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The line-profile approach is applied to the evaluation of the electron recombination on the highly charged
ions within the framework of QED. Both dielectronic recombination and radiative recombination processes are
considered. The interelectron interaction is taken into account partly to all orders of the QED perturbation
theory. The radiative corrections to the lowest order (the electron self-energy and the vacuum polarization) are
also included. With this approach the most accurate contemporary results for the electron-recombination cross
section on the one-electron uranium ion are obtained; these results are compared with the earlier calculations

and with existing experimental data.
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I. INTRODUCTION

Dielectronic recombination (DR) or inverse autoioniza-
tion process is known since the work of Massey and Bates
[1], where the recombination of an electron with O* ion was
investigated. DR plays a fundamental role in the determina-
tion of the level populations and ionization balance of high-
temperature laboratory and astrophysical plasma. The devel-
opment of ion accelerators, electron beam ion traps (EBITs),
and storage rings has made possible the observation of in-
creasingly more detailed and complex DR spectra [2-5].
From DR experiments one can obtain precise knowledge of
the resonance energies of doubly excited states and collision
dynamics. The branching ratios in the capture and de-
excitation processes become experimentally accessible as
well. The measurement of resonance line shapes in the
highly charged ions (HCIs) provides the information on the
velocity distribution of the cooler electron beam and the
natural linewidths.

There are also rather numerous theoretical calculations of
the DR effect in HCI [6—15] (see also [16,17]). For numeri-
cal calculations the different theoretical methods were ap-
plied: the versions of the multiconfigurational Dirac-Fock
approach [6-8,14,15,18] and quantum electrodynamical per-
turbation theory (QED PT) approach [9-13]. In this work we
apply more accurate QED approach, namely, line-profile ap-
proach (LPA) [16,19-21] to the calculation of the DR pro-
cess in HCI. Within this approach the interelectron interac-
tion is partly included to all orders in QED PT. Also partly
we include radiative corrections to the DR process. As an
example a DR process on the H-like uranium ion will be
evaluated. This gives a possibility to compare the results
with the earlier calculations in [9,15].

The process of recombination of an electron with one-
electron uranium ion looks like

e(€,) + U2 (1s) — U™ (1sls) + Y w). (1)

In this process the initial state of the system is presented by
a one-electron ion of uranium [U°'*(1s)] in the ground state
and an incident electron [e(e,)] with energy €,. The final
state is a two-electron ion of uranium [U°*(1sls)] in the
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ground state and emitted photon or a set of emitted photons
with total energy defined by the energy conservation law.

If the process of electron recombination is registered by
detection of a photon with frequency w= €,+¢€,,—E,, where
E, is the energy of a two-electron single excited configura-
tion (r), then the electron recombination is determined by
two particular processes,

e(€,) + U (1s) — U™ (r) + p(w) — -+ (2)
and

e(e,) + U (1s) = U(d) — U™(1) + fw) — -,
3)

where d designates a double excited configuration. Contribu-
tion of the neglected (multiphoton) processes to the electron-
recombination cross section is a small correction [15]. The
process [Eq. (2)] is called radiative recombination (RR). Be-
low the threshold of the two-electron excitation RR process
fully defines the recombination cross section. Above the
threshold of the two-electron excitation the RR process is
always seen together with the process of DR given by Eq.
(3).

The cross section of electron recombination considered as
a function of the incident electron energy (e,) reveals reso-
nances in the area where sum of the incident electron and
Is-electron energies (e€,+¢€;,) is close to the energies of
double excited two-electron configurations. The DR process
is the dominant process contributing to the cross section in
the resonance areas. The RR process is nonresonant. In this
work we will consider double excited configurations with 2s
and 2p electrons only. Accordingly, the double excited two-
electron configuration (d) is one of the (2s2s), (2s2p), and
(2p2p) configurations. The single excited two-electron con-
figuration (r) is one of the (1s2s) and (1s2p) configurations.
The frequency w of emitted photon y(w) is defined by the
energy conservation law. If the energy of the initial state is
equal to the energy of an excited two-electron configuration
(only the double excited configurations can fit this condition)
the cross section shows a resonance.
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FIG. 1. The Feynman graphs representing the process of elec-
tron recombination in the zero order of perturbation theory. The
double solid line corresponds to the bound electrons; the wavy lines
with the arrows describe the emission of the photons. The indices
dy, d, correspond to the initial one-electron states of a system; u;,
u, correspond to the final states.

In the resonance area both processes [Eqs. (2) and (3)]
constitute a single process of the electron capture by the ion,
being the nonresonant and resonant parts of this process,
respectively (though DR is dominating). If the standard QED
perturbation theory is employed, then the lowest order of the
QED PT (see Fig. 1) corresponds to the pure RR process.
The next order of the QED PT (see Fig. 2) presents already
both RR and DR processes. Accordingly, the contribution of
the RR process to the cross section in the resonance area can
be separated only in the lowest order of the standard QED
PT. Beyond the standard QED PT, as in the present work, the
contributions of the RR and DR processes to the total cross
section become inseparable.

II. APPLICATION OF THE LINE-PROFILE APPROACH

The process of electron recombination to the single ex-
cited configuration (r) can be considered as a transition

I—F, (4)

where the initial state (/) corresponds to two electrons: a
bound 1s electron and an incident electron, i.e., continuum
electron. The final state (F) corresponds to the two bound
electrons (1s electron and either 2s or 2p electron) compos-
ing a two-electron configuration.

To the lowest orders of QED PT this process is described
by the Feynman graphs depicted in Figs. 1 and 2. The cor-
responding calculation was performed in [9,12]. The aim of
the present work is to develop ab initio QED method which
allows for improvement of the accuracy of the calculations

Uy U2 Uy U
ko, eo
n n
ko, eg
dy do dy do

FIG. 2. The Feynman graphs representing the first-order inter-
electron interaction corrections to the process of electron recombi-
nation. The internal wavy line denotes the exchange by the photon
between two electrons. The meaning of the indices u, u,, dy, and d,
is the same as in Fig. 1; the index n corresponds to the intermediate
one-electron states.
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by taking into account the interelectron interaction more pre-
cisely. For calculation of the higher order interelectron inter-
action corrections we employ the LPA [16,21].

The application of the LPA to the calculation of transition
probabilities is presented in detail in [21]. The technique
developed in [21] can be utilized only for the bound elec-
trons. Since in our case the initial state contains a continuum
electron, we will introduce an auxiliary bound electron sys-
tem which properties are explicitly related to the properties
of original system.

We will designate the wave function of the continuum
electron as ¢,(r). First we introduce a function

Yr) = ) OR - Ir), (5)

where 6(R-|r|) is the Heaviside step function. The function
tﬂi“x)(r) coincides with the function ,(r) for |[r| <R and is

e
set to zero for |r|>R. The function l//i,j:x)(r) can be normal-

ized to unity. The corresponding normalization factor N and
the normalized function 1//ER(r) read

172
Ng= [ f dSrlwii“*>(r>|2} : (6)
Y (r)
t,, (r) = TN (7)

Note that for the large R values the normalization factor Ny
is proportional to VR and, accordingly,

1
e (r) ~ = (8)
We can introduce an artificial bound electron state ey de-
scribed by the wave function We The energies and the an-
gular quantum numbers of the continuum electron state i,
and the bound electron state i, are equal. Consider now two
processes described by Eq. (4) which differ by the initial
states. The first initial state is ls electron and the continuum
electron e. The second initial state is ls electron and the
artificial bound electron eg. The amplitude of the first pro-
cess (U) and the amplitude of the second process (Uy) are
related like
U= lim NRUR' (9)
R—o

Accordingly, we can generalize the LPA for calculation of
the amplitude of the process of electron recombination. We
employ the artificial bound electron state e, defined by Eq.
(7) and apply the LPA for calculation of the transition am-
plitude (Uy), i.e., for the system where the continuum elec-
tron is substituted by the bound electron ey. The amplitude of
the process of electron recombination is given by Eq. (9).
The limit R— can be evaluated numerically. This proce-
dure has an explicit physical meaning which is explained in

Appendix A.

