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Calculations of polarizabilities and hyperpolarizabilities for the Be* ion
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The polarizabilities and hyperpolarizabilities of the Be* ion in the 2 25 state and the 2 %P state are deter-
mined. Calculations are performed using two independent methods: (i) variationally determined wave func-
tions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamil-
tonian. The first few parameters in the long-range interaction potential between a Be* ion and a H, He, or Li
atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also
computed. All the values reported are the results of calculations close to convergence. Comparisons are made

with published results where available.
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I. INTRODUCTION

Studies of the Be* ion are of interest due to its importance
in a number of applications. First, the Be* ion is used as an
auxiliary ion to sympathetically cool other atomic or ionic
species [1,2] that cannot be directly laser cooled due to the
lack of closed optical transitions. Second, the Be* ion can
combine with other atoms or neutral molecules to form mo-
lecular ions, such as BeH* [3-6], and the study of the long-
range interaction between a Be* ion and atoms or molecules
may open new routes for the study of state-selective chemi-
cal reactions relevant to astrophysics [3]. Third, investiga-
tions of Be* ion collisions with rare gases would be useful in
the study of ion-atom Feshbach resonances [7], pressure
broadening of alkaline-earth-metal ions [8], and in studies of
excitation spectroscopy of the collision [9,10]. Fourth, since
beryllium has a number of isotopes, studies of the Be* ion
could potentially be used to determine the nuclear charge
radii of beryllium isotopes [11]. Finally, there is interest in
studying the spectra of the alkaline-earth-metal atoms in high
angular momentum Rydberg states. Experimental investiga-
tions have been made on a number of atoms [12-15] with a
view to determining the polarizabilities of the singly ionized
parent ion. These experiments measure the high (n,L) energy
splitting and then use a polarization model to extract the
polarizabilities. Recent calculations [16] have shown the po-
larization model to be sensitive to nonadiabatic effects. The
Be™" ion would be a useful candidate for a validation experi-
ment since it should be less sensitive to adiabatic effects and
its polarizabilities can be calculated to very high precision.

The above physical phenomena are influenced by the
properties of the Be* ion, and in particular the polarizabilities
and hyperpolarizabilities. There have been several calcula-
tions of the Be™ ion polarizabilities reported in the literature.
These include the work by Adelman and Szabo [17] using
the Coulomb-like approximation, the calculation by Pipin
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and Woznicki [18] using the variation-perturbation approach
with a combined Hylleraas-configuration interaction (CI) ba-
sis set, the calculation by Patil and Tang [19] using the va-
lence electron binding energy to construct wave functions
constrained to have the correct long-range asymptotic behav-
ior, and finally the large basis full core plus configuration
interaction (FCCI) calculations by Wang and collaborators
[20-25]. However, there have been no calculations reported
on the polarizabilities and hyperpolarizabilities for the Be*
ion excited states.

In this paper, the polarizabilities, hyperpolarizabilities and
some long-range ion-atom dispersion coefficients involving
Be" ion are computed with two independent methods. First,
oscillator strengths for many low-lying transitions are deter-
mined. Next, the polarizabilities and hyperpolarizabilities for
the 2 %S state and 2 %P state of Be* ion are computed varia-
tionally using expansions of the wave functions in Hylleraas
bases. The same set of long-range parameters is also com-
puted using a fixed core plus semiempirical polarization po-
tential to describe the valence electron. The agreement be-
tween the two different calculations will be seen to be
excellent. The long-range dispersion interactions between
Be* ion and the H, He, or Li atoms are given and once again
the agreement between the two sets of calculations is excel-
lent. Furthermore, we compute all the parameters needed to
define a Be* ion polarization potential (including terms up to
r3) to describe the high-L Rydberg states of beryllium,
where r is the ion-electron distance. All results of this paper
are given in atomic units (e=fh=m,=1).

