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An approach for obtaining the ground state of Coulombic many-body systems is presented. This approach is
based on the path-integral renormalization-group method with nonorthogonal Slater determinants, is free of the
negative sign problem, and can handle higher dimensional systems with consideration of the correlation effect.
Furthermore, it can be easily extended to the multicomponent quantum systems that contain more than two
kinds of quantum particles. According to our results obtained with the present approach, it achieves the same
accuracy as the variational Monte Carlo method with a few Slater determinants and enables us to study the
entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer
approximation.
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I. INTRODUCTION

Many numerical algorithms for first-principles simula-
tions of correlated electron systems have been proposed and
applied to various systems. However, even now, the nature of
the ground state still remains a challenge because of the im-
maturity of numerical tools in terms of reliabilities and com-
putational costs. Reliable methods tend to require higher
computational costs �1� in general. The reliability problems
of the results obtained by the density functional theory were
reported �1–3�, for instance.

The path-integral renormalization-group �PIRG� method
�4–7� was proposed to obtain the many-body ground state of
model Hamiltonians such as the Hubbard one. The PIRG
method does not suffer from the sign problem �8�, unlike the
quantum Monte Carlo method. Furthermore, the PIRG
method does not limit the dimensionality of systems, unlike
the density-matrix renormalization-group method, because
numerical renormalization is carried out in an imaginary-
time space. In the PIRG method, the ground-state wave func-
tion is expressed by a linear combination of basis states, e.g.,
Slater determinants, in a truncated Hilbert space. While re-
taining the size of the truncated Hilbert space, the optimized
basis states and the ground state are projected out numeri-
cally.

To make the PIRG method applicable to first-principles
Hamiltonians, we extend the PIRG method with the real-
space finite-difference �RSFD� approach, in which every
physical quantity is defined only on grid points in a dis-
cretized space �9–14�. In this endeavor, the process of choos-
ing more preferable basis states becomes the main drawback
with respect to the computational cost. In particular, because
many grid points tend to be required in the RSFD scheme,
one-body Green’s functions and the Fock matrix dominate
the computational cost and prevent us from applying this
method to realistic systems. We briefly review the original
PIRG method in Sec. II, introduce an algorithm within the
framework of the RSFD approach to overcome this problem
in Sec. III, and show its applicability on some systems in
Secs. V A and V B.

The Born-Oppenheimer approximation is useful and is ef-
fective when nuclei are heavy. However, for relatively light

atoms, it leads to real and substantive discrepancies between
experimental and first-principles results, for example, in the
proton transfer and proton exchange in chemical and biologi-
cal reactions and in proton-tunneling phenomena. To repro-
duce experimental results, we must treat nuclei the same as
electrons �15–26�. We introduce a possible way within the
framework of the RSFD approach to deal with this problem.
We extend the PIRG method so as to be applicable to the
non-Born-Oppenheimer Hamiltonian in Sec. IV and show
some examples in Secs. V A and V B.

II. METHODOLOGY

Now, we briefly introduce the PIRG method to facilitate
later discussion. In the PIRG method, the many-body wave
function � is approximated with the linear combination of
fully unrestricted Slater determinants ��p�, in which one-
body orbitals ��i

p� are free of orthonormality constraints,
namely,

� � �
p=1

Nsd

�p,

�p = 	��i
p�	 = 	�1

p,�2
p, . . . ,�Nel

p 	 . �1�

Here, Nsd, Nel, and 	��i
p�	 denote the number of Slater deter-

minants, the number of electrons, and the Slater determinant
constructed from the set of one-body orbitals ��i

p�, respec-
tively. Throughout this paper, spin indices are ignored for
simplicity. The hardest thing of this approach is a lack of an
efficient way to obtain the ground state within this restricted
region. As a possible solution to this problem, the PIRG
method uses the imaginary-time propagator. If and only if
the inner product of the ground state �g.s. and an arbitrary
initial guess �i.g. ��g.s. ,�i.g.� is not equal to zero, one can
prove the relation