III. CROSS SECTION

We consider process of electronic recombination with
one-electron ion. Initial state is presented by two electrons:
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bound electron and incident electron (electron in the continu-
ous Dirac spectrum). The final state is a single excited two-
electron configuration [for example, (1s2s) or (1s2p)] and
emitted photon.

The photon is described by momentum (k), frequency
(w=|k|), and polarization (\). It is also convenient to intro-
duce photon wave vector w=k/|k|. Normalization of the
photon wave function [A=(A°,A)], corresponding to one
particle per unit volume, is

! ! 4
f drAN* () AK N () = (277)32—”5(1( k') -
w
(10)

We employ relativistic unit system, where the fine-structure
constant is a=¢2, e is the electron charge.

The bound electron is described by the principal quantum
number n,, the total angular momentum (j,,), its projection
(my,), and parity (I,). The wave function of the bound elec-
tron is designated as ¢, ; 1, ().

The incident electron is characterized by momentum (p),
energy (e), and polarization or spin projection () and is
described by wave function ¢,,(r). The energy, the momen-
tum, and the electron mass (m,) are connected as
e=\p?+m?, where p=|p|. It is also convenient to introduce
the electron wave vector vp=p/|p|. The wave function of
incident electron is normalized like

fd3r ;’;L'(r)‘r/’pu(r)=(277)353(P,_p)ﬁ,u’ﬂ (1

@m)’

PE

= A€ — €)&(cos 0" —cos 0)&(P" — $)d, (12)

Yo
where the set (p, 6, ¢) represents the vector p in spherical
coordinates. This normalization corresponds to one particle
per unit volume.

The electron wave function with certain momentum and
polarization can be expanded in the wave functions with cer-
tain energy (e, which runs over the Dirac spectrum), total
angular momentum (j), parity (1), and projection of the total

angular momentum (m). These functions are designated as
tjim(r) and are normalized like

f d3"¢;,~r1rmr(")lﬂsjlm(") =o' - 8)51"1'51'15m’m~ (13)

Accordingly, we can write

lﬂp/.:,(r) = f dSE apﬂ,sjlmwejlm(r)7 (14)

jlm

where the matrix element a,, 4, is given by

ap,u,sjlm = f d3r :]lm(r) l!jp,u(r) . (15)

Introducing coefficients

PHYSICAL REVIEW A 80, 042514 (2009)

allp,u,jlm = [ .-;—lm(vp)vﬂ( Vp)] s (16)

where ();,(v,) is the spherical spinor and v*(»,) is the unit
spinor function, the matrix elements a,, ., can be written
in the form

(277.)3/2

ap’u’gjlm = — 5(8 - f)ei‘pjlayp,u!ﬂm, (17)
\pe

where the phase ¢;; is determined by the field of the nucleus
[22]. The orthonormality conditions for coefficients Wy jim
read [23]

> a:ﬂ,’ﬂmqﬂm,,,p#= &cos 0" —cos )" = )5,

Jjlm /
(18)

and
2 * —
Jd sz aj’l’m’,vp;l,anlLvﬂm_8j’j51’15m’m' (19)
7

Then, the matrix elements a
malization conditions:

sjimpy Satisty the following nor-

f dSE a;I’uf,sjlmaajlm,pM = (277)353(17 _P,) (20)

jlm

and

f P2 @iy pplppsiin= 2 e = &) 8181181
o

(21)
Accordingly, we get
’ 2 * K
fdads fd Vl’E as’j’l’m’,p,uaP/-L,SjlmUs’j’l’m’U-‘lem
m
(2m)’
= e 5j'_/51'15m'm|Usj1m|2- (22)

Here, U, is an arbitrary function of &, j, / and m.
The two-electron wave function for the initial sate of the
system can be composed as

\Irp,unbjblbmb(rl’rZ)

1
= $[¢Pﬂ(r1)¢nﬂblhmb(r2) - (pnbjhlbmh(rl)lﬂp#(rZ)],

(23)

where functions ¢, A and ¢, are eigenvectors of the
Dirac equation: bound electron with the principal quantum
number (n,), total angular momentum j,, its projection m;,
parity /,, and an electron with momentum and polarization
(p, ), respectively.

The final state is presented by photon (k,\) and a single
excited configuration (r) written in the j-j coupling scheme,

W (ry,ry) = \PJernrljrllrlnrzjrzlrz(rl,r2) > (24)

where
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q,JMnljlllnzjzlz(rl’rz)

=N, Cli(my,my)

X[wnljlllml(rl)l//nzjzlzmz(rZ) - wnzjzlzmz(rl)wnljlllml(rZ)]'
(25)

Here, J, M are the total angular momentum of a two-electron
system and its projection, normalization constant N is equal
to 1/v2 for nonidentical electrons and to 1/2 for identical
electrons, and C/¥2(m,,m,) are the Clebsch-Gordan coeffi-
cients. In the single excited configurations one of the elec-
trons is ls electron, another is 2s or 2p electron (we do not
consider higher excitations).

The amplitude of the process (U;y) is defined via S matrix,

Then, the transition probability is given by [22]

&’k

dw;p=2mU >0 E;— E)——,
Wlf 7T| lf| (f l)(zﬂ)3

27)

where E;, E, are the initial and final energies of the whole
system. Factor d°k/(2)® gives the number of photon states
with certain polarization and momentum within interval @’k
per unit volume: d@*k/[nP"(27)?], where the photon density
(nP") is set equal to unity [see Eq. (10)].

Cross section is connected with the transition probability
[Eq. (27)] as [22]

dw.
doy =21, (28)

where j is the current of the incident electron. This current is
defined as j=n®v, where n® and v=p/ € are the density and
velocity of the incident electron, respectively, in the rest sys-
tem of the nucleus. With the normalization equation
[Eq. (11)] the electron density is equal to unity. Accordingly,
the cross section reads

3

€ d’k
do—i = 277-[_)' Upwlbjblbmb,k)\r|25(Ef_ El)

W. (29)

The initial (punyj,l,m,) and final (r) state configurations are
defined by Egs. (23) and (24), respectively, k and \ represent
the photon quantum numbers.

Employing Eq. (14) we get

2
f dSE Apejlm Usjlmnbjblbmh,k)\r
jlm
d’k
2m)?*

€
doy=2m—
‘ p

X S\E;~ E) (30)

where the wave function for configuration (gjlmnyj,l,m) is
defined as
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R4

sjlmnbjblbmb(rl’rz)

1
- V_E[%ﬂ’”(rl)"b”biblhmb(rz) = Yy, D) Wejim(T2)].