II. THEORY AND METHOD
A. Hylleraas variational method

The calculations for Be* ion are very similar in style to
those for Li [26,27]. In the center of mass frame, the nucleus
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is taken as the reference particle 0, with mass m, and charge
qo, F; 1s the electron-nucleus distance, and i=1,2,3. The
nonrelativistic Hamiltonian of this system can be written in
the form

3

H, =—2—v2—— E v, V+q02—+ 2

=1 21““1 m()1>j>1 17 i>j=1 rlj
(1)

where r;;=|r;—r | is the distance between electrons i and j, ¢,
are the charge of the three electrons, and w;=m;mg/
(m;+my) is the reduced mass between the ith electron and the
nucleus. In the present paper, all the calculations are done in
the infinite nuclear mass approximation.

Significant progress has been made recently in variational
calculations for three-electron systems by using multiple ba-
sis sets in Hylleraas coordinates [28,29]. These have the
functional form,

¢=r11'1r12'2r13r1 r1223%r1316 ar|=fry=yr3
Xy(ll€1{;2)€|2!€3(f1sz’f3)X(1’273)s (2)

where yfg‘f@){;n& is a vector-coupled product of spherical
harmonics to form an eigenstate of total angular momentum
L and projection M, and x(1,2,3) is the three-electron spin
function. The variational wave function is a linear combina-
tion of antisymmetrized basis functions ¢. With some trun-
cations to avoid potential numerical linear dependence, all
terms in Eq. (2) are included such that

Jitia+ 3+ jintjntin =1, (3)

where () is an integer, and the convergence for the energy
eigenvalue is studied by progressively increasing ().

For the He atom, taking the nucleus as the reference par-
ticle 0, the electron is labeled as particle 1 and the other
electron is labeled as particle 2. The wave functions are ex-
panded in terms of the explicitly correlated basis set in Hyl-
leraas coordinates,

¢=”li’"£”]1<2€_ml_ﬁr2 €%z(f1,f2)~ (4)
For the hydrogen atom, we use a basis set of form
¢ — ree—ﬁr/2L512€+2)(Br)yfm(lq) . (5)

where L,(12€+2)(,8r) is the generalized Laguerre polynomial
and the parameter B is chosen to be B=2/(€+1). This basis
set has been proven to be numerically stable as the size of the
basis set is increased.

B. Single electron model

The detailed description of the procedure used to con-
struct the frozen-core Hamiltonian and the semiempirical po-
larization potential can be found in previous works by
Mitroy and collaborators [16,30,31]. Accordingly, only the
briefest description is given here.

Initially, a Hartree-Fock calculation of the Be* ion ground
state was performed. The core orbitals were then fixed, and a
semiempirical core polarization potential was added to the
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Hamiltonian. The core dipole polarizability was taken to be
0.0523 [30]. The cutoff parameters in the semiempirical core
polarization potential were py=0.941, p;=0.895, p,=1.200
with all other p; set to 1.00 [30]. These values were chosen
to reproduce the binding energies of the low-lying states.

The low-lying states and pseudocontinuum states were
obtained by diagonalizing the fixed core Hamiltonian in a
large basis of Laguerre type orbitals. Typically, there were
about 50 orbitals for each value of the valence angular mo-
mentum. This is large enough to eliminate the basis as a
significant source of error.

The multipole matrix elements and oscillator strengths
were computed with a modified transition operator [30]. The
adjustable parameter in the modified multiple operator was
set to p=1.00. Core excitations are included in the dispersion
parameter calculation. Oscillator strength distributions were
constructed from independent estimates of the core polariz-
abilities (a,=0.01 532 [30] and a3=0.01 125 [32]). The cal-
culations using this approach are termed the Hartree-Fock
plus core polarization (HFCP) model.

The dispersion coefficient calculations involving H and
He used matrix element lists that were generated using basis
functions that were similar (but not identical) in construction
to Egs. (4) and (5). The matrix element lists for the Li atom
came from a one electron model as described in Ref. [33].