�g.s. = exp�− �Ĥ��i.g. = �exp�− ��Ĥ��Nbeads�i.g. . �2�

Here, ��=� /Nbeads and Ĥ is the many-body Hamiltonian
with the Coulombic electron-electron interaction. This means
that merely by operating the imaginary-time propagator on
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the initial guess, we can obtain the ground state. However,
because operating the imaginary-time propagator generates
enormous numbers of Slater determinants, the difficulty we
mentioned above is not removed but simply changed into a
different form. Since the reason why the imaginary-time
propagator in Eq. �2� generates enormous numbers of Slater
determinants is that it contains two-body operators, this ap-
proach becomes workable if two-body operators are elimi-
nated. As is well known, by means of the auxiliary-field
technique called the Stratonovich-Hubbard transformation
�27–30�, the two-body operators in the imaginary-time
propagator can be decomposed into one-body ones even in
the case of Coulombic systems, namely,

exp
−
��

2 �
j=1

Ngp

�
k=1

Ngp

n̂jv�r j,rk�n̂k�
= ZA

−1� 

k=1

Ngp

dAk���� exp
− ��LA + i���
j=1

Ngp

Aj���n̂j� ,

�3�

where n̂j is the number operator of electrons at site j, Ngp is
the number of grid points,

v�r,r�� =
1

�r − r��
, �4�

LA =
�r3

8�
�
j=1

Ngp

��Aj����2, �5�

ZA =� 

k=1

Ngp

dAk����exp�− ��LA� , �6�

and �r is the grid spacing. The auxiliary-field variable Aj���
is a real number and nothing but the electric scalar potential
in the Coulomb gauge. For details on this auxiliary field, see
Appendix A and Ref. �27�. Strictly speaking, the problem
still remains in the case of Coulombic systems because the
integral with respect to its auxiliary-field variable Aj��� in the
range �−� ,+�� is required. However, we can avoid this un-
practical integration by adopting a technique called renor-
malization, which truncates less important Slater determi-
nants. This is the basic idea lying under the PIRG method.

The outline of the PIRG method is shown below for con-
venience �see Refs. �4,5� for more detailed information�:

�a� Choose p in the range �1,Nsd�.
�b� Calculate 	p=exp�− ��

2 Ĥ1��p with Ĥ1 being a one-

body term in the Hamiltonian Ĥ. �The explicit formula of the
kinetic operator in the imaginary-time propagator within the
RSFD scheme is given in Appendix A.�

�c� Calculate the total energy with 	p instead of �p. If 	p

gives a lower energy compared with �p, replace �p with 	p.
If not, keep �p.

�d� Generate �Ai� �i=1,2 , . . . ,Ngp� with the probability
ZA

−1 exp�−��LA�.

�e� Calculate 
p=exp�i��� j=1
Ngp Ajn̂j��p.

�f� Calculate the total energy with 
p. If 
p gives a lower
energy compared with �p, replace �p with 
p. If not, keep
�p.

�g� Repeat steps �b� and �c� if the S2 formula of the
Suzuki-Trotter exponential decomposition �31� is applied to

exp�−��Ĥ�, that is, if one approximates exp�−��Ĥ� with

exp�− ��
2 Ĥ1�exp�−��Ĥ2�exp�− ��

2 Ĥ1�. Here, we assume that

the Hamiltonian Ĥ is a sum of two parts: a one-body part Ĥ1

and a two-body part Ĥ2.
�h� Repeat steps �a�–�g� until the total energy converges.
Although we modify the original PIRG method in order to

handle Coulombic and multicomponent systems, those modi-
fications do not entirely change the outline itself. Meanwhile,
the computational cost of obtaining the total energy changes
greatly owing to those modifications, as we describe later, so
that the overall cost also changes. Roughly speaking, the
entire cost is proportional to how many times the total energy
is calculated, namely, how many times steps �c� and �f� are
performed, and this number of repetitions varies from system
to system. Therefore, in this paper, we focus on the cost of
calculating the total energy �see the latter part of Sec. III�.