(31)

In this work we calculate the full cross section of the
electronic recombination, which means the integration over
the directions of the emitted photon (»;) and summation over
the photon polarization (\). Then, we suppose that the inci-
dent electron is not polarized, hence, we average over the
electron polarization (u). Accordingly, we can also average
over the electron momentum direction (vp) and over the total
angular momentum projection of the bound electron in the

initial state (m,). The average over »,, u, and m;, means

1 2
Py l)fd up%b. (32)

The summation over electron polarization and the integration
over electron momentum direction are performed with em-
ployment of Eq. (22). Accordingly, we get

€ 1 2m)?
do,=27m————— U.. . 2
iy 7Tp 87T(2]b + 1) pe ﬂmzmb | €]l171nb]blbinb,k)\r|
&’k
XONE—E)—=. 33
( f l) (27T)3 ( )

It is convenient to substitute summation over configura-
tions in j-j coupling scheme [Eq. (25)] for the summation
over configurations [Eq. (31)]. Then, using the Clebsch-
Gordan transformation (which is a unitary transformation)
we yield

€ 1 m)?

d if= 2 U eiln. i , 2
Oif ﬂ-p877(2]b+ 1) pe %A IMejlnj,l kN |
&’k
XNE—E)—=, 34
( 'f l) (277)3 ( )
where configuration (JMe€jln,j,l,) is defined as
q,JMejlnbjblb(r 172)
1 .
== Climmy)
Vzmmh
X[lﬂejlm(rl)lﬂnbjblhmb(rﬁ - lﬁnbjblbmh(rl)lﬂejlm(rZ)]-
(35)

We calculate cross section for the electron recombination
to any single excited two-electron configuration; accordingly,
we have to sum over all the single excited configurations (r)
in the final state [see Eq. (24)]. In Table I we list the transi-
tions between (n,ly;, . €l))y and r=(n.l.; naola;)sm
two-electron configurations, written in the j-j coupling
scheme, taken into account. In principle, we have to sum
over the total angular momentum projections (M, M,). Actu-
ally, we calculate the transitions with certain projections
M, M, (given in the second column of Table I) and, then,
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TABLE 1. Transitions between (n,ly;,.€l);; and r
=(n,11,1_jrl,n,?l,2jr2) 1M, tyvo-electron copﬁg}lrations in ]:-j couplin.g
scheme considered in this work. Contribution of the listed transi-
tions to the total cross section is calculated as contribution of the
transitions with certain total angular momentum projections

(M ,M,) multiplied by the factor f, respectively.

Transition M—M, f
(Is,€s10)0— (152p110)y 0—0 3
(Is,€s10)0— (152p310); 0—0 3
(Is,€s12);— (1s2p12)0 0—0 3
(Is,€s10)1— (152p110)y 1—-1 6
(Is,es10)1— (152p310), 1—1 6
(Is,es10)1— (152p310)2 0—0 15/2
(1s,€p1)o— (1525110)y 0—-0 3
(1s,ep1)1 — (1525110)0 0—0 3
(Is,ep1)1 — (15250), 1—1 6
(1s, ep3pn)1 — (1525110)0 0—0 3
(1s,ep3p)1 — (152510), 1—1 6
(1s,€p3n)— (152510), 0—0 15/2
(1s, ed3n) 1 — (152p10)g 0—0 3
(1s, ed3n); — (152py0), 1—-1 6
(Is, ed3n); — (152p310), 1—-1 6
(1s,€d3); — (152p310)2 0—0 1572
(1s,€d3),— (152py10)y 0—0 1572
(1s, €d3),— (152p310), 0—0 1572
(1s, €d3),— (152p310)2 2-2 1572
(1s,€dsp)r— (152p110)y 0—0 1572
(1s, €dsp)r— (152p310), 0—0 1572
(1s, €dsp)r— (152p310)2 22 1572
(1s, €dsp)3— (152p310)2 0—0 3573

multiply them by a factor f (the third column of Table I),
which accounts for contribution of all the other projections
for the same transitions.

Finally, after integration over the photon frequency we get

2

w m
|: :|fdzvk E |UjMejlnbjblb,k)\r

@m?*[ (2j,+ 1)p? IMjlr

2

)

d(Tl‘f=

(36)

where the photon frequency (w) is defined now by the energy
conservation law. Integration over directions of the emitted
photon and summation over the polarization are performed
in the standard way. Expression (36) differs from expression
for the transition probabilities employed in [21] by the factor
in the square brackets.

IV. NUMERICAL METHODS

In the numerical calculations an ion is considered to be
enclosed into a spherical box with the radius R**=70/(aZ)
(in the relativistic units), where « is the fine-structure con-
stant and Z is the nuclear charge. The Dirac spectrum in the
external field of the nucleus is constructed in terms of B
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splines [24,25]. We used B splines of order 8 and a grid with
60 nonzero knots. Hence, the generated electron spectrum is
discrete and finite. The eigenvector and the corresponding
eigenvalue (i.e., energy), which is the most close to the en-
ergy of the incident electron (¢,), are substituted by the func-
tion ¢, [see Eq. (7)] and by the energy €, respectively. The
electron states of the generated spectrum, which are the next
to the substituted electron state (e,), are designated as e,_,
and e, . Enlargement of the box and the number of the
knots reduce the effect of the substitution of the incident
electron state (€,) for the e, state. The size of the box and the
number of the knots are chosen to be large enough not to
influence the accuracy of the calculation.

Within the framework of the LPA the properties of an ion
are derived from the line profile associated with the process
of elastic photon scattering on an ion, where an ion in the
ground state absorbs and emits a photon. The resonances of
this scattering process correspond to the energy levels. In
order to describe an energy level by two parameters (energy
and width) we parametrize the line profile by a Lorentz con-
tour, which is determined by the position of the resonance
(i.e., energy) and its width. For details concerning the LPA
and its application to the evaluation of energies we refer to
[19,20]. The application of the LPA to the evaluation of tran-
sition probabilities is presented in [16,21].

Within the framework of the LPA the energy levels are
derived from the matrix V, which is evaluated with employ-
ment of the QED perturbation theory order by order,

V(w) = VO + AVID(w) + AV (w) + -+ (37)

The matrix V(w) depends on w, which has a physical mean-
ing of the scattered photon frequency. The matrix V¥ con-
tains the corresponding one-electron Dirac energies. The ma-
trix V\)(w) includes the first-order corrections, such as self-
energy (SE) and vacuum polarization (VP) corrections, and
one-photon exchange corrections. The matrix V®(w) in-
cludes the second-order corrections such as two-photon ex-
change corrections (“box” and “cross” graphs), SE and VP
screening corrections, two-loop SE, VP corrections, etc. In
this work the matrix V includes only the first-order correc-
tions: one-photon exchange corrections, SE and VP correc-
tions. However, the irreducible parts of the higher order cor-
rections will be partly taken into account in our approach
(see below). The inclusion of the SE corrections provides the
width of the levels determined by these corrections. The pho-
ton exchange graphs via their imaginary parts provide also
the Auger width.

The one-photon exchange operator (acting on two-
electron functions represented by antisymmetric combination
of one-electron functions) can be written as

1ph
AVquuzdldzzlqguz_ 8d2|)u]u2d1dzs (38)

where

042514-5



ANDREEV, LABZOWSKY, AND PRIGOROVSKY

PHYSICAL REVIEW A 80, 042514 (2009)

TABLE II. The complex matrix elements of the SE and VP operators in eV employed in this work. The
matrix elements for s electrons are calculated in this work; the accuracy is given in round brackets. The other

diagonal matrix elements are taken from [29,30,32].

