Observation of inner-shell-excited configurations in triply ionized cerium Ce³⁺

Joseph Reader

National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Jean-François Wyart

Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, Batiment 505, 91405 Orsay Cedex, France (Received 20 July 2009; published 29 October 2009)

We report wavelength measurements and energy levels for the three-times ionized cerium atom Ce³⁺. The spectrum is that of a simple one-electron atom overlaid with a more complex three-electron spectrum originating from the excitation of an electron in the inner closed shell to the valence shell. The data provide energy levels for the inner-shell-excited configurations $5p^54f5d$ and $5p^54f6s$ and solve a long-standing puzzle regarding the fine structure of the $5p^66d$ configuration, which is known to be anomalously large and inverted. The data show that this anomalous fine structure is the result of interaction between $5p^66d$ and the inner-shell-excited configuration $5p^54f5d$. The results are supported by Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. From our observed $5p^66g$ configuration, we determine the ionization energy as 297670 ± 70 cm⁻¹ (36.906 ± 0.009 eV).

DOI: 10.1103/PhysRevA.80.042517

PACS number(s): 32.30.Jc, 32.10.-f, 32.70.Cs

I. INTRODUCTION

As a member of the cesium isoelectronic sequence, the Ce^{3+} ion is expected to have a simple electronic structure, with a single valence electron outside a complete $5p^6$ subshell. In large measure, this is indeed the case. Ce^{3+} has ground configuration $5p^{6}4f$ and excited states of the type $5p^6nl$. The first classified lines in the spectrum, the 6s-6pdoublet, were given by Gibbs and White [1]. The first set of energy levels, with $5p^65d$ as the ground configuration, was given by Lang [2]. Nevertheless, Lang realized that until the 4f-5d multiplet was located, there was a possibility that the true ground state could be $5p^{6}4f$. A short time later, Lang [3,4] succeeded in locating the 4*f*-5*d* multiplet and, indeed, established $5p^{6}4f$ as the ground configuration. This established Ce³⁺ as a true rare-earth-metal atom in the sense of its having a 4f electron in the ground state. The $6d^{2}D$ term found by Lang was puzzling in that it was inverted and had a very large fine-structure splitting. As mentioned in the compilation of the energy levels of Ce³⁺ by Martin et al. [5], it was suggested by one of us (J.R.) that this anomalous splitting was due to interaction with inner-shell-excited configurations.

The purpose of our present work was to re-examine Lang's analysis of this ion, determine explicitly the reason for the anomalous splitting of the $6d^2D$ term, and locate levels of some of the inner-shell-excited configurations.

II. EXPERIMENT

The spectra were photographed with the 10.7-m normalincidence vacuum spectrograph at the National Institute of Standards and Technology (NIST). A gold grating with 1200 lines/mm was used to observe the region 400–950 Å. The light source was a low-voltage sliding spark between metallic cerium electrodes operated as described by Reader *et al.* [6]. The plate factor was 0.78 Å/mm. Ionization stages were determined by comparing intensities of the lines at various peak currents in the spark. The spectrum of Ce^{3+} was effectively excited at a peak current of 140 A. Reference spectra consisted of lines of several stages of ionization of yttrium photographed on a separate track for the sliding spark [7–10]. Shifts between the calibration spectra and the unknown spectra were determined by lines of oxygen, carbon, and silicon, with wavelengths taken from Kelly and Palumbo [11]. For the region 950–3200 Å, we made use of spectra observed for the analysis of Ce⁴⁺ by Redfors and Reader [12].

The wavelengths, intensities, and wave numbers of the classified lines of Ce^{3+} are given in Table I. The estimated uncertainty of the wavelengths is ± 0.005 Å [13]. The intensities are visual estimates of plate blackening (see Tauheed and Reader [14] for a description of this estimation process). For extremely strong lines with saturated images, the intensities were estimated by observing degrees of solarization and intensities of grating ghosts. No account was taken of spectral response of the spectrometers.

III. SPECTRUM ANALYSIS AND ENERGY LEVELS

Our interpretation of the spectrum was guided by calculations of the level structures and transition probabilities carried out with the atomic structure suite of codes of Cowan [15]. The Hartree-Fock code (RCN) was run in a Hartree-Fock relativistic (HFR) mode with a correlation term in the potential and with no Breit energies. Further guidance was obtained from a two-dimensional transition array with the computer spreadsheet method described by Reader [16]. Altogether, we determined 112 energy levels from 200 observed lines.

Our analysis confirmed the 4f, 5d, 5f, 6s, 6p, 6d, 7s, and $7d_{3/2}$ levels of Lang. We found Lang's 5g, 6g, $7d_{5/2}$, and 8s levels to be spurious. Lang's 6g level had earlier been discarded by Martin *et al.* [5]. We located numerous levels of the inner-shell-excited configurations $5p^54f5d$ and $5p^54f6s$ as well as the 7p and 8d levels and determined new values for the 5g, 6g, and $7d_{5/2}$ levels.