C. Polarizabilities

Using perturbation theory, the adiabatic long-range inter-
action potential for an ion-atom system up to the R™® term
can be written [34] as

2 L) &G
Vub(R) = E R2(+2 23 Rzn > (6)

where Q,=2,0; is the total charge of the ion a, a(f) is the
2¢ pole static polarizability for the atom b, R is the distance
between the ion and the atom, and the C,, parameters are the
dispersion coefficients. The first term in Eq. (6) is the polar-
ization interaction, which does not lead to a frequency shift
between the different states of the ion. The second term is the
dispersion interaction, which can lead to a frequency shift
between two different ion states when the ion is immersed in
a buffer gas. From Eq. (6), we see that the establishment of
the interaction potential V,,(R) accurate to R™8 requires the
static polarizabilities «;, a,, and a; for the atom b, and the
dispersion coefficients Cq and Cg between ion a and atom b.
Once we have obtained the oscillator strength spectra be-
tween the ground states and the intermediate states for the H,
He, Li, and Be* ion systems, we can calculate the Be*
polarizabilities, and the dispersion coefficients for various
combinations of these particles. The detailed derivation of
the formulae for calculating the polarizabilities, hyperpolar-
izabilities and dispersion coefficients in Hylleraas coordi-
nates can be found in the Ref. [26].

For the high-L Rydberg states of an atom or an ion, where
a single electron is in highly excited state but still moves in
the field of a spherically symmetric core, the polarization
interaction between the core and a single Rydberg electron
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leads to the effective potential [12,13,16,35,36],

_Ag A7 Ag
R

Ag L(L+1)

Verlr) = 24 s+ ()

where r is the radial coordinate of the Rydberg electron and
the coefficients A, are properties of the free ion core. Com-
parisons with high precision variational calculations of the
Rydberg states for the few-body systems, He [37], Li [21],
and H, [38] have been made. This functional form has also
been used to analyze the fine structure spectrum of the Ryd-
berg states of neutral Mg and Ba, resulting in estimates of the
dipole polarizabilities of the alkaline-earth-metal ions Mg*
and Ba* ground states [12,14,31].

According to the definitions given previously [31,35,39],
the leading coefficient A, is half the size of the static dipole
polarizability,

Ay=—, (8)

with

o 287 LTy

9 E,-E, ©)

n

The notation |nL) indicates the intermediate state with main
quantum number n and angular momentum number L, and T}
is the dipole transition operator, which satisfies the general
expression for the 2¢-pole transition operator in the center of
mass frame,

3
To= 2 qriYo(f). (10)

i=1

The next term Ag is composed of two separate terms,

a, -6,

A= i
6 2

(11)

where «, is the quadrupole polarizability and B, is the first-
order nonadiabatic correction to dipole polarizability. They
are defined as

[(00[|T5l[n2)?

8
a2=—2

, 12
25 n En - EO ( )
s Lm0l ) f "~
: 9 n (En - EO)2
The r~7 term A5 also comes from two parts, namely,
51+ 16g0
A7=—‘ﬂ—ﬂ;ii, (14)

where ¢ is the charge on the core. # arises from third-order
perturbation theory and it can be expressed as
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(15)

and &, is the second-order nonadiabatic correction to the di-
pole polarization energy,

A7 [(ng0[|T4[[n 1)
18 (E,— Ey)’

n

(16)

Quite a few terms contribute to Ag,

- 158, + €— +726
Ag= as Brte—ap 1_ (17)
2

The octupole polarizability a; is computed by

_ 8_772 (60| T5[|n3)?
’T 49 E,-E,

n

, (18)

while 3, comes from the first-order nonadiabatic correction
part to the quadrupole polarization energy, and is defined as

_Amg [(nO[|T[|n2)]?
E— (19)
n E _EO)2
The term € is defined
~ 327122 |[(ngOl| T ||m1)(m1]|T,[[n0)[>
81 pw  (E,—E)*E,—Ep)
64772 O[| T, [|m1)m1]||T;||n2)[?
E |<”0 || 1|m Ym || 1||” >| (20)

(E,,— E)XE, - Ep)

m,n

The hyperpolarizability y, of the ground state, and coeffi-
cients €, a;, B, are related by the identity y,=12(e—«,5;).
The last term Ag; is nonadiabatic in origin and defined by

186
A8L=T]. (21)

For excited states, the working expressions for the evalu-
ation of the polarizabilities «;, aIT, a,, and a3 and hyperpo-
larizabilities y, and 7, are given in Tang et al. [26]. These
expressions are quite lengthy and they are not reproduced
here.