(Ls1l3(1512) [ 1s10)
(251022510 [2512)
2p1222p10)12p10)
2p3al32p3)12p30)
(L5102 (1s10)[2512)
(Ls102(2510)[2510)

(354.99(5),0)

(9.55,-15.54(1))
(8.90,-13.03(1))
(136.41(3),0)

(65.40(2),-0.06(1))

(165.60(3),22.30(1))

(Lsy ol VP15, ) -88.63
(251 VVP[2510) -15.65
@p1alVVP2p1) =270
<2P3/2|‘A/VP|2P3/2> -0.10
(Lsy o VPV 2, ) -39.16(1)
(Lsy o VVPUeM 2, ) -39.16(1)

3
Iuluzdldz(Q) = E

1 =0

XA, (1) g (1) (1), (39)

d3r1d3r21_ﬂul(r1)1,_bu2(r2)

u;, uy, dy, d,designate one-electron Dirac states, and Euuys
gq, are the one-electron Dirac energies. Dirac matrices /"

act on the one-electron functions (ﬂd’_(r,-). Function
1,1, (€2, 1715) looks like
0,00,
#10%1,0
Q.rp)=—"" (40)
e T2
_ ( 5"1“26,,0”2.,_ J g Ll lan)
T2 Xy axh2rpn O?
X(1= 8, (1= 3,0) (1)
if Coulomb gauge is employed or
8y RO%
”IMZ(Q rlZ) = r 12 (42)
12

if Feynman gauge is employed. Tensor g, ,, is the metric
tensor, 5M i is the Kronecker delta, and ry,=|r,—r,|.

The matrix elements of the SE and VP operators are given
in Table II. The SE matrix elements were evaluated within
the Snyderman version of the standard QED PT approach
[26-28] for the tightly bound electrons. For details see Ap-
pendix A. We calculated the nondiagonal SE matrix elements
and the imaginary part of the matrix elements. The real part
of the diagonal SE matrix elements is taken from [29,30].
The VP matrix elements are divided into the Uehling part
and the Wichmann-Kroll part [31]. The Uehling part, i.e., the
matrix elements of the Uehling potential (see, for example,
[22]), is calculated in this work; the Wichmann-Kroll part is
borrowed from [32]. The Coulomb-Dirac wave functions for
extended nucleus with Fermi distribution are employed. The
root mean square radius is r,,;=5.860 fm.

The amplitude of the transition process from the initial
state / to the final state F' with emission of a photon with the
frequency w, can be written as

Ur.r=[E(w)ls,a, (43)

where ®; and ® are the eigenvectors of the matrix V(w)
corresponding to the 7 and F states, respectively. The opera-
tor = (wy) is evaluated with employment of the QED PT (see
[16,21]). In zero order approximation this operator coincides
with the photon emission operator (A%020*)_ Tn this work we

consider only the one-photon exchange corrections to the

operator =. According to [21], it reads
E=E0+2V100(a), (44)
where
=(0) (kg,Ng)*
‘—'uluzd]dz =2e Auﬁzlo 5u2d2? (45)
U Y 9
=uquydid, Auln Ix nuyd; d2(|x|)|x €, —sd
n
£)l+8u2:£d]+£d2
S O (Dl o, A",
+ e uluznd2 X x—al—s
N ox
Sn+8d2:Sul+Suz
(46)

Here, A, kO )‘0)* are the matrix elements of the photon wave
functlon [Eq (10)].

The matrix V is a complex symmetric matrix. To evaluate
eigenvector of the matrix V corresponding to a reference
state n, we compose a set of configurations g including the
reference state n, and the corresponding mixing configura-
tions, all written in the j-j coupling scheme. In this work the
set g consists of all the possible configurations built on the
set of electrons: 1s, 2s, 2p, 3s, and 3p electrons, ey electron
[see Eq. (7)], and the corresponding e,_;, e, €lectrons.

It is convenient to write the matrix V in block form

_ [Vll V12:| _ [V(l(i)"'AVn
Vo

Vo AV
where the block V; is constructed entirely on the states from
the set g and the block V,, does not contain states from the
set g. The blocks V|, and V,; are built with one configuration
from the set g and one not included in the set g.
The matrix V;; can be diagonalized numerically (nonper-
turbatively),

AV,

, (47
V) +AV,, 47
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diag — B'v|,B, (48)

where B is an orthogonal matrix and B’ is the transposed
matrix. The superscript ¢ in Eq. (48) means transposition.
Since in general V is a complex symmetric matrix, the matrix
B is a complex orthogonal matrix,

BB=1I. (49)

Here [ is a unit matrix (I;;=&;;) of the proper dimension.
It is convenient to compose a matrix

B 0
B {0 I ] ’ (50
which is also an orthogonal matrix,
A'A=1 (51)
Acting by the matrix A on V yields
V=A'VA = [ i BAV, } . (52)
AVyB  Vy

Since we have supposed that the required state n, is weakly

mixing with the states not included in the set g, the matrix 1%
can be diagonalized with the standard procedure [33],

ydiag = Cry e, (53)

where the matrix C can be built order by order. The zeroth
and the first orders of the matrix C look like

(B'AV,y);;

o E—E,
Ci=CO L @Dy, 4 vy | G4
YT T T AV ) (V) >

Ej-E  E;-E

The diagonalized matrices V and v coincide, so we can write
viiag = sz = (AC)'V(AC). (55)

Accordingly, an eigenvector @ corresponding to a basic
function ¥ can be defined as

®=ACV. (56)

Now we represent the state n, € g in terms of a perturba-
tion expansion,

=2 By, vy ke + 2 (AVy)y _g‘g_o)‘l’((» ,
kyeg kég g,_ k
l( eg

(57)

where E, are the eigenvalues of the matrix V;; and E( are
sums of tile Dirac energies. The Dirac energies are assumed
to incorporate the rest energy of an electron m,c?. The func-
tions W are two-electron functions written in the j-j cou-
pling scheme. The indices k,, [, run over configurations from
the set g, while the index k runs over configurations not
included in the set g, i.e., over all the other two-electron
configurations including also the negative-energy part of the
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Dirac spectrum. The first term in the right-hand side of Eq.
(57) can be referred to as the zero order of the employed
perturbation theory; the second term represents the first or-
der.

The numerical diagonalization of the matrix V|, means
that in our calculation of the energies and the transition am-
plitudes, the one-photon exchange corrections for the spe-
cific set of electron states are included to all orders.

The radius R introduced in Eq. (5) is unambiguously re-
lated to the normalization factor Ng. In the practical calcula-
tions it is more convenient to fix the factor N. In this work
we set it equal to Np=5000 (in the relativistic units). The
corresponding radius R is much larger than the radius of the
area where the wave functions of the low-lying bound elec-
trons are nonvanishing.

Accuracy of our calculation is better than 1%. The inac-
curacy is determined by the approximate treatment of the
higher order interelectron interaction corrections [the neglect
of the matrix AV® in Eq. (37)] and by the missing radiative
corrections (the vertex corrections). The cross section is
given by Eq. (36), where the amplitude U enters as its
squared absolute value. Employing Eq. (57), the amplitude
U can be written as U=U®+U"+--- Accordingly,
the squared absolute value of U can be written as
|UP=|UO)+2 Re{UPUM}+|UD?. The last term corre-
sponds to the second-order corrections and, in principle, can
be omitted. Still we prefer to keep it. We consider the con-
tribution of this term as an estimate of magnitude of the
higher order corrections. The other estimate of the inaccu-
racy can be obtained from the comparison of calculations
performed with the photon wave function [Eq. (10)] pre-
sented in different gauges: transverse (when A°=0) and non-
transverse. The deviation from gauge invariance is explained
by the fact that the set of Feynman graphs that we take into
account is not gauge invariant. The magnitude of the devia-
tion is determined by the magnitude of the higher order cor-
rections. We found that the transverse gauge gives slightly
better convergence of the perturbation theory (the contribu-
tion of the term |UM]? is smaller) than the nontransverse
gauge. Thus, we employed the transverse gauge. Contribu-
tion of the omitted QED corrections can be estimated by
comparison of the calculation performed within exact QED
and within the relativistic many body perturbation theory,
where the effect of retardation and the negative-energy part
of the electron Dirac spectrum (in the Feynman graphs rep-
resenting the interelectron interaction) are omitted.