Wavelength		Odd	Even		$g_U A$
(Å)	Intensity	Level	level	$\log g_L f$	(s ⁻¹)
402.904	20	4 <i>f</i> 02	6g03	-0.76	7.13[9]
404.405	10	4 <i>f</i> 02	8 <i>d</i> 01	-0.85	5.75[9]
406.570	40	4 <i>f</i> 03	6 <i>g</i> 04	-0.57	1.08[10]
407.743	25	4 <i>f</i> 03	8 <i>d</i> 02	-0.65	9.01[9]
426.811	50	4 <i>f</i> 02	s207	-0.08	3.03[10]
427.385	40	4 <i>f</i> 02	<i>s</i> 104	-0.07	3.08[10]
430.281	1	4 <i>f</i> 02	s307	-1.96	3.96[8]
430.954	5	4 <i>f</i> 03	s207	-1.01	3.49[9]
133.503	2	4 <i>f</i> 02	s206	-7.59	9.19[2]
134.495	90	4 <i>f</i> 03	s307	0.26	6.39[10]
436.017	150	4 <i>f</i> 03	<i>s</i> 404	0.35	7.92[10]
136.288	5	4 <i>f</i> 02	d223	-0.47	1.19[10]
137.776	90	4 <i>f</i> 03	s206	0.50	1.10[11]
138.823	100	4 <i>f</i> 02	s305	0.33	7.38[10]
439.134	100	4 <i>f</i> 02	d119	0.80	2.17[11]
439.650	90	4 <i>f</i> 02	s205	-0.25	1.96[10]
40.621	100	4 <i>f</i> 03	d223	0.25	3.07[11]
40.975	40	4 <i>f</i> 02	5g03	0.26	6.22[10]
144.453	125	4 <i>f</i> 03	5g04	1.07	3.92[11]
44.605	100	4 <i>f</i> 02	d323	-1.20	2.15[9]
45.398	100	4 <i>f</i> 03	5g03	-0.12	2.58[10]
46.318	150	4 <i>f</i> 02	d222	-0.12	4.31[11]
46.540	150	4 <i>f</i> 02	d322	1.20	5.33[11]
48.669	175	4 <i>f</i> 03	<i>d</i> 322 <i>d</i> 419	1.02	3.48[11]
49.100	175	4 <i>f</i> 03	d323	1.02	5.87[11]
49.280	40	4 <i>f</i> 02	<i>a323</i> 7 <i>d</i> 02	-0.17	2.25[10]
149.280 151.078	5	4 <i>f</i> 03	d322	-0.17	1.90[10]
51.138	150	4 <i>f</i> 02	<i>a</i> 322 7 <i>d</i> 01	-0.24 0.49	1.01[11]
53.874	150	4 <i>f</i> 02	7 <i>d</i> 01 7 <i>d</i> 02	0.49	7.27[10]
65.911	50	4f03 4f02	s204	-0.72	5.94[9]
		-			
167.975	100	4f02	s103	-1.40	1.22[9]
470.852	200	4 <i>f</i> 03	s204	-0.33	1.41[10]
171.296	5	4 <i>f</i> 02	s304	-1.70	5.99[8]
175.345	100	4 <i>f</i> 02	d118	-0.63	6.92[9]
176.350	400	4 <i>f</i> 03	s304	-0.13	2.20[10]
178.080	400	4 <i>f</i> 03	s403	-0.39	1.20[10]
180.579	400	4 <i>f</i> 02	s303	-0.15	2.04[10]
481.454	300	4 <i>f</i> 02	s203	-0.53	8.55[9]
184.998	250	4 <i>f</i> 02	s202	-0.53	8.39[9]
85.361	400	4 <i>f</i> 03	d418	0.15	4.00[10]
85.837	50	4 <i>f</i> 03	s303	-1.07	2.43[9]
186.729	40	4 <i>f</i> 03	s203	-1.13	2.11[9]
88.793	500	4 <i>f</i> 02	s302	-0.44	1.03[10]
189.853	500	4 <i>f</i> 02	s301	-0.35	1.25[10]
190.354	400	4 <i>f</i> 03	s202	-0.36	1.22[10]
91.233	250	4 <i>f</i> 02	<i>d</i> 321	-1.37	1.19[9]
92.183	350	4 <i>f</i> 02	d220	-0.98	2.91[9]

TABLE I. Observed spectral lines of Ce³⁺. All wavelengths are in vacuum. Level codes are explained in text. Numbers in brackets denote powers of 10.

Wavelength		Odd	Even		g_{UA}
(Å)	Intensity	Level	level	$\log g_L f$	(s ⁻¹)
493.854	750	4 <i>f</i> 03	s402	-0.06	2.39[10]
494.233	250	4 <i>f</i> 03	s302	-1.43	1.02[9]
495.174	200	4 <i>f</i> 02	<i>d</i> 320	-1.69	5.55[8]
195.317	25	4 <i>f</i> 03	s301	-1.17	1.84[9]
196.730	350	4 <i>f</i> 03	<i>d</i> 321	-0.61	6.71[9]
197.343	400	4 <i>f</i> 02	<i>s</i> 102	-0.53	8.01[9]
97.699	50	4 <i>f</i> 03	d220	-1.18	1.80[9]
198.455	400	4 <i>f</i> 03	s401	-1.22	1.60[9]
99.581	350	4 <i>f</i> 02	<i>d</i> 115	-0.36	1.16[10]
500.328	400	4 <i>f</i> 02	s201	-0.96	2.90[9]
500.765	150	4 <i>f</i> 03	<i>d</i> 320	-1.14	1.91[9]
503.720	250	4 <i>f</i> 03	<i>d</i> 417	-1.32	1.28[9]
505.262	350	4 <i>f</i> 02	d218	-2.53	7.64[7]
505.850	200	4 <i>f</i> 02	<i>d</i> 319	-1.44	9.39[8]
506.029	400	4 <i>f</i> 03	s201	-1.51	8.13[8]
507.755	600	4 <i>f</i> 02	s101	-1.20	1.63[9]
508.501	400	4 <i>f</i> 02	d217	-0.48	8.63[9]
511.079	500^{a}	4 <i>f</i> 02	<i>d</i> 318	-0.96	2.81[9]
511.079	500^{a}	4 <i>f</i> 03	<i>d</i> 218	-1.93	2.97[8]
511.329	600	4 <i>f</i> 03	<i>d</i> 416	-1.05	2.29[9]
511.680	500	4 <i>f</i> 03	<i>d</i> 319	-1.25	1.43[9]
514.348	600	4 <i>f</i> 02	<i>d</i> 216	-0.59	6.42[9]
514.389	400	4 <i>f</i> 03	d217	-0.42	9.48[9]
515.183	500	4 <i>f</i> 03	<i>d</i> 415	-1.84	3.62[8]
517.029	50	4 <i>f</i> 03	<i>d</i> 318	-2.47	8.39[7]
518.919	40	4 <i>f</i> 02	d215	-1.46	8.59[8]
520.896	600	4 <i>f</i> 02	<i>d</i> 112	-0.32	1.19[10]
521.907	500	4 <i>f</i> 02	<i>d</i> 316	-1.10	1.93[9]
522.650	550	4 <i>f</i> 03	<i>d</i> 414	-4.81	3.83[5]
525.056	750	4 <i>f</i> 03	d215	-0.39	9.81[9]
528.115	500	4 <i>f</i> 03	<i>d</i> 316	-1.00	2.37[9]
528.707	10 ^b	4 <i>f</i> 02	<i>d</i> 315	-1.62	5.72[8]
529.444	1000	4 <i>f</i> 03	<i>d</i> 413	0.03	2.56[10]
533.056	600	4 <i>f</i> 02	d214	-0.94	2.72[9]
534.345	750	4 <i>f</i> 02	<i>d</i> 314	-0.11	1.79[10]
535.084	750	4 <i>f</i> 03	d315	-0.12	1.75[10]
536.832	750	4 <i>f</i> 03	d412	-0.86	3.18[9]
539.040	600	4 <i>f</i> 02	d213	-0.20	1.46[10]
539.532	100	4 <i>f</i> 03	d214	-2.02	2.18[8]
540.855	450	4 <i>f</i> 03	<i>d</i> 314	-0.76	3.98[9]
541.645	1000	4 <i>f</i> 03	d411	-0.61	5.62[9]
542.600	375	4 <i>f</i> 02	d109	-2.05	2.02[8]
545.375	1000	4 <i>f</i> 02	d313	-0.75	4.00[9]
545.664	50	4 <i>f</i> 03	d213	-1.51	6.91[8]
545.868	550	4 <i>f</i> 02	d212	-1.31	1.11[9]
552.150	750 [°]	4 <i>f</i> 03	d313	-1.45	7.80[8]
52.665	500	4 <i>f</i> 03	d212	-1.22	1.32[9]
553.748	750	4 <i>f</i> 02	d312	-1.15	1.56[9]

TABLE I. (Continued.)

