so one may
expect it also to have some non negligible effect on the spec-
trum; at least, that is one of the conclusions Gruszka and
Borysow arrived at [7], who found that hexadecapole induc-
tion has an impact of about 10% on the integrated intensity.

Along with Q4, induction by the second gradient of in-
ductor’s quadrupolar field is also a mechanism that scales as
R™%. Such a mechanism has never been considered in CO,
before this paper, but it should not be neglected if Q4 is to be
taken into account. Upon consideration of this mechanism,

tensor E, referred to as the dipole-octupole polarizability,
enters the play. This opens up two possibilities. In the first,
(A,,N\p)=(2,2). However, as A=5, only A=4 is allowed,
hence B, which is proportional to P(3,2), is cancelled out
by a=b interchange. This shows that the second-rank IST

component of E has no contribution to the process. This is
not the case with the second possibility: the fourth-rank IST
component. The latter, being proportional to P(3,4), is com-
patible both with (A,,\;)=(4,2) and with (2,4), owing to the
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interchanging role of receptor and inductor. For both (\,,\}),
all three values A=4,5,6 are allowed and contribute. We
obtain 73(3,4)=%(EZ,ZZZ+2EX,XXX), in agreement with past
studies [24]; in this expression, Ey yxx and E ;,, are Carte-

sian components of E in the molecule-fixed frame.

Note that Eq. (18) is not restricted to some particular
multipole-multipole interaction. Moreover, unlike all previ-
ous approaches in which Cartesian tensors were used, alge-
bra here is much simpler.

2. Dispersion forces

The next order term in the asymptotic expansion of Au,
arises from dispersion interactions, which fall off as R
[24,25]. They produce two distinct effects, which can be
viewed as two different polarization mechanisms. The first is
back induction, a feedback response of the molecule that can
be understood and studied with classical mechanics. The
other, a mechanism with no classical analog, lies with the
virtual vibronic excitations that simultaneously occur in the
two molecules. Unlike the former mechanism, which is eas-
ily understood in terms of conventional static polarizabilities,
the latter one requires data on dipole-dipole-quadrupole po-
larizability at an imaginary frequency, B(iw) [24,25]. No
such data are available for CO,, but works in nitrogen have
shown this particular mechanism to be roughly as significant
as back induction [25]. Thus, moment calculations consisting
in retaining back induction effects while disregarding simul-
taneous virtual vibronic excitations lose much of their mean-
ing. According to Bohr and Hunt [25], these two mechanisms
are expected to produce opposite effects of comparable sig-
nificance. They will be neglected both together.

In the remainder of the paper, we confine ourselves to
those induction mechanisms that fall off not faster than R™°.
The forthcoming subsection helps reader figure out how
much, according to our calculations, each of the retained
mechanisms truly contributes. All effects will be calculated
with updated data and with appropriate inclusion of other,
hitherto missing corrections.

B. Comparison between theory and experiment
1. Quadrupole induction mechanism

Table I shows CO, input parameters. The entries of the
first row are ab initio values for the dipole-dipole, &, and the

dipole-octupole, E, polarizability tensors, as well as for the
quadrupole, Q(2), and hexadecapole, Q(4), moments [26].

Values for & and E account only for electronic contributions.
The value Q(2)=-3.19 a.u. is 5% greater than the one used
by Gruszka and Borysow [7], who have found long-range
induction to underestimate observation by some 30%. Now,
with the improved Q(2) input, discrepancies are getting even
larger by some extra 10%, but they are again reduced by
about the same amount upon use of the updated PES input
[11,12] in comparison with earlier site-site PESs.

2. Hexadecapole and second-gradient induction mechanisms

The next step is to add hexadecapole interactions, and to
complement them with second-gradient induction. Unlike
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TABLE 1. Input data (in atomic units) for spectral moment calculations.

Contribution azy axy 0(2) Q4) Ez 777 Ex xxx
Electronic 27.1% 13.0° -3.19* -1.6° 187.6° -68.9°
Vibrational 2.98 1.67 0 0 -5.0

Total 30.1 14.7 -3.19 -1.6 182.6 —68.9

4CCSD(T) [26].
°Second-order Mgller-Plesset [26].

Q(2), whose improvement (along with improvement in the
PES) was not strong enough to allow for significant changes
in the spectrum, in the case of Q(4) recent coupled cluster
with single, double, and partial triple excitations [CCSD(T)]
computations [26] result in a value that is dramatically dif-
ferent from the value —10.8 a.u. used in [7]. In light of the
updated data for both Q(4) and PES, Q4 now appears to play
only a minor role in the spectrum (—1.5%), a conclusion in
conflict with previous claims [7] that Q4 would be respon-
sible for —10%. Moreover, according to our calculations, the
inclusion of the hitherto missing second-gradient induction
almost completely cancels out the small effect of the hexa-
decapole interaction. In other words, after inclusion of all
these induction mechanisms that go like R®, there is still no
perceptible improvement in the spectrum, in comparison
with the effect of Q2 alone.