III. DETAILS ON IMPROVING
THE SCALING BEHAVIOR

With the creation �annihilation� operator of electrons at
site j, ĉj

† �ĉj�, the Hamiltonian is

Ĥ = �
i=1

Ngp

�
j=1

Ngp

�− tij + vext�ri��ij�ĉj
†ĉi +

1

2�
i=1

Ngp

�
j=1

Ngp

v�ri,r j�ĉj
†ĉi

†ĉiĉ j ,

�7�

where tij is a discretized 1
2�2. When the central finite-

difference formula is employed, for example, tij = ��i,j−1
−2�i,j +�i,j+1� /2�r2. The total energy under the approxima-
tion �Eq. �1�� is

���Ĥ���
�����

=

�
p=1

Nsd

�
q=1

Nsd

��p�Ĥ��q�

�
p=1

Nsd

�
q=1

Nsd

��p��q�
=

�
p=1

Nsd

�
q=1

Nsd

DpqEpq

�
p=1

Nsd

�
q=1

Nsd

Dpq

. �8�

Here,

Epq = �Dpq�−1��p�Ĥ��q� �9�

and

Dpq = ��p��q� . �10�

Inserting Eq. �7� into Eq. �9�, one obtains

Epq = �
i=1

Ngp

�
j=1

Ngp

�− tij + vext�ri��ij��Dpq�−1��p�ĉj
†ĉi��q�

+
1

2�
i=1

Ngp

�
j=1

Ngp

v�ri,r j��Dpq�−1��p�ĉj
†ĉi

†ĉiĉ j��q� . �11�
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When the many-body wave function is approximated with
Slater determinants, the term ��p�ĉj

†ĉi
†ĉiĉ j��q� becomes �see

Ref. �32� and Appendix C�

�Dpq�−1��p�ĉj
†ĉi

†ĉiĉ j��q�

= �Dpq�−1��p�n̂jn̂i��q� − �ij�Dpq�−1��p�n̂i��q�

= �Dpq�−2��p�n̂j��q���p�n̂i��q� − �Dpq�−2

���p�ĉj
†ĉi��q���p�ĉi

†ĉj��q� . �12�

Equation �11� is rewritten as

Epq = �
i=1

Ngp

�
j=1

Ngp

�− tij + vext�ri��ij��Dpq�−1��p�ĉj
†ĉi��q�

+
1

2�
i=1

Ngp

�
j=1

Ngp

v�ri,r j��Dpq�−2���p�n̂j��q���p�n̂i��q�

− ��p�ĉj
†ĉi��q���p�ĉi

†ĉj��q�� . �13�

Thus, calculating the total energy ���Ĥ��� / �� ��� can be
reduced to calculating ��p�ĉj

†ĉi��q� / ��p ��q�. A simple way
of calculating ��p�ĉj

†ĉi��q� is to use the one-body Green’s
function, ��p�ĉj

†ĉi��q� / ��p ��q� �4,5,33�. Introducing a Ngp
�Nel coefficient matrix ��p� that corresponds to a Slater
determinant �p,

��p� = 
j=1

Nel ��
i=1

Ngp

��p�ijĉi
†��0� , �14�

the Ngp-dimensional jth column vector � j
p�ri� of the coeffi-

cient matrix ��p�, and a Nel�Nel overlapping matrix,

Spq = ��p�†��q� , �15�

one has the one-body Green’s function with respect to a
Slater-determinant pair ��p ,�q� as