Wavalanath		Odd	Even		~ 1
Wavelength (Å)	Intensity	Level	Even level	$\log g_L f$	$g_U A$ (s ⁻¹)
555.133	50	4 <i>f</i> 02	d211	-3.28	1.14[7]
557.394	25	4 <i>f</i> 02	d210	-2.48	7.15[7]
558.932	500	4 <i>f</i> 02	6 <i>d</i> 01	-1.30	1.07[9]
560.742	750	4 <i>f</i> 03	<i>d</i> 312	-1.28	1.11[9]
562.168	500	4 <i>f</i> 03	d211	-1.56	5.84[8]
562.501	1250	4 <i>f</i> 02	<i>d</i> 311	-1.48	6.95[8]
564.338	200	4 <i>f</i> 02	6 <i>d</i> 02	-2.24	1.21[8]
565.209	750	4 <i>f</i> 03	<i>d</i> 410	-2.24	1.20[8]
566.951	750	4 <i>f</i> 02	<i>d</i> 310	-3.80	3.33[6]
569.004	750	4 <i>f</i> 02	<i>d</i> 108	-1.14	1.49[9]
569.719	400	4 <i>f</i> 03	<i>d</i> 311	-4.89	2.67[5]
571.004	875	4 <i>f</i> 02	<i>d</i> 309	-1.47	6.95[8]
571.605	750	4 <i>f</i> 03	6 <i>d</i> 02	-1.09	1.67[9]
572.532	50	4 <i>f</i> 03	<i>d</i> 409	-2.21	1.26[8]
573.279	1250	4 <i>f</i> 03	<i>d</i> 408	-1.16	1.41[9]
573.566	200	4 <i>f</i> 02	d209	-2.04	1.85[8]
574.284	700	4 <i>f</i> 03	<i>d</i> 310	-1.59	5.25[8]
575.051	25	4 <i>f</i> 02	d107	-4.12	1.52[6]
577.209	1000	4 <i>f</i> 02	d208	-0.99	2.04[9]
578.068	500	4 <i>f</i> 02	d106	-1.79	3.28[8]
578.444	500	4 <i>f</i> 03	d309	-1.43	7.40[8]
578.504	50	4 <i>f</i> 02	d308	-3.18	1.32[7]
581.073	1000	4 <i>f</i> 03	d209	-1.10	1.58[9]
582.216	400	4 <i>f</i> 02	d307	-5.12	1.48[5]
583.971	750	4 <i>f</i> 02	d105	-1.87	2.61[8]
584.166	500	4 <i>f</i> 02	d207	-1.79	3.19[8]
584.812	100	4 <i>f</i> 03	d208	-4.42	7.42[5]
584.625	600	4 <i>f</i> 03	d407	-2.02	1.87[8]
585.100	15	4 <i>f</i> 02	d306	-3.58	5.13[6]
586.143	1500	4 <i>f</i> 03	d308	-0.95	2.17[9]
589.166	1500	4f02	d206	-2.49	6.21[7]
589.521	400	4f02	d200	-3.01	1.87[7]
589.951	375	4 <i>f</i> 03	d305	-1.68	4.01[8]
591.955	600	4 <i>f</i> 03	d207	-2.63	4.44[7]
592.915	250	4 <i>f</i> 03	d306	-3.45	6.78[6]
593.027	230	4 <i>f</i> 03	d405	-2.42	0.78[0] 7.14[7]
593.447	600	4 <i>f</i> 03 4 <i>f</i> 02	d104	-2.42 -2.70	3.83[7]
595.447 596.831	750	4f02			
			d205	-2.22	1.13[8]
597.090 597.460	1250	4 <i>f</i> 03	d206 d305	-1.91	2.29[8]
597.460 601.448	1250	4 <i>f</i> 03	d305	-1.49	6.05[8]
601.448	450	4f02	d103	-2.98	1.94[7]
603.183	250 125	4 <i>f</i> 02	d304 d205	-2.57	4.99[7]
604.964	125	4 <i>f</i> 03	d205	-4.27	9.87[5]
610.375	40	4 <i>f</i> 02	d303	-3.37	7.59[6]
610.472	1000	4 <i>f</i> 02	d204	-1.25	9.99[8]
611.488	1250	4 <i>f</i> 03	d304	-1.44	6.54[8]
613.145	250	4 <i>f</i> 02	d203	-2.65	4.01[7]
616.792	1000	4 <i>f</i> 02	d202	-1.65	3.93[8]

TABLE I. (Continued.)