V. RESULTS AND DISCUSSION

In Fig. 3 we present the total cross section (o) for the
capture of an incident electron by one-electron uranium ion
in the ground state as a function of the energy of incident
electron (€,). We give the results for the €, values above the
two-electron excitation threshold. The energies are given in
eV. The cross section is given in kilobarn.

Due to the dielectronic recombination the process of elec-
tron capture is a resonant process. The resonances are deter-
mined by the double excited two-electron configurations.
The energies (E) and widths (I') of the lowest double excited
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FIG. 3. The total cross section (in kb) for the capture of an
incident electron by the H-like uranium ion as a function of its
energy (in keV). The dotted vertical lines indicate the areas I-III
enlarged in Figs. 4-6, respectively.

configurations are presented in Table III. We compare our
results for energies and widths of the double excited configu-
rations with data obtained in [9]. The accuracy of data in
Table III is limited by absence of the second-order correc-
tions of the QED perturbation theory: two-loop SE, VP cor-
rections, and SE and VP screening corrections. These correc-
tions have been discussed in the literature (see, for example,
[16]). Note that the irreducible part of these corrections is
partly taken into account [via the matrix B, see Eq. (48)].
These corrections contribute to the total energies directly, as
a linear addition to the corresponding diagonal matrix ele-
ment of the matrix V [Eq. (37)], and indirectly through the
mixing coefficients, defined by the matrix B [Eq. (48)], for
quasidegenerate configurations. For estimation of these cor-
rections we employ results of work [34], where the “loop
after loop” SESE correction is calculated for 2s and 2p,,

TABLE III. The energies (AE=E—2m,c?) and widths (I') of
double excited configurations of two-electron uranium in eV.

Configuration AE r
(252p110)o —67892.71(30) 31.31(4)
(2p122p112)0 —67878.52(25) 34.35(5)
—-67878.80  *° 33.91°
(252p1); —67852.58(30) 3129 (5)
(2525), —67709.48(35) 28.17(5)
-67707.91 * 28.49°
(252p30)> —63389.68(30) 26.18(4)
(2p122p3)1 —63353.44(25) 57.26(6)
(2p122P31)> —63337.19(25) 57.27(6)
(252p3), —63265.00(30) 26.20(4)
(2p3122p312)2 —58827.29(25) 52.18(6)
(2p322p31)0 -58732.03(25) 52.04(6)

*Karasiov et al. [9].
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electron states: AE5~F=—-0.08 eV, AE;,IZ:IS/I;::O.OM eV. We

estimate the two-loop SE and VP corrections by magnitude
of the loop after loop SESE correction. In the case of two-
electron configuration these corrections are considered for
both electrons. We suppose that the missing part of the SE
and VP screening corrections (for double excited configura-
tions) is of the same order as contribution of the loop after
loop SESE corrections. Accordingly, we estimate the inaccu-
racy of the energies in Table III as 0.25 eV for (2p2p) con-
figurations, 0.30 eV for (2s2p) configurations, and 0.35 eV
for (2s2s) configurations. For calculation of the widths

(I'=-2Im{E}) we also employed results of works
[35,36], where radiative corrections to one-photon
decay  widths  [35] (IP*™=1.7Xx107 eV, I,pMm

=8.6X1072 eV,Féﬁz‘;;ad:ZS X 1072 eV) and two-photcz)n
decay widths — [36] (I'Ph=2.5x 107 eV,Fgg}l’/z
=4.1X 107 eV) are calculated. Accordingly, the inaccuracy
of the widths is determined by the mixing coefficient (matrix
B) and by the imaginary part of the SE and VP screening
corrections.

Note that the configurations listed in Table III are ex-
cluded from the summation over the index k in Eq. (57) and,
consequently, all the denominators are far from zero. If the
energy of the initial state, i.e., sum of the energies of the
incident electron and the one-electron uranium, becomes
equal to the energy of a double excited configuration, the
corresponding mixing coefficient, defined by the matrix B in
Eq. (48), grows considerably. Accordingly, the maximum of
the cross section is determined by the energies of the double
excited configuration.

The graphs in Figs. 4—6 represent the enlarged areas in
Fig. 3 with the corresponding groups of the peaks. We esti-
mate the accuracy of our calculation as 1% (see the end of
Sec. IV for the details). Contributions of the different angular
momenta of the incident electron are given separately (see
Table I). The recombination to the certain double excited
configuration is most probable if the energy of the incident
electron (e€,) is equal to E—¢€,,, where E is the energy of the
corresponding  double  excited configuration  and
€,=379 184.13 eV is the energy of the ground state of the
one-electron ion of uranium. The ground state energy (e,
includes the SE and VP corrections in the first order of the
standard QED perturbation theory. The vertical dotted lines
in Figs. 4-6 point out the energies (E—e,—m,c?) of the
double excited configurations. The maxima of the cross sec-
tions with fixed incident electron angular momenta are close
to the corresponding energies of double excited two-electron
configurations. The maxima of the total cross section can
differ from the corresponding energies.

In Fig. 7 we compare our results with the results of the
previous calculations [9,15]. A comparison demonstrates the
importance of the higher-order interelectron interaction cor-
rections even in case of H-like uranium, where these correc-
tions should be minimal compared to the lighter ions. In the
nonresonant areas the difference between our results and re-
sults in [9] is caused by the d-wave contribution to the wave
function of the incident electrons taken into account in this
work (see Table I). Inclusion of the Wichmann-Kroll part of
the VP correction in our calculation results in the general
shift of our curve to the left.
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FIG. 4. The total cross section for the electron capture by the
H-like uranium in energy region I (see Fig. 3). The upper curve
shows the total cross section (in kb) for the capture of an incident
electron as a function of its energy (in keV). The dotted vertical
lines indicate the energies of (252p12)0. (2p122P12)0» (252p12)15
and (2s2s), configurations from the left to the right, respectively.
The lower curves show contribution of the particular transitions
(see Table I) to the total cross sections. The lower curve with maxi-
mum at (2s2p;,), energy level corresponds to transitions from
(Is,epin)g configuration. The lower curve with maxima at
(2p122p12)0 and (2s52s), energy levels corresponds to transitions
from (1s,es,,5)o configuration. The lower curve with maximum at
(252p1,2); energy level corresponds to transitions from (Is,ep;);
configuration. The curve with indistinct maxima represents the con-
tribution of all the other transitions.

Though the general form of the electron spectrum remains
essentially similar to the form in [9,15], the details (such as
positions, height, and widths of the peaks) can differ consid-
erably. Particularly, the difference is prominent in the areas
of the resonances, i.e., where the DR process is dominant
and, accordingly, the interelectron interaction plays the major
role. In view of the growing accuracy of the experimental
measurements this may become important especially for the
ions with lower Z values.