Gji
pq = �Dpq�−1��p�ĉj

†ĉi��q�

= ���q����p�†��q��−1��p�†� ji

= ���q��Spq�−1��p�†� ji

= �
k=1

Nel

�
l=1

Nel

�k
q�r j��Spq�kl

−1�l
p��ri� �16�

and

Dpq = det Spq. �17�

Therefore,

��p�ĉj
†ĉi��q� = Dpq�

k=1

Nel

�
l=1

Nel

�k
q�r j��Spq�kl

−1�l
p��ri� . �18�

Substituting ��p�ĉj
†ĉi��q� in Eq. �13� with the right-hand side

of the above equation, one obtains

Epq = �
i=1

Ngp

�
j=1

Ngp

�
k=1

Nel

�
l=1

Nel

�Spq�kl
−1�l

p��ri��− tij + vext�ri��ij��k
q�r j�

+
1

2�
i=1

Ngp

�
j=1

Ngp

�
k=1

Nel

�
l=1

Nel

�
m=1

Nel

�
n=1

Nel

�Spq�kl
−1�Spq�mn

−1 �l
p��r j��n

p�

��ri�v�ri,r j�	�k
q�r j�,�m

q �ri�	 . �19�

The scaling behavior of the expression shown in Eq. �13� is
O�Ngp

2 Nel
2 Nsd

2 � because the one-body Green’s function in Eq.
�16�, which must be calculated and stored beforehand, re-
quires an O�Ngp

2 Nel
2 Nsd

2 � cost though Eq. �13� itself scales
with O�Ngp

2 Nsd
2 �. Also, the behavior of the above expression

�Eq. �19�� is O�Ngp
2 Nel

4 Nsd
2 � at a glance. Obviously, the latter

is much worse than the former. However, as is known, by
using Poisson’s equation, the scaling behavior of the above
expression can be improved to O�NgpNel

4 Nsd
2 � �12�. It is much

better than that of the former, since the first-principles calcu-
lations based on the RSFD scheme tend to require much
larger Ngp compared with Nel, though it is still worse than the
former with respect to Nel. Furthermore, it can be improved
to O�NgpNel

2 Nsd
2 � by using a tiny trick, as described below.

Thus, the above expression is surely greatly preferable com-
pared with the former. In model calculations, this consider-
ation is not necessarily needed and has not been discussed
since Ngp takes much smaller values.

The trick is very simple as follows. Define

�k
pq��ri� = �

l=1

Nel

�Spq�kl
−1�l

p��ri� . �20�

Then Epq in Eq. �19� can be rewritten as

Epq = �
i=1

Ngp

�
j=1

Ngp

�
k=1

Nel

�k
pq��ri��− tij + vext�ri��ij��k

q�r j�

+
1

2�
i=1

Ngp

�
j=1

Ngp

�
k=1

Nel

�
m=1

Nel

�k
pq��r j��m

pq��ri�v�ri,r j�

�	�k
q�r j�,�m

q �ri�	 . �21�

Clearly, Eq. �21� shows O�NgpNel
2 Nsd

2 � scaling behavior. The
scaling behavior of the present approach is the same as that
of the Hartree-Fock �HF� method when Nsd is considered to
be fixed.

We note that the functional derivative of the total energy
Epq with respect to �i

p�, �Epq /��i
p�, takes the same form as

that of the HF method as the total energy does and exhibits
the same scaling behavior as in the case of the HF method
when Nsd is fixed.

IV. EXTENSION TO MULTICOMPONENT SYSTEMS

Consider the non-Born-Oppenheimer Hamiltonian

ĤnBO = Ĥk + Ĥint, �22�

where

Ĥk = − �
i=1

Ngp

�
j=1

Ngp

tij�ĉj
†ĉi + D̂j

†D̂i� , �23�
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Ĥint = Ĥee + ĤeN + ĤNN, �24�

Ĥee =
1

2�
i=1

Ngp

�
j=1

Ngp

ĉj
†ĉi

†v�ri,r j�ĉiĉ j

=
1

2�
i=1

Ngp

�
j=1

Ngp

n̂jv�ri,r j�n̂i −
1

2�
i=1

Ngp

n̂iv�ri,ri� , �25�

ĤeN = − �
i=1

Ngp

�
j=1

Ngp

ĉj
†ĉjZv�ri,r j�D̂i

†D̂i, �26�

and

ĤNN =
1

2�
i=1

Ngp

�
j=1

Ngp

D̂j
†D̂i

†Z2v�ri,r j�D̂iD̂j

=
1

2�
i=1

Ngp

�
j=1

Ngp

N̂jZ
2v�ri,r j�N̂i −

1

2�
i=1

Ngp

N̂iZ
2v�ri,ri� .

�27�

Here, Z, D̂j
†, D̂j, and N̂j represent the atomic number, the

creation operator, the annihilation operator, and the number

operator of nuclei at site j, respectively. This Ĥint can be
simply rewritten as

Ĥint =
1

2�
i=1

Ngp

�
j=1

Ngp

�n̂j − ZN̂j�v�r j,ri��n̂i − ZN̂i�

−
1

2�
i=1

Ngp

�n̂i + N̂iZ
2�v�ri,ri� . �28�

Comparing Hint with the conventional Ĥee, one derives the
auxiliary field for this system as

exp
−
��

2 �
i=1

Ngp

�
j=1

Ngp

�n̂j − ZN̂j�v�r j,ri��n̂i − ZN̂i��
= ZA

−1� 

k=1

Ngp

dAk����
�exp
− ��LA + i���

j=1

Ngp

Aj����n̂j − ZN̂j�� . �29�

This has the same function form as the conventional auxil-
iary field shown in Eq. �3� except that all the operators n̂j are

replaced with n̂j −ZN̂j. Note that i in the right-hand side of
Eq. �29� is the imaginary unit.

V. EXAMPLES

A. Accuracy

In this section, we verify the accuracy of the present
PIRG method on some small systems. At most, 256 grid
points along each coordinate axis and 15 Slater determinants
were employed under the isolated boundary condition. A

12.8�12.8�12.8 bohr region was included in the calcula-
tions, namely, a grid spacing of 0.05 bohr was used. Figures
1 and 2 show the results for a hydrogen molecule. As ex-
pected, the present approach reproduces the HF result in the
case of Nsd=1, and the total energy decreases as the number
of Slater determinants increases. Using 15 Slater determi-
nants, the present approach gives an accuracy comparable to
that of the variational Monte Carlo �VMC� �34�. As can be
seen in Fig. 2, the error caused by the incompleteness of the
basis set, that is, the poverty of the grids, is quite large com-
pared with that caused by the insufficient number of Slater
determinants. Indeed, we calculated the total energy of the
hydrogen molecule using 25 Slater determinants and a grid
spacing of 0.1 bohr and found that the total energy at Nsd
=25 is almost equal to that at Nsd=15. Therefore, to achieve
a higher accuracy with the current approach, it is effective to
replace the basis set with a more suitable one or to employ
techniques including the double grid technique �11,12,35�.
Figure 1�b� confirms that the present method produces the
correct asymptotic behavior when the nuclear separation
becomes large.

“PIRG with DG” in Fig. 2 is the result obtained with a
grid spacing of 0.2 bohr and the double grid technique. A
noteworthy point is that the double grid technique greatly
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FIG. 1. �a� Total energies of hydrogen molecule obtained by
various methods. The HF and VMC results are taken from Ref.
�34�. The exact result is from Ref. �36�. Numbers in the parentheses
after PIRG are the number of Slater determinants employed in cal-
culations. For details on simulation conditions, see the text. �b�
Total energy of a hydrogen molecule against nuclear separation.
The dashed line represents results obtained by the unrestricted HF
method; squares represent the VMC method �34�; and circles rep-
resent the present method using 15 Slater determinants, a grid spac-
ing of 0.2 bohr, and the double grid technique.
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improves the behavior of the present approach although the
very poor basis set is employed compared with the others.
Thus, PIRG with DG implies that the present approach
coupled with the double grid technique and the pseudopoten-
tial technique gives a VMC-comparable accuracy with a
small number of Slater determinants.