		Odd			- 4
Wavelength (Å)	Intensity	Level	Even level	$\log g_L f$	$g_U A$ (s ⁻¹)
618.884	1250	4 <i>f</i> 03	<i>d</i> 303	-1.64	3.98[8]
618.978	500	4 <i>f</i> 03	<i>d</i> 204	-1.85	2.49[8]
620.298	750	4 <i>f</i> 03	<i>d</i> 302	-1.71	3.40[8]
627.599	1250	4 <i>f</i> 03	<i>d</i> 401	-1.84	2.48[8]
629.405	1250	4 <i>f</i> 02	<i>d</i> 301	-1.93	1.97[8]
638.453	25	4 <i>f</i> 03	<i>d</i> 301	-3.45	5.76[6]
671.033	250	7 <i>p</i> 00	5 <i>d</i> 01	-1.25	8.28[8]
671.304	500 ^d	7 <i>p</i> 01	5 <i>d</i> 02	-1.11	1.15[9]
741.808	75000	5 <i>f</i> 02	5 <i>d</i> 01	0.30	2.43[10]
754.608	125000	5 <i>f</i> 03	5 <i>d</i> 02	0.46	3.41[10]
755.760	10000	5 <i>f</i> 02	5 <i>d</i> 02	-0.85	1.65[9]
891.587	1000	7 <i>p</i> 00	6 <i>s</i> 01	-4.65	1.88[5]
1289.408	100	6 <i>p</i> 01	5 <i>d</i> 01	-0.90	5.07[8]
1332.157	5000	6 <i>p</i> 01	5d02	0.04	4.11[9]
1372.719	3500	6 <i>p</i> 00	5d01	-0.23	2.10[9]
1528.667	20	6p00	d215	-1.11	2.21[8]
1570.956	20	5 <i>f</i> 02	6g03	0.08	3.25[9]
1575.641	40	5f03	6g04	0.19	4.12[9]
1633.698	1000	6 <i>p</i> 00	d005	-1.41	9.70[7]
1641.591	5000	6 <i>p</i> 00	7s01	-0.36	1.07[9]
1717.489	5	6 <i>p</i> 00	d213	-2.76	3.94[6]
1769.788	150	6 <i>p</i> 01	d005	-1.13	5.94[0] 1.58[8]
1709.788	25000	6 <i>p</i> 00	6d01	-1.13	3.10[9]
	10000	-	7 <i>s</i> 01	-0.10	5.10[9] 1.67[9]
1779.060		6 <i>p</i> 01			
1788.813	12000	6 <i>p</i> 01	d212	-0.36	9.12[8]
1881.067	20000	6 <i>p</i> 00	d108	-0.13	1.40[9]
1892.370	18000	6 <i>p</i> 01	d211	-0.49	6.04[8]
1914.740	60000	4 <i>f</i> 02	5d02	-2.19	1.16[7]
1918.842	30	6 <i>p</i> 01	d210	0.02	1.87[9]
1937.185	12000	6 <i>p</i> 01	6d01	-0.57	4.76[8]
1948.828	20000	6 <i>p</i> 00	<i>d</i> 107	-0.55	4.94[8]
1983.919	9000	6 <i>p</i> 00	<i>d</i> 106	-2.81	2.64[6]
2001.046	600000	4 <i>f</i> 03	5d02	-0.92	2.00[8]
2003.726	40000	6 <i>p</i> 01	6 <i>d</i> 02	0.33	3.56[9]
2010.562	3000000	4 <i>f</i> 02	5 <i>d</i> 01	-1.08	1.37[8]
2055.214	9000	6 <i>p</i> 00	<i>d</i> 105	-2.07	1.33[7]
2061.089	40	7p00	8 <i>d</i> 01	-0.70	3.11[8]
2063.796	15000	6 <i>p</i> 01	<i>d</i> 108	-0.88	2.07[8]
2125.119	4000	6 <i>p</i> 01	d209	-1.54	4.25[7]
2145.654	30000	6 <i>p</i> 01	<i>d</i> 107	-1.28	7.65[7]
2159.145	150	7 <i>p</i> 01	8 <i>d</i> 02	-0.49	4.58[8]
2175.994	40000	6 <i>p</i> 01	d208	-0.60	3.50[8]
2177.598	150	6 <i>p</i> 00	<i>d</i> 104	-2.03	1.33[7]
2188.261	20	6 <i>p</i> 01	<i>d</i> 106	-4.53	4.10[4]
2275.319	150	6 <i>p</i> 01	d105	-2.74	2.35[6]
2278.285	40000	6 <i>p</i> 01	d207	-1.40	5.18[7]
2289.380	140	6 <i>p</i> 00	<i>d</i> 103	-2.78	2.11[6]
2352.703	200	5 <i>f</i> 03	5 <i>g</i> 04	0.71	6.16[9]

TABLE I. (Continued.)

Wavelength		Odd	Even		$g_U A$
(Å)	Intensity	Level	level	$\log g_L f$	(s^{-1})
2368.060	200	5 <i>f</i> 02	5g03	0.83	8.07[9]
2379.435	5	5 <i>f</i> 03	5g03	-0.62	2.82[8]
2426.288	12	6 <i>p</i> 01	<i>d</i> 104	-2.57	3.10[6]
2457.600	300000	6 <i>p</i> 01	6 <i>s</i> 01	0.23	1.88[9]
2475.908	200	5 <i>f</i> 03	<i>d</i> 419	0.73	5.89[9]
2537.880	20	5 <i>f</i> 02	<i>d</i> 322	-0.14	7.32[8]
2643.099	5	5 <i>f</i> 03	7 <i>d</i> 02	-0.69	1.96[8]
2779.075	100000	6 <i>p</i> 00	6 <i>s</i> 01	-0.12	6.50[8]
2870.443	5	6 <i>p</i> 01	d202	-3.44	2.96[5]
3020.413	10	7 <i>p</i> 01	s207	-1.97	7.84[6]

TABLE I. (Continued.)

^aDoubly classified.

^bPerturbed by Ce⁴⁺; not included in level optimization.

^cPerturbed by Ce⁴⁺.

^dPerturbed by N⁺.

Most of the levels of $5p^54f5d$ and $5p^54f6s$ are determined by pairs of lines that connect upper levels to the 4f ²F ground-state doublet. Many of these upper levels are confirmed by transitions to other $5p^6nl$ levels, mostly 6p. Some of the predicted upper levels have J values that are too low or too high (J < 3/2 or J > 9/2) to make dipole-allowed transitions to 4f. Levels with J=1/2 can make transitions to levels of 6p and 7p, and we established one level of $5p^54f5d$ through its transitions to 6p. The levels with J=3/2 and 9/2are mostly established by a single transition each. These are generally strong lines that are easily identified in the spectrum. Some of the J=3/2 levels are confirmed by transitions to 6p.

As shown in Table I, one line, 511.079 Å, is doubly classified. The $5d_{3/2}$ - $7p_{3/2}$ transition, which is expected to lie at 660.274 Å, is evidently masked by a strong line of singly ionized nitrogen at 660.286 Å [11]. Our line at 1575.641 Å is also given in the list of lines for Ce⁴⁺ [12]. However, according to our present assessment, it clearly belongs to Ce³⁺.

The experimental energy levels for Ce^{3+} are given in Table II. The level values were determined by the computer code ELCALC [17], which uses an iterative procedure to minimize the differences between observed and calculated wave numbers. The uncertainties are those determined by the code. The designations for the $5p^6nl$ levels are given as the configuration followed by the truncated J value (4f02 indicates $5p^64f$ with J value of 2.5). For the $5p^54f5d$ and $5p^54f6s$ configurations, the designations are given as configuration, followed by truncated J value, and followed by the ordinal number of the calculated level for this configuration and J value (d419 indicates the level calculated as the 19th level with J=4.5 in the configuration $5p^54f5d$; s104 indicates the 4th level with J=1.5 in the configuration $5p^54f6s$).