D. Dispersion interactions

The dispersion interaction, between two atoms, A and B,
for the Hylleraas wave functions was calculated from tabu-
lated lists of matrix elements using sum rules [26]. For the
case of Cy involving two S-state atoms, one can write the
sum rule

) Fouf0n

20 AEY AER(AES,+ AER)

(22)

The sum is over all states of P°-symmetry. The absorption
oscillator strength, f,, for a dipole transition from 0—n,
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TABLE I. Convergence of the Hylleraas calculation of the non-
relativistic energy (in atomic units) for the 22 state of Be* jon.

No. of
Q terms E(Q) EQ)-E(Q-1) R(Q)
8 1589 —14.324763166358  —0.000000051721 8.211
9 2625 —14.324763174596  —0.000000008238 6.278
10 4172 —14.324763176309  —0.000000001713 4.809
11 6412 —14.324763176663  —0.000000000354 4.839
Extrap. —14.324763176736(73)

with an energy difference of AE,,=FE,—E,, is most conve-
niently defined in the present context [27,30] as

y 243 Lol [ C (B[ 5 L) P AE 0
on 3(2Ly+ 1) '

(23)

In this expression for the HFCP method, L is the ground-
state orbital angular momentum, and rCl(lA‘)=\/¥ Y'(f) is
the operator for a dipole transition just for one electron. Ex-
plicit expressions for Cg, and C,, and for other symmetries
can be found in [26].

The dispersion interaction calculations for the HFCP
wave functions utilized the completely general procedures
outlined by Zhang and Mitroy [40,41]. These calculations
utilize sum rules involving lists of reduced matrix elements
of the multipole operator 7*C¥ multiplied by angular recou-
pling factors. They are effectively equivalent to Eq. (22) and
the expressions in [26] despite the differences how the cal-
culations are actually carried out.

III. RESULTS AND DISCUSSION

A. Energies and oscillator strengths of Be* ion

Table I shows the convergence study for the nonrelativis-
tic energy of the Be* ion ground state as the size of the
Hylleraas basis set is enlarged. The ratio R({)) is defined by
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E(Q-1)-EQ-2)

R = E(Q)-EQ-1)

(24)

The extrapolation was done by assuming that the ratio would
stay constant around R({))=4.839. It is clear from Table I
that the energy converges to high precision as the number of
terms is progressively increased. The final nonrelativistic en-
ergy is accurate to about 11 significant figures for the ground
state and the uncertainty is set to be equal to the extrapola-
tion correction. The nonrelativistic theoretical energies for
other low-lying states of Be™ ion are tabulated and compared
with experimental binding energies in Table II. Binding en-
ergies from the HFCP calculations are also listed.The Hyller-
aas binding energies, which do not include finite mass and
relativistic effects, are generally in good agreement with the
experimental binding energies. The finite-mass effect will be
about 0.001% and will probably act to decrease the magni-
tude of the binding energy. The largest discrepancy for the
27§ state is due entirely to relativistic effects (see Table IIT of
[29]), which contribute about 0.007% of the final value.

Table III lists the oscillator strengths for a number of the
Be™ ion dipole transitions involving low-lying states. The
final values for the Hylleraas calculations are obtained with
an extrapolation procedure similar to that for the energy.
Once again the uncertainty in the oscillator strength is as-
signed to be equal to the magnitude of the extrapolation cor-
rection. It is evident from Table III that there is excellent
agreement between the Hylleraas and HFCP calculations.
The largest discrepancy between the two calculations is only
about 0.1% (for the 3 2P—3 2D transition). The oscillator
strengths from the Hylleraas calculation could be used to
improve the National Institute of Standards and Technology
(NIST) tabulations [42,43].