In the case of a helium atom �Fig. 3�, the total
energy more rapidly approaches the exact one �36�,
−2.903 724 52 a.u. The HF method and the VMC give
−2.8617 and −2.8873 a.u., respectively �34�. Therefore, as
in the case of the hydrogen molecule, the present approach
reproduces the HF results when Nsd=1 and gives better re-
sults compared with the VMC when Nsd6.

B. Structural optimization

Structural optimizations and calculations of the quantum
effects of nuclear motion including isotopic effects are pos-
sible applications of the extension to multicomponent sys-
tems described in Sec. V A. The significant benefits of using
the PIRG method for such purposes are that it is a nonstatis-
tical approach and that it can count the correlation effects

fully in principle. Here, we demonstrate the structural opti-
mization of small systems.

Figure 4 shows the structural optimization of the hydro-
gen molecule with a grid spacing of 0.1 bohr and a single
Slater determinant. The two protons separated by 2.8 bohr at
the beginning become closer to each other as the number of
iterations increases, and finally, the nuclear separation satu-
rates at 1.4 bohr. The imaginary-time propagators except that
corresponding to the kinetic operator −1 /2�i=1

Ngp �2 change
the phase of wave functions only. Namely, they leave nuclear
positions untouched. Thus, nuclei were moved by the kinetic
imaginary-time propagator.

As a more sophisticated example, we optimized the struc-
tures of the singlet and triplet methylenes CH2 �see Fig. 5�.
We employed the double grid technique �11,12,35� and used
the experimental data �37,38� to define initial structures in
these calculations. The results at a grid spacing of 0.0 bohr
are calculated by extrapolating data for grid spacings of 0.1
and 0.2 bohr. The calculated H-C-H angles of the singlet and
triplet methylenes are 106.3° and 133.2°, respectively, and
their C-H distances are 1.991 and 1.961 bohr, respectively.
These results are in good agreement with the reference data
�37,38�.
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FIG. 2. Total energy of hydrogen molecule as a function of the
number of Slater determinants and grid spacing. The dashed line
with squares represents results obtained with a grid spacing of 0.1
bohr, the dashed line with diamonds shows results obtained with a
grid spacing of 0.05 bohr, and the solid line with triangles shows
results obtained with a grid spacing of 0.2 bohr and the double grid
technique. Here, squares, diamonds, and triangles indicate total en-
ergies of every iteration.
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FIG. 3. Total energy of helium atom as a function of the number
of Slater determinants.
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FIG. 4. Nuclear separation of hydrogen molecule as a function
of number of interactions. A 12.8�12.8�12.8 bohr region was
taken into consideration under the isolated boundary condition. A
grid spacing of 0.1 bohr and a single Slater determinant were
employed.
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VI. CONCLUSION

We presented a method applicable to systems in which the
electron-electron correlations and the quantum effects of
nuclear motion are important. This method is based on the
path-integral renormalization-group method with nonor-
thogonal Slater determinants. It is free of the negative sign
problem, unlike the quantum Monte Carlo method, and does
not restrict the dimensionality of systems, unlike the density-
matrix renormalization-group method, with full consider-
ation of the correlations in principle.