IV. RITZ WAVELENGTHS

We calculated wavelengths of selected observed lines determined by the optimized level values or Ritz values. The results are given in Table A, which is available online in the electronic physics auxiliary publication service (EPAPS) of the American Institute of Physics [18]. The calculated wavelengths of these lines have especially low uncertainties. The uncertainties of the Ritz wavelengths correspond to the square root of the sum of the squares of the uncertainties of the combining levels. The Ritz wavelengths have uncertainties as low as 0.0003 Å. Comparison of the observed wave-lengths with the Ritz wavelengths shows that our estimate of 0.005 Å for the general wavelength uncertainty is fully justified.

To a large extent, the low uncertainties for the Ritz wavelengths arise from the observation of long-wavelength transitions between one-electron configurations and the innershell excitation configurations that take place because of configuration interaction. Fig. 1 shows all the observed levels and illustrates the origin of the low uncertainties for the Ritz wavelengths. There are two types of Ritz systems here. First, the 4f-5d, 5d-6p, and 6p-6d transitions combine to produce level values for 6d that are accurate to 0.12 cm^{-1} . Combined with the 0.13 cm⁻¹ uncertainty of the 4*f* ground term, the wavelengths for the 4f-6d transitions are then accurate to ± 0.18 cm⁻¹ or ± 0.0006 Å. Second, the 4*f*-5*d*, 5d-6p, and $5p^{6}6p-5p^{5}4f5d$ transitions combine to produce levels of $5p^54f5d$ that are accurate to about 0.10 cm⁻¹. The transitions from these levels to the ground term are thus accurate to about ± 0.0006 Å. The $5p^{6}6p-5p^{5}4f5d$ transitions, which are not normally allowed as they would involve a change of two electrons, take place because of mixtures of $5p^{5}4f5d$ levels with the $5p^{6}6d$ levels. As mentioned, this is the cause of the abnormal fine structure of the $5p^{6}6d$ levels found originally by Lang [4]. For both of these Ritz schemes, the uncertainty of the calculated wavelengths in large measure derives from the uncertainty of the shortest wavelength lines in the calculation, which for the present set is the group at 1300 Å.

TABLE II. Energy levels of Ce ³⁺ in cm ⁻¹	. Percentage compositions are given in Table C [18]. Level codes
are explained in text.	

Config.	Term	J	Desig.	Energy	Unc.	Config. int.
$5p^{6}4f$	^{2}F	2.5	4 <i>f</i> 02	0.00	0.13	
		3.5	4 <i>f</i> 03	2252.50	0.16	
$5p^{6}5d$	^{2}D	1.5	5 <i>d</i> 01	49737.30	0.14	1% 5p ⁵ 4f5d
		2.5	5 <i>d</i> 02	52226.33	0.14	1% 5p ⁵ 4f5d
5p ⁶ 6s	^{2}S	0.5	6 <i>s</i> 01	86602.10	0.06	1% 5p ⁵ 6p5d
5 <i>p</i> ⁶ 6 <i>p</i>	^{2}P	0.5	6 <i>p</i> 00	122585.29	0.05	
		1.5	6 <i>p</i> 01	127292.24	0.04	
5p ⁶ 6d	^{2}D	2.5	6 <i>d</i> 02	177199.23	0.13	51% 5p ⁵ 4f5d
		1.5	6 <i>d</i> 01	178913.57	0.12	$45\% 5p^54f5d$
$5p^{6}7s$	^{2}S	0.5	7 <i>s</i> 01	183501.73	0.13	9% 5p ⁵ 4f5d
$5p^{6}5f$	^{2}F	2.5	5 <i>f</i> 02	184543.00	0.09	$2\% 5p^55d^2$
		3.5	5 <i>f</i> 03	184744.88	0.06	$1\% 5p^55d^2$
$5p^{6}7p$	^{2}P	0.5	7 <i>p</i> 00	198761.5	0.6	$13\% 5p^54f^2$
		1.5	7 <i>p</i> 01	201189.59	0.12	$16\% 5p^54f^2$
$5p^{6}7d$	^{2}D	1.5	7 <i>d</i> 01	221661.7	2.5	32% 5p ⁵ 4f5d
		2.5	7 <i>d</i> 02	222579.25	0.10	22% 5p ⁵ 4f5d
$5p^{6}5g$	^{2}G	3.5	5g03	226771.66	0.08	$11\% 5p^54f5d$
		4.5	5 <i>g</i> 04	227249.18	0.11	$44\% 5p^54f5d$
$5p^{6}8d$	^{2}D	1.5	8 <i>d</i> 01	247279.6	0.6	$1\% 5p^54f5d$
		2.5	8 <i>d</i> 02	247504.22	0.16	$1\% 5p^54f5d$
5p ⁶ 6g	^{2}G	3.5	6g03	248198.50	0.22	1 0
		4.5	6g04	248211.12	0.21	
$5p^{5}4f5d$		3.5	<i>d</i> 301	158880.7	0.9	
		4.5	<i>d</i> 401	161589.9	1.3	
		2.5	d202	162130.05	0.07	
		2.5	d203	163093.6	1.3	
		3.5	<i>d</i> 302	163465.3	1.3	
		2.5	d204	163808.4	1.1	
		3.5	<i>d</i> 303	163833.7	0.9	
		3.5	<i>d</i> 304	165787.6	1.0	
		1.5	<i>d</i> 103	166265.23	0.11	
		2.5	d205	167551.6	1.0	
		1.5	<i>d</i> 104	168507.44	0.07	
		3.5	<i>d</i> 305	169628.5	1.1	
		2.5	d206	169731.4	1.0	
		4.5	d405	170878.9	1.4	
		3.5	<i>d</i> 306	170910.8	1.0	
		2.5	d207	171184.88	0.10	
		1.5	d105	171242.07	0.09	
		3.5	<i>d</i> 307	171757.8	1.1	
		3.5	<i>d</i> 308	172859.5	1.1	
		1.5	d106	172990.59	0.09	
		2.5	d208	173248.22	0.11	6% 6d
		4.5	d407	173302.3	1.5	
		1.5	d107	173898.10	0.10	11% 6d
		2.5	d209	174348.40	0.12	
		3.5	d309	175130.1	1.1	
		1.5	d108	175746.61	0.10	28% 6d