The Hylleraas oscillator strength for the 2 2§ —2 2P tran-
sition is accurate to about seven significant figures and is
compatible with an earlier Hylleraas calculation by Yan et al.
[44]. Some earlier large scale ab initio calculations also gave
oscillator strengths that are compatible with the present Hyl-
leraas calculation for this transition. These include the mul-
ticonfiguration Hartree-Fock (MCHF) calculation of Gode-
froid et al. [45] and the FCCI calculation of Chung er al.

TABLE II. Theoretical nonrelativistic energies and experimental energies of the low-lying states for the
Be* ion, (in atomic units). The numerical uncertainty of the theoretical energies are given in brackets. The
experimental valence binding energies are taken from the National Institute of Standards database [47,48].
The ground-state energy for the Be?* ion was taken from Ref. [49].

State Hylleraas Egtyierass— E(Be*) HFCP Experiment Ref. [29]
2% —14.324763176736(73) —-0.669196938312 —-0.669250 —-0.669247 —-0.66924793(2)
22%p —14.17933329329(24) —-0.52376705486 —-0.523755 -0.523769 -0.52376988(2)
3% —13.9227892683(5) —-0.2672230298 -0.267189 -0.267233 -0.26723367(3)
32%p —13.8851502898(5) —-0.2295840513 —-0.229527 —-0.229582

3D —13.87805405934(36) —-0.22248782091 —-0.222482 —-0.222478

47§ —13.7987166133(8) —-0.1431503748 -0.143131 -0.143152

4°%F —13.780581705614(80) —-0.125015467190 -0.125015 —-0.125008

5%G —13.735568352173(16) —-0.080002113749 —-0.080002 —-0.079997
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TABLE III. Dipole oscillator strengths for the selected transitions of Be* ion.

NIST Exp.

Transition Hylleraas HFCP [43,42] [46] Other theory

225—-272p 0.49806736(6) 0.4985 0.505 0.54(3) 0.498067381(25) Hylleraas [44]
0.49807 MCHF [45]
0.49813 FCCI [22]

225-32p  0.08316525(18)  0.0828  0.0804 0.08136 FCCI [25]

22P—32%5  0.06434157(29)  0.0643 0.0665  0.048(5)

22p—4728 0.01021583(30) 0.0102 0.010

22Pp—32D 0.6319828(11) 0.6321 0.652 0.63199 MCHF [45]
0.63197 FCCI [23]

325-32%p 0.8297696(15) 0.8307

32P—32D  0.08103350(17)  0.0804

32Pp—472s 0.1345245(13) 0.1346

32D—4%F  1.01460194(11) 1.0146 1.01 0.66(3) 1.0146 FCCI [24]

4°F—52G 1.34537126(12) 1.3453

[22]. While the present oscillator strengths are reported with
seven significant digits, finite-mass, and relativistic effects
that are not included in the calculation could conceivably
alter the oscillator strengths beginning at the fifth digit.

There have also been some high precision oscillator
strengths reported for the 2 °P— 3 ?D transition. The MCHF
value of Godefroid er al. [45] and the FCCI value of Qu et
al. [23] agree with the Hylleraas calculation to better than
four digits. Qu et al. [24,25] have also reported CI calcula-
tions for the 2 2S—3 2P and 3 2D—4 *F transitions and
again there is agreement to better than four significant digits.
The experimental oscillator strengths listed in the Table were
measured using beam-foil spectroscopy [46]. These oscilla-
tor strengths have only low precision and cannot discrimi-
nate between the higher quality theoretical estimates.

B. Polarizabilities of the Be* ion

The convergence properties of the static dipole polariz-
ability «;, and hyperpolarizability vy, for the Be* ion ground
state are presented in Table IV. Both of them have converged
to five significant figures. The extrapolation was done by
assuming that the ratio between two successive differences
would stay constant as the basis size increased toward infin-

TABLE IV. Convergence of the dipole polarizability «; and
hyperpolarizability vy, for the Be* ion ground state (in atomic units).
The number of intermediate states of a given angular momentum
are denoted as Ng, Np, and Np,.