3. Vibrational polarizabilities

Contrary to the corrections we extensively discussed
above, vibrational corrections to the static polarizability, &,
play a decisive role in searching for agreement between
theory and experiment. No such corrections have ever been
considered before. Their contribution is extremely pro-
nounced because vibrational frequencies of CO, are substan-
tially higher than the typical frequency range of the ro-
totranslational band. How to include these terms, in the case
of &, is a rather easy task because reliable measurements of
vibrational dipole oscillator strengths are available [27]. As
shown in Table I, vibrational corrections to & are responsible
for more than 12% of the polarizability.

The effect of the vibrational polarizabilities on the spec-
tral moments is shown in Table II. This table allows for
comparison between the full moment values, ng (n=0,1),

and the values M(zln)’e, obtained within the electronic polariz-

ability approximation &= &,;. Owing to the minor role of the
second-gradient induction mechanism, no vibrational correc-

tions to tensor £ were needed.

PES anisotropy has a strong effect on moments. In order
to quantify this effect, moments are first computed within the
effective isotropic potential approximation. In this case, only
Iyoo radial integrals appear, resulting in values M (21,,)?i‘m that
exceed both the observation and the exact theoretical results.
The observed heavy mixing between the various terms of the
induced polarization is a well-expectable result, owing to the
very anisotropic character of the CO,-CO, pair. These inter-
ferences turned out to produce a negative overall effect on
the spectrum. Upon inclusion of vibrational corrections,
zero-order moments Mf)l) are increased by 25%. An addi-
tional 10% comes from the updated PES input, so theory
now successfully matches the experiment. Second-order mo-
ments M (21) are affected in exactly the same way as M 81). The
best results (underlined entries) are obtained when all correc-
tions have been taken into account. Reduced second mo-

ments, A7I(2')=M(2')/M('), are rather insensitive to the PES
model, and are only little affected by its anisotropy. This
would no longer be true, upon altering the long-range char-
acter of Au, or its dependence on the rotational degrees of
freedom. Square roots of reduced second moments,
(27Tc)‘1yM(2'j/ Mglj, are also quantities of major physical im-
portance as a means to assess the extent of a spectral band.
For Gauss profiles, these quantities provide the band’s half-
width I'/2 (cm™) at 1/ Ve maximum.

TABLE II. Zero-order and second-order spectral moments calculated at 7=298 K, with and without

vibrational corrections to the static polarizability, M(zy and M%'n)’d (n=0,1), respectively. M
moments within the isotropic potential approximation. Zero-order moments are expressed in e

second-order moments are in ¢2a)

(expt.) are shown for comparison.

(1)
2n,iso Sdenote
2ay units;

a, cm2 Best results are marked by underlined entries. Experimental values

PES M) My, My, M x 107 MY, x 107 M) 107
[29] 7.25 5.78 11.2 1.29 1.03 1.82
[28] 7.22 5.75 122 1.35 1.08 2.01
[12] 8.03 6.40 10.8 133 1.06 1.74
[11] 8.32 6.64 12.3 1.44 1.15 2.00
expt. [30] 10+2 1.5+0.2
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When focusing on the way in which intensity is shared
between the various degrees of freedom, we find that the
contribution of molecular rotation to M (21) is twice as large as
the contribution of translation, and that it is shared equally
between the two molecules. Specifically, the three indepen-
dent motions, i.e., molecular rotation M(ZIR), angular transla-
tion M (le)(A) and radial translation M(21T)(R), scale, according to
our calculations, as 69.9:13.3:16.8. This result is in excellent
agreement with the ratio MY : (MW + M) ®)=70:30, ob-
tained by Ho, Birnbaum and Rosenberg with an isotropic
PES [30].

As an overall remark, the larger the molecule the milder
the spectral manifestations of short-range polarization terms
in comparison to long-range ones. This is a general trend,
which stems from considerations related both to the value of
intermolecular separation at which the steep barrier of the
intermolecular potential energy occurs and to the typical
magnitude of the electrostatic induction around that separa-
tion. While, strictly, short-range polarization terms are not
absent in CO,-CO,, their effect on the collisional spectrum
is hindered by collisional statistics since electron exchange
and orbital overlap become effective only at separations
close to the unified-molecule limit. Our calculations and their
comparison with available data from laboratory CIA experi-
ments in carbon dioxide have shown this to be the case for
low, ambient, and moderately high temperatures. Only at
very high temperature can short-range CO,-CO, effects be
seen with CIA spectroscopy.

PHYSICAL REVIEW A 80, 042703 (2009)

VI. SYNOPSIS

Our diagrammatic theory was applied, along with irreduc-
ible tensor formalism, to the room-temperature rototransla-
tional absorption band of pure CO,, which is forbidden in
ordinary absorption. We interpreted the CO,-CO, experiment
and we analyzed the principal characteristics of the spectrum
in terms of rotational and translational motions of the inter-
acting molecules. We provided evidence of the adequacy of
long-range polarization terms between CO, molecules, a re-
sult that rules out the role of short-range polarization terms.
The role of the hitherto missing vibrational dipole-dipole po-
larizability corrections proved to be crucial for agreement
between theory and experiment. In the case of N,, whose
CIA spectrum has long and successfully been interpreted on
the sole basis of the electrostatic induction model, no such
corrections exist. This may explain why the matter was never
raised before our work. Our analysis opens up new perspec-
tives for understanding and interpretation of spectra by non-
polar gases that are ubiquitous in atmospheric environments.
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