JOSEPH READER AND JEAN-FRANÇOIS WYART

Config.	Term	J	Desig.	Energy	Unc.	Config. int.
$5p^54f5d$		4.5	<i>d</i> 408	176687.6	1.5	
		4.5	<i>d</i> 409	176915.2	1.5	
		3.5	<i>d</i> 311	177777.5	1.1	
		4.5	<i>d</i> 410	179178.2	1.6	
		2.5	<i>d</i> 210	179406.98	0.14	23% 6d
		2.5	<i>d</i> 211	180136.01	0.14	7% 6d
		3.5	<i>d</i> 312	180587.6	1.1	
		2.5	d212	183195.19	0.16	10% 6d
		3.5	<i>d</i> 313	183360.6	1.6	
		0.5	d005	183796.14	0.13	
		1.5	<i>d</i> 109	184297.8	1.7	
		2.5	d213	185516.73	0.18	
		4.5	<i>d</i> 411	186875.3	1.7	
		3.5	<i>d</i> 314	187145.0	1.2	
		2.5	<i>d</i> 214	187597.9	1.3	
		4.5	<i>d</i> 412	188530.5	1.7	
		3.5	<i>d</i> 315	189139.0	1.8	
		4.5	<i>d</i> 413	191129.9	1.8	
		3.5	<i>d</i> 316	191605.1	1.3	
		1.5	<i>d</i> 112	191976.9	1.8	
		2.5	d215	192708.68	0.21	
		4.5	<i>d</i> 414	193585.1	1.8	
		2.5	d216	194420.9	1.9	
		3.5	<i>d</i> 318	195665.2	1.8	
		4.5	<i>d</i> 415	196358.3	1.9	
		2.5	d217	196657.2	1.4	
		3.5	<i>d</i> 319	197687.1	1.4	
		4.5	<i>d</i> 416	197821.3	1.9	
		2.5	<i>d</i> 218	197917.1	1.9	
		1.5	d115	200167.7	2.0	
		4.5	<i>d</i> 417	200775.5	2.0	
		3.5	<i>d</i> 320	201948.1	1.6	
		2.5	d220	203176.8	1.5	
		3.5	<i>d</i> 321	203569.2	1.5	
		4.5	<i>d</i> 418	208284.7	2.1	
		1.5	<i>d</i> 118	210373.5	2.2	
		3.5	<i>d</i> 322	223945.96	0.12	7% 5g
		2.5	d222	224055.5	2.5	
		3.5	<i>d</i> 323	224919.4	1.8	6% 5g
		4.5	<i>d</i> 419	225134.10	0.10	47% 5g
		1.5	<i>d</i> 119	227720.9	2.6	33% 7d
		2.5	d223	229205.6	1.9	20% 7d
$5p^{5}4f6s$		1.5	s101	196945.4	1.9	
		2.5	s201	199869.3	1.4	
		1.5	s102	201068.5	2.0	
		4.5	s401	202872.4	2.0	
		3.5	s301	204143.1	1.5	
		3.5	s302	204585.9	1.5	

TABLE II. (Continued.)

Config.	Term	J	Desig.	Energy	Unc.	Config. int.
		4.5	s402	204741.5	2.1	
		2.5	s202	206186.6	1.5	
		2.5	s203	207704.9	1.6	
		3.5	s303	208082.6	1.5	
		4.5	s403	211422.5	2.2	
		3.5	s304	212181.5	1.6	
		1.5	s103	213686.6	2.3	
		2.5	s204	214633.4	1.6	
		2.5	s205	227453.7	2.6	
		3.5	s305	227882.3	2.6	
		2.5	s206	230679.4	1.9	
		4.5	<i>s</i> 404	231601.4	2.6	
		3.5	s307	232405.5	2.0	
		1.5	s104	233981.1	2.7	
		2.5	s207	234297.64	0.13	

TABLE II. (Continued.)

V. THEORETICAL INTERPRETATION

A. Even-parity levels

Our interpretation of the even levels treated the oneelectron configurations $5p^6nl$ together with the core-excited configurations $5p^54f5d$ and $5p^54f6s$ as a single group. Initial parameter values for $5p^54f5d$ and $5p^54f6s$ were radial integrals calculated with the Cowan code adjusted by various scale factors. Earlier studies of Ce²⁺ [19], Ce⁴⁺ [12], and

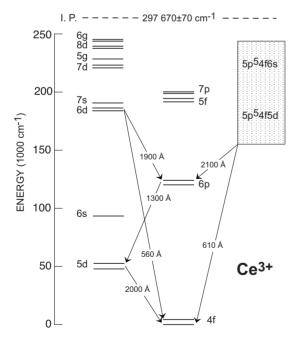


FIG. 1. Schematic transition diagram showing observed energy levels of Ce^{3+} and transitions that form the basis for accurate Ritz-type wavelengths. Wavelengths are approximate. The block for the $5p^54f5d$ and $5p^54f6s$ configurations contains about 80 energy levels.

other lanthanides helped to determine the scale factors. For our initial calculations, the average energies of the configurations were adjusted so that the largest number of experimental levels would fit the calculated structure, taking into account observed intensities and the computed transition probabilities. Because of their large configuration-interaction (CI) integrals, three unknown core-excited configurations, $5p^54f6d$, $5p^55d6p$, and $5s5p^64f^2$, were included in the calculation, bringing the final set of basis states to $5p^6nd(n$ =5-8), $5p^6ns(n=6,7)$, $5p^6ng(n=5,6)$, $5p^54f5d$, $5p^54f6s$, $5p^54f6d$, $5p^55d6p$, and $5s5p^64f^2$.

One of the main difficulties in carrying out a least-square fit of the energy parameters to the observed levels for a system such as this is that the $5p^6nl$ configurations consist of only one or two levels. These are fully described by the average energy E_{av} and the spin-orbit interaction parameter ζ_{nl} . Thus, introduction of CI integrals for the one-electron configurations creates a problem of under determination of the system. Once our rough fitting was considered a good starting point for optimizing the parameters, the problem of over parametrization had to be overcome.

The 240 parameters considered included 13 configuration average energies, 40 electrostatic Slater integrals, 27 effective electrostatic parameters for far interactions with doubly excited configurations not in our basic set, 18 spin-orbit parameters, and 142 electrostatic parameters for configuration interactions. As the number of known energy levels was initially 50, a system to reduce the number of free parameters had to be adopted.

The most important reduction was accomplished by bundling the 142 CI parameters into groups that maintained their Hartree-Fock ratios throughout the calculations. The Slater parameters with the same names in the group $5p^54f5d$ $+5p^54f6s$ as well as the spin-orbit parameters were also varied in this way.

The effective parameters for far CI effects, which are known to improve the energies in configurations of nonequivalent electrons, such as $4f^{N}5d$, had their initial values taken from the recent analysis of Nd³⁺ [20]. We considered the effective (nonallowed) Slater parameters $F^{1}(4f5d)$, $G^{2}(4f5d)$, and $G^{4}(4f5d)$, which have been successfully used in many previous studies, as well as $F^{1}(5p4f)$ and $F^{1}(5p5d)$. Since $G^{2}(4f5d)$ and $G^{4}(4f5d)$ are known to be about equal, we set $G^{2}(4f5d) = G^{4}(4f5d)$. We also arbitrarily set $F^{1}(5p4f) = F^{1}(5p5d) = F^{1}(4f5d)$. This reduced the 27 effective electrostatic parameters to two adjustable ones.