(Ns,Np) aj (Ns,Np,Np) Yo

(1589,1174) 24.495332 (1589,1174,1174) —11521.1320
(2625,2091) 24.496067 (2625,2091,2091) —-11521.3184
(4172,3543) 24.496408 (4172,3543,3543) —11521.3196
(6412,5761) 24.496522  (6412,5761,5761) —11521.2768
Extrap. 24.4966(1) Extrap. ~11521.30(3)

ity. The uncertainty in the final value is set equal to the
magnitude of the extrapolation correction from the explicitly
calculated value computed with the basis of largest dimen-
sion.

Table V shows the convergence as a function of basis size
for the scalar and tensor dipole polarizabilities «;, alT, and
the hyperpolarizabilities vy,, 7y, for the first excited state of
Be* ion. The intermediate sums in this case have contribu-
tions from doubly excited unnatural parity states with L7
=1¢ and L™=2° (e.g., the unnatural parity 1¢ state has two
€=1 electrons coupled to a total angular momentum of L
=1). The contribution from the unnatural parity states is usu-
ally small. For example, the unnatural parity P¢ states con-
tribution of 0.020 616 to «; is about 1%. The scalar dipole
polarizability is converged to five significant digits, and the
tensor dipole polarizability alT is converged to six digits. The
hyperpolarizabilities, y, and 7, are accurate, resectively, to
six and five significant figures. There was no major numeri-
cal cancellation in the hyperpolarizabilities in our calcula-
tion, in contrast to the situation that prevails for the Li hy-
perpolarizability, which suffers severely from cancellations
in the different parts of the calculation [26].

There have been a number of accurate calculations of the
multipolar polarizabilities for the Li atom in its ground or
lowest excited states [26,33,50]. However, there have been
fewer polarizability calculations for the Be* ion in its ground
and lowest energy excited states. Table VI gives a compari-
son between the present results and previous calculations for
the static polarizabilities of Be* ion in the 2 %S and 2 *P
states. One of the most notable features of the Table is the
very good agreement between the Hylleraas and HFCP mul-
tipole polarizabilities. The overall level of agreement is at the
0.1% level. The one exception was the static dipole polariz-
ability of the 2 ’p state, but it should be noted that this
polarizability is small due to cancellation between different
terms in the oscillator strength sum. The polarizability of the
Be*(2 ?P) state is relatively small because the Be*(2 °P
—225) oscillator strength is negative while all the other
Be*(2 2P—n 2L)f values are positive. The net effect of the
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TABLE V. Convergence of the dipole polarizabilities «aj, alT and the hyperpolarizabilities 7y, 7y, for the Be* ion in the 2P state (in
atomic units). The number of natural parity intermediate states of a given angular momentum are denoted as Ng, Np, Np, and Ny. The number
of unnatural parity intermediate states of a given angular momentum are denoted as Np: and Np:.

(Ng,Np,Np,Np:) a) af (Ng,Np,Np,Np,Npi,Np:) Y0 Y2

(1589,1174,1174,1106) 2.0246197 5.85605426 (1589,1174,1174,1248,1106,1428) 10911.66561 —7372.0881
(2625,2091,2091,2002) 2.0247235 5.85601968 (2625,2091,2091,2307,2002,2640) 10913.22187 —7373.4188
(4172,3543,3543,3413) 2.0247465 5.85601425 (4172,3543,3543,4051,3413,4587) 10913.57650 —7373.6683
(6412,5761,5761,3413) 2.0247537 5.85601346 (6412,5761,5761,6806,3413,4587) 10913.57218 —7373.5698
Extrap. 2.02476(1) 5.856012(1) Extrap. 10913.57(1) —7373.61(5)

cancellations is a reduction in the overall size of the polariz-
ability by a factor of five.