In Fig. 8 we compare our results for rate coefficient a(e,)
with results reported in [5]. The rate coefficient is calculated
as convolution of the cross section o(e,) with a 120 eV full
width at half maximum (FWHM) Gaussian [5],

(x - Ee)z
2C?

o

a(e,) = UECVTT dxa'(x)exp[— ] ,  (58)

—o0

where v,= \r’ef—mecz/ €, is the incident electron velocity. The
parameter C is related to the FWHM of the peak as
FWHM=242 In 2C. The rate coefficient is given in cm?/s.
In the experiment [5] the process of electron recombination
is registered by detection of recombined ions. In the present
work we suppose that the process of electron recombination
is registered by detection of a photon with frequency
w=¢€,+€,—FE, where E, is the energy of a two-electron
single excited configuration (r). In particular, we do not con-
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FIG. 5. The total cross section for the electron capture by the
H-like uranium in the energy region II (see Fig. 3). The upper curve
shows the total cross section (in kb) for the capture of an incident
electron as a function of its energy (in keV). The dotted vertical
lines indicate the energies of (252p3/2)s, (2p122P32)1> (2P122P3/2)2
and (2s2ps,); configurations from the left to the right, respectively.
The lower curves show the total cross sections for the capture of an
incident electron with different angular momenta (see Table I). The
lower curve with maximum at (2s2ps,), energy level corresponds
to transitions from (1s,ep3,,), configuration. The lower curve with
maximum at (2p,,,2p3,); energy level corresponds to transitions
from (ls,es;»); and (ls,eds;), configuration. The lower curve
with maximum at (2p,22ps/2), energy level corresponds to transi-
tions from (ls,ed3), and (1s,eds,), configurations. The lower
curve with maximum at (252ps,); energy level corresponds to tran-
sitions from (ls,ep,;»); and (ls,eps;,); configurations. The curve
with indistinct maxima represents the contribution of all the other
transitions.

0-2F o [kb] : : ]

(2p3/22p3/2)0

* (2p3/22p3/2)2

0.0 : ]

79.9 73.0 3.1 (e, — moc?) [keV]

FIG. 6. The total cross section for the electron capture by the
H-like uranium in the energy region III (see Fig. 3). The upper
curve shows the total cross section (in kb) for the capture of an
incident electron as a function of its energy (in keV). The dotted
vertical lines indicate the energies of (2p3,22p3/2)> and (2p322p312)0
configurations. The lower curves show the total cross sections for
the capture of incident electron with different angular momenta (see
Table I). The lower curve with maximum at (2p;,2ps3,), energy
level corresponds to transitions from (ls,eds;), and (ls,eds)),
configurations. The lower curve with maximum at (2p3/,2p3/2)o en-
ergy level corresponds to transitions from (1s,es;/»), configuration.
The curve with indistinct maxima represents the contribution of all
the other transitions.
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FIG. 7. The total cross section for the electron capture by the
H-like uranium in the energy region I (see Fig. 3). Comparison of
our calculation of the cross section with results of works [9,15]: our
results are presented by the solid curve; the dashed-dotted curve
represents the results of work [15]. The dashed curve shows the
results of work [9].

sider a process of radiative recombination with emission of
photon w= €,+ €,,—E ()2, where E (4 is the energy of two-
electron ion in the ground state. Contribution of the omitted
channels of recombination to the cross section and the rate
coefficient within the investigated interval of incident elec-
tron energies (€, € [63,74] eV) is well described by a con-
stant. Accordingly, our results must differ by the constant
from results in [5] and the agreement between theory and
experiment is satisfactory.

Within the framework of QED the processes of radiative
recombination (RR) and dielectronic recombination (DR) are
mixed. One can distinguish the RR and DR processes only in

FT T T I' T T T ¥ T T T T T T T T T 0
a [10712 cm?/s)

SE | %

(€ — mec?) [keV] E
it S
63 64 65 66 67 68 69 70 71 72 73

0

FIG. 8. Rate coefficient « (in cm?/s) for the electron capture by
the H-like uranium. Comparison of our calculation with results of
work [5]: our results are presented by the solid curve; the dashed
curve represents the results of work [5] (RR + DD theory curve in
Fig. 2, Ref. [5]).
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the lowest order of QED PT with respect to the interelectron
interaction. Since we take into account the interelectron in-
teraction in the higher orders of PT, we cannot show the
separate contribution of the RR process.
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APPENDIX A: FROM CONTINUOUS SPECTRUM TO
DISCRETE SPECTRUM

In this appendix we explain the physical meaning of the
artificial bound electron state (eg) introduced in Sec. II.

Eigenvectors of the Dirac equation for the point nucleus
are well known [22]. The asymptotics (r— ) of the wave
function of the electron in continuum (for point or extended
nucleus) reads

1 s00,m )

l/ljlm(r) = , (l.f(r)ﬂj,zj_[,m(n) s (Al)

g(r) = Con| 2 coslpr + ()], (A2)
p

£ = Cp == sinlpr+ ()], (A3)
p

where |C,|=|C=1 and ¢,(r), ¢{r) are the functions
smoothly depending on r. The continuum electron function is
normalized to the energy delta function.

In this appendix we compare the electron wave functions
for an ion in the infinite space and the electron wave function
for an ion enclosed within the box with radius R. If the ion is
enclosed within a box of finite radius all the spectrum be-
comes discrete. For the large radius R and coordinate r the
electron wave function for the ion enclosed within a box is
given by its asymptotics [Egs. (A2) and (A3)]. Accordingly,
the difference between the nearest (discrete) values of the
momentum (p) is defined by one half of the oscillation pe-
riod of functions in Egs. (A2) and (A3) at the border,
(r=R):ApR=1r. Then, the difference between the nearest
values of the energy () is

(A4)

The equations written in this appendix should be understood
in the asymptotic sense, i.e., the equations are correct up to
the terms disappearing at R — .

Let us investigate the functions wﬁ;“x>(r) and 1,bgR(r) de-
fined by Egs. (5) and (7) and the normalization factor defined
by Eq. (6) in Sec. II, respectively. For the large radius R the
function ¢§1“X>(r) can be substituted by its asymptotics [Egs.
(A2) and (A3)]. Accordingly, the squared normalization fac-
tor (Ng)? can be written as
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R
R
W= [l +boP= . as)
0 pT
Comparing Egs. (A4) and (A5) we can write
Ae= (A6)

(Np)*

The wave function of the electron enclosed within a box
of a large radius R can be written as the function ¢, (r). The
function ¢, (r) as well as the function ¢,(r) satisfies the
Dirac equation. The boundary conditions at r=R can be sat-
isfied by adjusting the radius of the box R.

The integration over an interval [ €, €] in the continuous
spectrum is equivalent to the summation over all the states
(n) with the energy (e,) from the interval [€;, €] in the dis-
crete spectrum (if the ion is enclosed within a sphere of
radius R),

F(n), (A7)

JEZ de'F(e)= 2,

1 e cler.el

where function F represents some physical property (e.g.,
cross section). If the radius R goes to infinity, the number of
discrete states in the energy interval [€,, €] goes to infinity
and the width of the energy interval containing only one state
goes to zero. Accordingly, we can write

Fo= 4 (A8)

1
de'F(e) = —F(n) = (Np)*F(n),
€ Ae €

where €,=€ is the only discrete state inside the energy inter-
val Ae. Thus, the transformation from the continuous to dis-
crete spectrum results in the substitution of the continuous
spectrum wave function ¢, by the function % and in an
additional factor 1/Ae=(Ng)? to the function F (cross sec-
tion), where A€ is the distance between the nearest energy
levels. Accordingly, the artificial bound electron state ep in-
troduced in Sec. II corresponds to the physical bound elec-
tron state (with the same energy as the electron in continuum
state) of the ion enclosed within a box of a large radius R.