All parameters for the high unknown configurations were fixed at their scaled HFR values. After a few fits, predicted wavelengths and intensities were compared with the experimental spectrum. Practically, all strong lines in the 400–700 Å region with definite Ce³⁺ character could be interpreted. The location of a number of combinations with 6*p*, 7*p*, and 5*f* levels in the longer wavelength region 1300–3250 Å confirmed the interpretation of the upper levels.

The high-lying even levels with J=1/2 presented a special problem. Our calculations indicated that 7s should be strongly mixed with a close predicted level of $5p^54f5d$. The only possibility for this level was one located 294 cm⁻¹ above 7s, 183796 cm⁻¹. However, in order to obtain convergence in the fitting process, we had to manually adjust and then fix the parameters for the $5p^67s-5p^54f5d$ interaction. Although they closely reproduce the values of the J=1/2levels, the adjusted parameter values are much smaller than the HFR values. In the final parametric fit, both J=1/2 levels were omitted.

In the final step, 102 levels were fitted by 34 free parameters with a mean error (rms deviation) of 163 cm⁻¹. When the calculations were made without the unknown configurations $5p^{5}4f6d$, $5p^{5}5d6p$, and $5s5p^{6}4f^{2}$, the mean error increased to 184 cm⁻¹. In general, the agreement between the observed intensities and the transition probabilities calculated with the fitted parameters is good. Although there are some exceptions, for most of the pairs of lines connecting an upper level to the ground term, the intensities are in the same general ratio as the calculated values.

A large effect of CI is seen for the transition probabilities of the 4f-5d resonance transitions, the strongest lines in the spectrum. These transition probabilities are reduced by a factor of nearly 2 because of interaction between $5p^{6}5d$ and $5p^{5}4f5d$. A similar reduction is found in Nd³⁺ [20], Nd⁴⁺ [21], and Tm³⁺ [22], where the effects of $5p^{6}4f^{N}5d$ $+5p^{5}4f^{N+1}5d$ mixing on the transition probabilities of $5p^{6}4f^{N-5}p^{6}4f^{N-1}5d$ transitions have been studied.

The fitted parameter values and their standard errors are compared with HFR values in Table B, available online at EPAPS [18]. The scale factors range from 0.70 to 0.92, which is normal for these types of structures. Although the factor of 1.19 for $F^4(4f5d)$ is relatively high, similar factors are found for many fitted $F^4(fd)$ parameters throughout the periodic table.

The complete results of the least-squares fit for the even configurations, including the first three eigenvector components for each level, are given in Table C, available online at EPAPS [18]. The most important admixtures due to configuration interaction are given by total configuration percentage in Table II.

TABLE III. Measured and calculated lifetimes (ns) for the 5d levels of Ce³⁺.

		HFR				
Level	Expt. ^{a, b}	This work	Zhang et al. ^c	Zhang et al. ^d		
5d _{3/2}	$30(1^{\beta}+1^{\theta})$	29.3	30.5	30.3		
$5d_{5/2}$	$30(1.4^{\beta}+1.6^{\theta})$	28.3	30.0	29.6		

^aZhang et al. (Ref. [23]).

^b β : statistical error; θ : estimated systematic error.

^cZhang et al. (Ref. [23]); 12 even and 12 odd configurations.

^dZhang *et al.* (Ref. [23]); 3 odd and 2 even configurations.

B. Odd-parity levels

Our calculations for the odd configurations included the observed $5p^6nl$ configurations as well as the unknown coreexcited configurations $5p^54f^2$, $5p^55d^2$, and $5p^54f6p$. The calculations show that $5p^64f$ and $5p^66p$ are not much affected by CI. However, the $5p^65f$ and $5p^67p$ configurations are surrounded by levels of $5p^54f^2$. Our calculations indicate that $5p^65f$ contains an admixture of $5p^54f^2$ amounting to almost 3%; for $5p^67p$, the admixture of $5p^54f^2$ is about 15%. Since the true positions of the perturbing levels of $5p^54f^2$ are not actually known, these admixtures cannot be calculated precisely.

In the absence of configuration interaction, all levels of $5p^54f^2$ are metastable and not easily detectable. Although it might be possible to locate some of them through transitions to $5p^54f^2$ from $5p^54f5d$, the predicted transitions lie mainly at wavelengths well beyond our present observations. Therefore, we were not able to locate any levels of $5p^54f^2$. The higher unknown configurations $5p^55d^2$ and $5p^54f6p$ should fall in the ranges $208\ 000-312\ 000\ \mathrm{cm}^{-1}$ and 228 000-275 000 cm⁻¹, respectively, and interact strongly with $5p^{6}6f$, which is expected to lie near 225 000 cm⁻¹. We were not able to locate either of these core-excited configurations or $5p^{6}6f$.

The energy parameters for the observed odd configurations are given in Table D, available online at EPAPS [18].

VI. OSCILLATOR STRENGTHS

The wave functions obtained with the fitted energy parameters were used to calculate weighted oscillator strengths gf and weighted transition probabilities gA for all classified lines. The values of $\log g_L f, f$ being the oscillator strength and g_L as the statistical weight of the lower level $2J_L + 1$ are given in Table I. The values of $g_U A$, A being the transition probability and g_U as the statistical weight of the upper level $2J_U + 1$, are also given in this table.

The only measurements available for comparison with our calculated values are those of Zhang *et al.* [23]. They used time-resolved laser spectroscopy to measure lifetimes for the 5d levels of Ce³⁺. The values determined with our fitted energy parameters are compared with the measured values in Table III. The agreement is remarkably good, especially since the calculated lifetimes are increased by a factor of nearly 2 due to interaction with $5p^54f5d$.

Also shown in Table III are HFR lifetimes obtained by Zhang *et al.* [23] with the Cowan code using a basis set consisting of 12 odd and 12 even configurations, with no scaling of the parameters. Again, the calculated and measured lifetimes agree well. Our present results mirror the values obtained by them with a basis set limited to 3 odd and 2 even configurations and a uniform scale factor of 0.85 for the parameters (30.3 ns for $5d_{3/2}$ and 29.6 ns for $5d_{5/2}$).