The Coulomb approximation polarizability [17] and the
asymptotically correct wave function polarizabilities [19]
achieve about 1-2% accuracy in «; and «,. This is notice-
ably worse than any of the other polarizabilities listed in the
Table. The older Hylleraas-type calculations by Pipin and
Woznicki [18] used the variation-perturbation approach to
estimate the polarizabilities (as opposed to oscillator strength
sum rules). Their value of a;=24.5 [18] is compatible with
the present value but not nearly as precise as the Hylleraas
polarizability. The variation-perturbation calculations using
the FCCI wave function [20,21] gave polarizabilities that
agree with the present Hylleraas polarizabilities to better than
0.01%.

The present results for the Be*(2 2P) state are the only
results reported for the higher order polarizabilities and the
hyperpolarizabilities. Previously Mérawa and Rérat reported
the calculations for a; and alT for the Be*(22P) state using
the time-dependent gauge-invariant method (TDGI) [51], but
the underlying structure model for this approach is less ac-
curate than the present calculations and we do not include
their numerical values in Table VI. The overall level of
agreement between the Hylleraas and HFCP calculations is
very impressive when it is considered that there are signifi-

cant numerical cancellations in the calculation of «;, that lead
to a small value.

C. Effective potential for beryllium Rydberg state

Recently there have been a number of investigations of
ion polarizabilities based on the interpretation of resonant
excitation stark ionization spectroscopy (RESIS) [12,14-16].
The energy splitting of adjacent Rydberg levels with AL=1
is used to determine the parent ion polarizabilities. One re-
cent finding has been an increased appreciation of the impor-
tance of nonadiabatic and higher order polarizability terms
proportional to r~7 and r~8 in the interpretation of the RESIS
spectra.

Table VII summarizes all the parameters necessary to de-
fine the polarization series given by Eq. (7) for the Be* ion
ground state. The data are presented since the neutral beryl-
lium series represents an ideal system upon which to validate
the underlying assumptions used in the analysis of the RESIS
experiment. The nonadiabatic effects are strong [the nonadia-
batic dipole polarizability of B8;=—-81.78175(1) dominates
the quadrupole polarizability of a,=53.7659(2) in the evalu-
ation of Ag=-218.4622(1)] and all the “Hylleraas” polariz-
abilities listed in Table VII would have an overall level of
precision better than 0.1%. Although no experiment has been

TABLE VI. Comparisons of the static polarizabilities and hyperpolarizabilities (in atomic units) for the 2 2§ and 2 %P states of Be*

ion.
2 28 state
Method a ay a3 Y0
Coulomb approximation [17] 24.77
Variation-perturbation Hylleraas CI [18]  24.5
Asymptotic correct wave function [19] 24.91 53.01 465.7
Variation-perturbation FCCI [20,21] 24.495 53.774(24) 465.79(11)
HFCP 24.493 53.760 465.77 —11511
Hylleraas 24.4966(1) 53.7659(2) 465.7621(1) —11521.30(3)
22P state
Method ) alT a o Y% 0%
HFCP 2.028 5.835 62.313 1208.8 10996 =7450.4
Hylleraas 2.02476(1) 5.856012(1) 62.2840(1) 1207.812(2) 10913.57(1) -7373.61(5)
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TABLE VII. The polarizability parameters and coefficients A, of the polarization potential Eq. (7).

Method 23] Bl ay as 51 n €
Hylleraas  24.4966(1) 81.78175(1) 53.7659(2) 58.1169(1) 465.7621(1) 279.16401(2) 917.569(1)  1043.27(1)
HEFCP 24.494 81.751 53.760 58.106 465.77 278.94 917.37 1038.7

Ay Ag Aq Agt
Hylleraas  12.24830(5) —218.4622(1) —905.445(2) 9366.857(1) 1004.99051(8)
HFCP 12.247 -218.37 -904.99 9357.2 1004.2

done, a RESIS experiment upon neutral beryllium would
provide a stringent test on the ability of an analysis based on
Eq. (7) to extract polarizabilities from a typical RESIS spec-
trum.