APPENDIX B: ELECTRON SELF-ENERGY MATRIX
ELEMENTS

In this appendix we briefly represent a scheme for the
first-order self-energy calculation used to evaluate both real
and imaginary parts of diagonal and nondiagonal self-energy
matrix elements. This procedure is well known and discussed
in detail in [26,27,37] for diagonal matrix elements of the SE
operator. Here, we apply it to the nondiagonal matrix ele-
ments. The Feynman graph corresponding to the first-order
nondiagonal SE correction is depicted in Fig. 9(a). Accord-
ing to the standard Feynman rules one can write [22,38]

[2(6)]u = f &ridryg,(r)2(er,r)dry),  (B1)

where 3(e;r|,r,) is the kernel of the SE operator,
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FIG. 9. Potential expansion for the electron self-energy radiative
correction. The ordinary solid line corresponds to the free electron;
the dashed line with the cross at the end denotes the external po-
tential. The graphs (b)—(d) are referred to as zero-potential, one-
potential, and many-potential terms.

b
(a)

A i (7
2(er,ry) = gZEJ dwy, S(€= wir;,r)y,,

X DM w3 |ry = 1)), (B2)

D*1#2(w;|ry—r,|) is the photon propagator in the Feynman
gauge, S(e—w;r;,r,) is the electron propagator in the Furry
picture, and vy, are the Dirac matrices. Using the standard
potential expansion of the bound electron propagator into the
sum of the zero-potential [Fig. 9(b)], one-potential
[Fig. 9(c)], and many-potential [Fig. 9(d)] terms, we can
write

2w =21+ [2(9 1) + [0 (B3)

The first two terms in Eq. (B3) are ultraviolet divergent and
require renormalization. This procedure is usually performed
in momentum space according to the standard prescriptions
[22]. Then,

1
2m)?

f Ept)2"V(ep)t(p),  (B4)

(E@Li/= 50 f dpidprdpOAT" (€p1:€p2)

XV"(lp1 = pa) ¥(2)

where 3"0)(¢ p) is the renormalized zero-order SE opera-
tor, Aren(())(e,pl ;€,p,) is the renormalized zero-order vertex
operator [26,37], and V™(|p,—p,|) is the potential of the
nucleus. After that, the integrations in zero-potential and
one-potential terms can be performed numerically. A conve-
nient version for this integration was proposed in [39]. The
renormalized zero-order SE operator in the Feynman gauge
is

(B5)

82
Eren(O)(e’p) — ;T[a(p) +p:“~ylub(p)], (B6)

2p )
Inp|,
-p

a(p) = 2m<1 + ) (B7)
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2 - p(
blp)=——""|1+
(p) =y -,
where p*=(e,p) and p=(m*-p*p,)/m* Inserting Eq. (B6)
into Eq. (B4) and performing integration over angular vari-
ables one can obtain the final expression for the zero-
potential term suitable for further numerical evaluation,
2 e 2
A e p-dp
[2oly=— f (@) [ua(p)uy(p) = volp)vs(p)]
41 )y (2m)

+ b(p)eluy(P)uy(p) —vo(p)vp(p)]
+ plua(p)vy(p) + v, (P)uy(P)]D), (B9)

where p=|p| and u,(p), v,(p) are the upper and lower radial
components of the Fourier transformed wave function ¢,(p),
respectively. To perform the angular integration in the one-
potential term it is necessary to use the decomposition of the
zero-order vertex function in the form

@a(pl)ABe“(o)(e,pl 1€p2)(p2)

2
e .
= E{Ffb(l’l,l?z,f)Q}azama(Pl)ijzbmb(Pz)

In p), (B8)

+FP(p.pr Q- (B10)

J alama

(pl)Qijmh(pZ)} .

Here, é=(p,p,)/ p1pas [=2j—1, and Fi?, F” represent the ra-
dial integrals, defined in [39] for diagonal matrix elements
and generalized to the nondiagonal case. Inserting Eq. (B10)

(= 1)la i+t

(2j.+1)

S01=05 [ aoS Gt >
—o0 KL
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into Eq. (B5) and performing integration over angular vari-
ables one can obtain the final expression for the one-potential
term suitable for the numerical evaluation,

2 % 1
291 = (2677)6 fo dp\dp, L dépipaV™(q)
X [Flllb(pl?p% g)Pla(g) + F‘zlb(Pl’sz g)Fla(g)]alalb,
(B11)

where ¢>=pl+p3—2p,p,€ V™(q) is a Fourier transforma-
tion of the nuclear potential, and P,(¢) is the Legendre poly-
nomial.

The third term in Eq. (B3) is ultraviolet finite and can be
calculated directly in coordinate space using the B-spline
basis set [24,25]. The contribution of the Feynman graph
depicted in Fig. 9(d) reads

R i ([~ _
(a1 =e* f dw f &ry . APy (r) Y,

xS0 (e~ ;r,1rp) Y V'(ry)
X S(€— w;ry,r3) DHM1P2( w1y — ry]) Yo V(1)

X SO(e= wir3,ry) ¥, t(rs), (B12)

where S (e—w;r,,r,) is the free electron propagator. Angu-
lar integrations in Eq. (B12) can be performed analytically
according to [40]. This yields

R (w;apBab) Vaivi,B

nongh;

[e—w—eg(1-i0)][e- w— el -i0)][e- w—€,(1-i0)]

(B13)

Here, Greek letters @, B denote the free electrons states, Latin letters a, b, i denote the electron states in the field of the
nucleus, n,, ng, n; are the principal quantum numbers, k;=k,= kg, Where k=(=1)"*1(j+1/2) is the Dirac angular quantum
number, and {j;,j,,L} denotes a triangle condition for the angular momenta. R;(w;aBab) is the generalized Slater integral

[40],

R (w;abed) = (- 1)Cr(k,, Kc)CL(Kb’Kd)|:J dxf dyg(@;x,y) W, (x) Wpy(y) +
0 0

L
2L-1

+

(K, + K)(Kp+ Ky)
L(L+1)

where

K,—

L

Po(0) = Uy () - ¢y (x), (B15)

f dx f dygr(w;x,y) Ve (X) Vi (y),
0 0

L+1 (7 *
2L+3J0 dxfo dygr1(0:x,)0,(X) Qpu(y)

J dxf dygL—l(w;x7y)Pac(x)Pbd(y)] + (= DMCL(= Ky k) Cr(= K 5g)
0 0

(B14)

[
Qac(-x) == Uac(x) - KZ ; ’I(C Vac(x) s (B 16)
Uac(x) = ga(x)fc(x) _fa(x)gc(x) ’ (B 17)
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LINE-PROFILE APPROACH TO THE DESCRIPTION OF...

TABLE IV. The matrix elements of the SE operator calculated
in this work and in [29] in eV.