Our results show that the present approach can handle
nuclei and correlations with only a few Slater determinants.
Using 6 or 15 Slater determinants, the accuracy of the
present approach becomes comparable to that of the VMC,
although the error caused by the basis set is large. The result
obtained with the double grid technique implies that the
present approach will be a more practical and promising tool
for first-principles calculations when it is combined with
more accurate basis sets or the pseudopotential technique.
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APPENDIX A: AUXILIARY FIELD FOR COULOMBIC
MANY-BODY SYSTEMS

We explain the derivation of the auxiliary field in Eq. �3�.
For an arbitrary positive-definite matrix M and positive num-
ber �, the generalized Gaussian integral formula states

exp
−
�

2
� � drdr���r�M�r,r����r���

= ZA
−1� 


r
dA�r�� exp
−

�

2
� � drdr�A�r�

�M−1�r,r��A�r�� + i�� drA�r���r�� , �A1�

where

ZA =� 

r

dA�r��
�exp
−

�

2
� � drdr�A�r�M−1�r,r��A�r��� . �A2�

When M�r ,r��=v�r ,r�� �=1 / �r−r�� defined in Eq. �4��, ��r�
= n̂�r�, and �=��, Eq. �A1� becomes

exp
−
��

2
� � drdr�n̂�r�v�r,r��n̂�r���

= ZA
−1� 


r
dA�r�� exp
−

��

2
� � drdr�

�A�r�v−1�r,r��A�r�� + i��� drA�r�n̂�r�� . �A3�

As is easily verified, the equation v−1�r ,r��=− 1
4��2��r−r��

holds since v�r ,r�� satisfies Poisson’s equation �2v�r ,r��
=−4���r−r�� and

� dr�v�r,r��v−1�r�,r��

= −
1

4�
� dr�

1

�r − r��
�2��r� − r��

= −
1

4�
� dr� � 
 1

�r − r��
� ��r� − r���

+
1

4�
� dr���

1

�r − r��
� � ��r� − r��

= +
1

4�
� dr� � 
��

1

�r − r��
���r� − r���

−
1

4�
� dr���2 1

�r − r��
���r� − r��

= −
1

4�
� dr��− 4���r − r�����r� − r��

= ��r − r�� . �A4�

The auxiliary field in Eq. �3� is finally obtained as

exp
−
��

2
� � drdr�n̂�r�v�r,r��n̂�r���

= ZA
−1� 


r
dA�r��exp
 ��

8�
� drA�r��2A�r�

+ i��� drA�r�n̂�r��
= ZA

−1� 

r

dA�r��exp�−
��

8�
� dr��A�r��2

+ i��� drA�r�n̂�r�� , �A5�

where

ZA =� 

r

dA�r��exp�−
��

8�
� dr��A�r��2� . �A6�
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APPENDIX B: EXACT TREATMENT OF KINETIC
OPERATOR IN IMAGINARY-TIME PROPAGATOR

One possible way to treat the kinetic part in the
imaginary-time propagator is to use the Taylor series about
��=0,

exp
��

4
�2� = �

j=0

k
1

j!
���

4
�2� j

+ O���k+1� . �B1�

Although the PIRG method is stable against accumulated
numerical errors that originate in the above approximation,
the required number of time steps to achieve a convergence
may be affected. Hence, we employ the exact formula in-
stead of Eq. �B1� within the framework of the RSFD ap-
proach. Consider discretized one-dimensional periodic sys-
tems. For these systems, the Schrödinger equation for free
electrons and its solutions are given by

−
1

2

d2

dx2�n�xj� = �n�n�xj� , �B2�

�n =
2

�x2sin2�1

2
Gn�x� , �B3�

�n�xj� =
1

�Ngp

exp�iGnj�x� , �B4�

Gn =
2�n

Ngp�x
�n = 1,2, . . . ,Ngp� . �B5�

Here, �x is the grid spacing along the x coordinate axis. The
�l ,m�th entry of exp� ��

4 �2� is

�xl�exp
��

4

d2

dx2��xm� = �xl�exp
��

4

d2

dx2��
n=1

Ngp

��n���n�xm�

= �
n=1

Ngp

exp�− ���n/2��xl��n���n�xm�

=
1

Ngp
�
n=1

Ngp

exp�iGn�l − m��x − ���n/2� .