VII. IONIZATION ENERGY

By using a Ritz formula to predict the binding energy of the 4*f* term, Lang [4] estimated the energy to ionize Ce³⁺ to the 5*p*⁶ ¹S₀ ground level of Ce⁴⁺ as 296 197 cm⁻¹. No uncertainty was given. Sugar and Reader [24] revised this to 296 470 ± 40 cm⁻¹ by finding the limit of Lang's threemember ns(n=6-8) series. Since we now know that Lang's 8*s* term was spurious, the result of Sugar and Reader [24] has to be discarded.

For our present determination, we make use of the 6*g* configuration, which is the configuration least perturbed by inner-shell excitations. According to calculations with the Cowan code, the 6*g* configuration has a quantum defect of 0.0459. Isoelectronic comparisons with ions, for which an accurate ionization energy is known, indicate that this value should be corrected by a multiplicative factor of 0.98. This implies a quantum defect of 0.0450 and an effective quantum number $n^*(6g) = 5.955$ 0. The binding energy of the 6*g* configuration is thus 49 512 cm⁻¹.

According to our calculations, the J=7/2 and J=9/2 levels of 6g are pushed up by 39 cm⁻¹ and 53 cm⁻¹, respectively, due to perturbation by the inner-shell-excited configurations. Applying these corrections, we find the unperturbed positions for the two 6g levels as 248 159 cm⁻¹ (J=7/2) and 248 158 cm⁻¹ (J=9/2). This implies an average energy for 6g of 248 159 cm⁻¹ and an ionization energy for Ce³⁺ of 297 670 cm⁻¹.

By making calculations of the binding energy of the 6g configuration of Cs, Ba⁺, and La²⁺ with the Cowan code and comparing the energies with the experimental values, we estimate an uncertainty of ± 0.05 for the correction factor to the results with the Cowan code. The resulting uncertainty in the ionization energy is 38 cm⁻¹. We also estimate that the perturbations of 6g by inner-shell excitations could be uncertain by the size of the calculated perturbations or about 50 cm⁻¹. Combining these two uncertainties in quadrature, we obtain the final uncertainty for the ionization energy of 63 cm⁻¹, which we round up to 70 cm⁻¹.

We thus adopt the value for the ionization energy of Ce^{3+} as 297 670 ± 70 cm⁻¹ (36.909 ± 0.009 eV).

VIII. CONCLUSION

The present work represents a study of a lanthanide ion for which transitions involving inner-shell-excited configurations account for a major part of the emission spectrum. Further in the lanthanide period, in Pr^{3+} [25], with ground configuration $5p^{6}4f^{2}$, the mixing of $5p^{6}4f6p$ with levels of the lowest core-excited configuration $5p^{5}4f^{3}$ has led to the identification of a few levels of $5p^{5}4f^{3}$. In Nd³⁺ [20], with ground configuration $5p^{6}4f^{3}$, mixing of $5p^{6}4f^{2}6p$ with levels of $5p^{5}4f^{4}$ has led to the identification of some levels of $5p^{5}4f^{4}$. However, parametric analyses for these ions were hampered by a scarcity of experimental energies. Because of the known consistency of scaling factors for the radial integrals in long sequences of elements, the present results should help to improve theoretical predictions in the spectra of more complex lanthanides.

ACKNOWLEDGMENTS

One of us (J.F.W.) is grateful to NIST for the support of a visit to Gaithersburg in the final stages of this work. Work at NIST was supported in part by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

- [1] R. C. Gibbs and H. E. White, Phys. Rev. 33, 157 (1929).
- [2] R. J. Lang, Can. J. Res., Sect. A 13, 1 (1935).
- [3] R. J. Lang, Phys. Rev. 49, 552 (1936).
- [4] R. J. Lang, Can. J. Res., Sect. A 14, 127 (1936).
- [5] W. C. Martin, R. Zalubas, and L. Hagan, *Atomic Energy Levels–The Rare-Earth Elements* (NSRDS-NBS, 1978), Vol. 60, p. 91.
- [6] J. Reader, G. L. Epstein, and J. O. Ekberg, J. Opt. Soc. Am. 62, 273 (1972).
- [7] G. L. Epstein and J. Reader, J. Opt. Soc. Am. 65, 310 (1975).
- [8] G. L. Epstein and J. Reader, J. Opt. Soc. Am. 72, 476 (1982).
- [9] J. Reader and G. L. Epstein, J. Opt. Soc. Am. 62, 619 (1972).
- [10] W. Persson and J. Reader, J. Opt. Soc. Am. B 3, 959 (1986).
- [11] R. L. Kelly and L. J. Palumbo, Naval Research Laboratory Report No. 7599 (U. S. Government Printing Office, Washington, DC, 1973).
- [12] A. Redfors and J. Reader, Phys. Rev. A 43, 2367 (1991).

- [13] Uncertainties in this paper are given at the level of one standard deviation.
- [14] A. Tauheed and J. Reader, Phys. Scr. 72, 158 (2005).
- [15] R. D. Cowan, The Theory of Atomic Structure and Spectra (University Of California Press, Berkeley, CA, 1981); Cowan computer programs RCN, RCN2, RCG, and RCE. Copies of these programs can be downloaded from the web site http:// www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan/
- [16] J. Reader, Comput. Phys. 11, 190 (1997).
- [17] L. J. Radziemski, Jr., *The Program ELCALC* (The Research Corporation, Tuscon, Arizona, 1969); the procedure and definition of level value uncertainties are described by L. J. Radziemski, Jr., and V. J. Kaufman, J. Opt. Soc. Am. **59**, 424 (1969).
- [18] See EPAPS Document No. E-PLRAAN-80-119909 for Tables A B, C, and D. For more information on EPAPS, see http:// www.aip.org/pubservs/epaps.html.
- [19] J. Sugar, J. Opt. Soc. Am. 55, 33 (1965).

- [20] J.-F. Wyart, A. Meftah, J. Sinzelle, W.-Ü L. Tchang-Brillet, N. Champion, O. Lamrous, N. Spector, and J. Sugar, J. Phys B 40, 3957 (2007).
- [21] A. Meftah, J.-F. Wyart, J. Sinzelle, W.-Ü L. Tchang-Brillet, N. Champion, N. Spector, and J. Sugar, Phys. Scr. 77, 055302 (2008).
- [22] A. Meftah, J.-F. Wyart, N. Champion, and W.-Ü L. Tchang-

Brillet, Eur. Phys. J. D 44, 35 (2007).

- [23] Z. G. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and E. Biémont, Phys. Rev. Lett. 87, 273001 (2001).
- [24] J. Sugar and J. Reader, J. Chem. Phys. 59, 2083 (1973).
- [25] J.-F. Wyart, J. Blaise, and E. F. Worden, J. Solid State Chem. 178, 589 (2005).