This work [29]
151 354.99(5) 355.05
251 65.40(2) 65.42

Vae(x) = 8a(0)fo(x) + fo(x)g(x), (B18)
Wae(x) = ga(x)gc(x) + fo(x)f(x), (B19)
CrKys kp) = (= DI 2(2j, + 1)(2j, + 1)
Jo L Ja
x| 1 100,00, (B20)
2 2

and 11(1,,1,,L) is equal to unity if the sum [,+1,+L is even
and to zero otherwise. The matrix elements of the nuclear
potential are given by

Var= f dx V™ (x)[84(x)gp(x) + fu(X)fp(x)].  (B21)
0

To perform the w integration in Eq. (B13) numerically, we
rotate the contour anticlockwise around w=0 to the imagi-
nary axis, obtaining a principal-value (PV) integral, a half-
pole term (when € is equal to a bound Dirac electron energy)
and pole terms from the states with energies lower than e,
respectively,

[2(6)][2+] [2( )][2+] PV + %[i(e)]g;],pole(e)

+ 2 [ﬁ(e)]ﬁf],pole(i).

i(g;<e)

(B22)

The expressions for the pole terms and PV integral in Eq.
(B22) can be found in [40] for the diagonal matrix elements
and a slight generalization to the nondiagonal case is neces-
sary. Thus,

2 0
(eI =~ e_R{ J dw2, {jisjaL}
T - ;L

RL(l(l),aBab) VaiVi,B

io—€p)e—iw—¢g)(e-iw-€,)

(= it
2ju+ 1)

X 2

n nﬁn (6

(B23)

A convenient way to organize the calculation of Eq. (B23) is
to introduce a frequency-dependent effective basis set,
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Vi
diw;x) = 2 ¢a X) o (B24)
-€)
The principal-value term can be evaluated then as
& \q[2+],PV e -
(6] =——Re f dwz {ia L}
w 0 KL
(= Y/t G Ryiw; agidib) |
(2j,+1) (e—iw—¢€)
(B25)
The pole terms are
A 0 1 ( (_ l)ja_ji+L
B(15 10 = X o Ly 5 Ru(w:aiib),
L (ZJa + 1)
with w=€—- ¢, (B26)

and the half pole term is one half of Eq. (B26) in case €
=¢;. The final result for the real part of the nondiagonal SE
correction can be expressed in form

][2+] PV

Re{[3(&)]t = [T + [S(a1) + [2(e)

1 .
+ 5[2(6)]5%:],[)0]6(6)

+ 2 Re{[X(eI; ), (B27)
i(g;<e)
and the corresponding imaginary part is
m{[2(9]u}= 2 Im{[S(9IGH0)  (B28)

i(e;<e)

In this work we calculated the nondiagonal SE matrix

elements: <151/2|2(131/2)|2s1/2>, <231/2|2(251/2)|1s1/2> (see
Table II). Note that the nondiagonal SE matrix element
yields zero if the left and right states differ by either total
angular momentum or parity. In Table IV we compare our
results for the real part of the SE matrix elements for 1s and
2s electrons. We also calculated the imaginary part of the SE
matrix elements listed in Table II.

[1] H. S. Massey and D. R. Bates, Rep. Prog. Phys. 9, 62 (1942).

[2] S. Mannervik, D. DeWitt, L. Engstrom, J. Lidberg, E. Lin-
droth, R. Schuch, and W. Zong, Phys. Rev. Lett. 81, 313
(1998).

[3] C. Brandau et al., Hyperfine Interact. 114, 263 (1998).
[4] C. Brandau et al., Hyperfine Interact. 114, 45 (1998).
[5] C. Brandau et al., Radiat. Phys. Chem. 75, 1763 (2006).
[6] M. H. Chen, Phys. Rev. A 41, 4102 (1990).

042514-13



ANDREEV, LABZOWSKY, AND PRIGOROVSKY

[7] M. S. Pindzola and N. R. Badnell, Phys. Rev. A 42, 6526
(1990).

[8] P. Zimmerer, N. Griin, and W. Scheid, Phys. Lett. A 148, 457
(1990).

[9] V. V. Karasiov, L. N. Labzowsky, A. V. Nefiodov, and V. M.
Shabaev, Phys. Lett. A 161, 453 (1992).

[10] L. N. Labzowsky and A. V. Nefiodov, Phys. Rev. A 49, 236
(1994).

[11] A. V. Nefiodov, V. V. Karasiev, and V. A. Yerokhin, Phys. Rev.
A 50, 4975 (1994).

[12] V. M. Shabaev, Phys. Rev. A 50, 4521 (1994).

[13] A. V. Nefiodov, L. N. Labzowsky, and D. L. Moores, Phys.
Rev. A 60, 2069 (1999).

[14] D. M. Mitnik, M. S. Pindzola, and N. R. Badnell, Phys. Rev. A
61, 022705 (2000).

[15] S. Zakowicz, W. Scheid, and N. Griin, J. Phys. B 37, 131
(2004).

[16] O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. So-
lovyev, Phys. Rep. 455, 135 (2008).

[17] V. M. Shabaev, Phys. Rep. 356, 119 (2002).

[18] W. Spies et al., Phys. Rev. Lett. 69, 2768 (1992).

[19] O. Y. Andreev, L. N. Labzowsky, G. Plunien, and G. Soff,
Phys. Rev. A 64, 042513 (2001).

[20] O. Y. Andreev, L. N. Labzowsky, G. Plunien, and G. Soff,
Phys. Rev. A 69, 062505 (2004).

[21] O. Yu. Andreev, L. N. Labzowsky, and G. Plunien, Phys. Rev.
A 79, 032515 (2009).

[22] A. 1. Akhiezer and V. B. Berestetskii, Quantum Electrodynam-
ics (Wiley Interscience, New York, 1965).

[23] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[24] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A

PHYSICAL REVIEW A 80, 042514 (2009)

37, 307 (1988).

[25] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and
G. Soff, Phys. Rev. Lett. 93, 130405 (2004).

[26] N. J. Snyderman, Ann. Phys. 211, 43 (1991).

[27] S. A. Blundell and N. J. Snyderman, Phys. Rev. A 44, R1427
(1991).

[28] I. Goidenko and L. Labzowsky, in Fundamental World of
Quantum Chemistry, edited by E. J. Brindas and E. S. Kry-
achko (Kluwer, The Netherlands, 2004), Vol. 111, p. 407.

[29] T. Beier, P. J. Mohr, H. Persson, and G. Soff, Phys. Rev. A 58,
954 (1998).

[30] A. N. Artemyev, V. M. Shabaev, V. A. Yerokhin, G. Plunien,
and G. Soff, Phys. Rev. A 71, 062104 (2005).

[31] P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227
(1998).

[32] T. Beier, G. Plunien, M. Greiner, and G. Soff, J. Phys. B 30,
2761 (1997).

[33] L. D. Landau and E. M. Lifshits, Quantum Mechanics (Perga-
mon, Oxford, 1977).

[34] A. Mitrushenkov, L. Labzowsky, 1. Lindgren, H. Persson, and
S. Salomonson, Phys. Lett. A 200, 51 (1995).

[35] J. Sapirstein, K. Pachucki, and K. T. Cheng, Phys. Rev. A 69,
022113 (2004).

[36] L. N. Labzowsky, A. V. Shonin, and D. A. Solovyev, J. Phys.
B 38, 265 (2005).

[37] V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 60, 800
(1999).

[38] L. Labzowsky, G. Klimchitskaya, and Yu. Dmitriev, Relativis-
tic Effects in the Spectra of Atomic Systems (Institute of Phys-
ics, Bristol, Philadelphia, 1993).

[39] V. A. Yerokhin, A. N. Artemyev, T. Beier, G. Plunien, V. M.
Shabaev, and G. Soff, Phys. Rev. A 60, 3522 (1999).

[40] S. A. Blundell, Phys. Rev. A 46, 3762 (1992).

042514-14