�B6�

As �l−m� increases, Eq. �B6� decreases rapidly. Namely, it
has a localized nature that enables us to treat it efficiently
with a faster convergence, unlike Eq. �B1�. It should be
noted that the summation in the above equation is precom-
putable, and the right-hand side of the above equation be-
comes the modified Bessel function of the first kind with a
multiplier in the limit Ngp→�.

APPENDIX C: CUMULANT EXPANSION OF TWO
DIFFERENT SLATER DETERMINANTS

The cumulant expansion of two-body operators sand-
wiched by one Slater determinant, ���ĉj

†ĉi
†ĉiĉ j���, is well

known �32,39,40�. However, the cumulant expansion of two-
body operators sandwiched by two different Slater determi-
nants, ��p�ĉj

†ĉi
†ĉiĉ j��q�, is not known well, to the best of our

knowledge. In this appendix, we show how such cumulant
expansions are expressed in terms of one-body terms
��p�ĉj

†ĉi��q�, namely, we prove Eq. �12�. Note that the thing
provided here is for the completion and was previously
showed by Löwdin in a different way �32�.

For a biorthogonal Slater-determinant pair �	p ,	q�, it has
been proven that two-body operators sandwiched by these
Slater determinants �	p�ĉj

†ĉi
†ĉiĉ j�	q� can be expressed in terms

of the one-body operators, as we previously showed �see
Appendix in Ref. �41��, i.e.,

�	p�ĉj
†ĉi

†ĉiĉ j�	q� = �	p�n̂j�	q��	p�n̂i�	q� − �	p�ĉj
†ĉi�	q��	p�ĉi

†ĉj�	q� .

�C1�

The word biorthogonal means that its overlap matrix
�	p�†�	q� is the identity matrix. That is, a pair �A ,B� is bior-
thogonal if and only if its overlap matrix �A�†�B� is equal to
the identity matrix.

Consider an Nel�Nel biorthogonal matrix pair �Upq ,Vpq�
and an Nel�Nel regular diagonal matrix �pq. The Slater-
determinant pair ��
p� , �
q�� defined by ��	p�Upq , �	q�Vpq� is
biorthogonal because �
p�†�
q�= ��	p�Upq�†�	q�Vpq= �Upq�
†Vpq= I. The Slater determinant �
q��pq is equivalent to
�
q��det �pq according to its definition �Eq. �14��. There-
fore, the cumulant expansion of the pair ���p� , ��q�� defined
by ��	p�Upq , �	q��pqVpq� is

�Dpq�−1��p�ĉj
†ĉi

†ĉiĉ j��q�

= �Dpq�−1�det �pq��
p�ĉj
†ĉi

†ĉiĉ j�
q�

= �
p�ĉj
†ĉi

†ĉiĉ j�
q�

= �
p�n̂j�
q��
p�n̂i�
q� − �
p�ĉj
†ĉi�
q��
p�ĉi

†ĉj�
q�

= �Dpq�−2��p�n̂j��q���p�n̂i��q� − �Dpq�−2��p�ĉj
†ĉi��q�

���p�ĉi
†ĉj��q� . �C2�

Here, we used the relations Spq= ��p�†��q�
= �Upq�†�	p�†�	q��pqVpq= �Upq�†�pqVpq and det �pq=det
��Upq�†�pqVpq�=det Spq=Dpq.

Any Slater-determinant pair ���p� , ��q�� has the corre-
sponding biorthogonal Slater-determinant pair ��	p� , �	q��
= ���p��Vpq�† , ��q��Upq�†��pq�−1�, where Upq and Vpq are the
biorthogonal matrices and �pq is the regular diagonal matrix
defined by Spq= �Upq�†�pqVpq. Thus, Eq. �12� is proven.

The regularity condition of �pq restricts the Slater-
determinant pairs that this proof can handle. However, it
does not emerge as a problem because for the present formu-
las, we assume the existence of the inverse of the overlap
matrix Spq.
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