D. Long-range dispersion coefficients

Tables VIII and IX list the long-range dispersion coeffi-
cients for the Be™ ion interacting with the H, He, and Li
atoms. Table VIII lists dispersion coefficients when both at-
oms or ions are in their ground states. Table IX gives disper-
sion coefficients when one of the systems in an excited state.
All of the dispersion coefficients have been calculated inde-
pendently using the Hylleraas and HFCP wave functions.
Besides the wave functions, the procedures used to combine
the lists of matrix elements were completely independent. As
far as we know, the data listed in Tables VIII and IX are the
only dispersion coefficients published for these systems.

The level of agreement between the two sets of C,, values
is generally excellent. For example, the largest difference
between any of the dispersion constants listed in Table VIII
is only 0.06%, occurring for the Be*(2 2S)-Li(2 2S) value of
Cs.

The high level of agreement also occurs for the C,, values
listed in Table IX, the only case of a greater than 1% differ-
ence occurring for the Be*(2 2P)-Li(2 2S) dimer. In this case,
the roughly 3% disagreement occurs as a result of the previ-
ously mentioned cancellations in the oscillator strength sum

TABLE VIII. The long-range dispersion coefficients C¢ and Cy
for a ground state Be* ion interacting with a H, He, and Li atom.
The first row for each system came from Hylleraas wave functions
while the second row were computed with HFCP wave functions.

System Ce Cy
Be*(2 29)-H(1 29) 18.8314(1) 371.675(5)
18.829 371.62
Be*(2 25)-He(1 18) 6.9811(1) 120.425(3)
6.979 120.44
Be*(2 25)-He(2 15) 621.577(2) 41371.9(1)
621.52 41370
Be*(2 25)-He(2 35) 400.289(3) 19753.9(2)
400.26 19753
Be*(2 25)-Li(2 %) 286.75(1) 11991.1(2)
286.82 11998

for the Be*(2 2P) polarizability. The net effect of the cancel-
lations is a reduction in the overall size of the dispersion
constants by a factor of about 100. For example, the first
term (A=0) of Eq. (52) of Tang er al. [26] was —115.545
while the second term (A=2) was 117.3969.

We do not list dispersion coefficients for the state combi-
nations that allow Penning or associative ionization (this oc-
curs when the excitation energy of one atom is sufficient to
cause ionization in the other atom). When this is possible,
there is a singularity in the energy denominator of the oscil-
lator strength sum rules which makes it problematic to
achieve convergence.

All the values in Table VIII and IX provide an important
benchmark for the accurate determination of the interaction
potentials between Be™ ion and the H, He, or Li atoms. The

TABLE IX. The long-range dispersion coefficients Cg, and Cg
for a Be* ion interacting with a H, He, and Li atom for the atomic
states with a combined angular momentum of L=1. The M, column
denotes the total magnetic quantum number of the system. The first
row for each system came from Hylleraas wave functions while the
second row were computed with HFCP wave functions.

System M, Ce Cg
Be*(2 2P)-H(1 25) 0 38.53656(1)  1291.81(1)
0 38571 1292.7
Bet(22P)-H(12S) =1 17.12124(1)  172.578(1)
=1 17.128 172.67
Be*(2 2P)-He(1 ') 0 11.64784(1)  438.3026(6)
0 11660 438.63
Be*(2 2P)-He(1'S) =1  6.028208(7)  34.0606(3)
+1  6.030 34.113
Be*(2 25)-He(2 *P) 0 791.311(4) 93960.4(9)
0 791.52 93960
Bet(2 25)-He(2°P) +1  373.997(3) 3547.53(8)
+1 37425 3553.1
Be*(2 2P)-Li(2 %) 0 —326.06(8) —3.613643(6) X 10°
0 -325.74 -3.52050 % 10°
Be*(2 2P)-Li(22S) *1  232(4) ~1.214626(3) X 10°
1 23964 ~1.1836 X 103
Be*(2 25)-Li(2 2P) 0 925.279(2) 1.043315(3) X 10°
0 925.49 1.0438 X 103
Be*(2 29)-Li(22P)  *1  420.470(1) 3804.79(4)
+1  420.53 3806.7
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BeH" ion is one of the few molecular ions [3] for which a
potential curve could be computed with an explicitly corre-
lated wave function. Hence the present values for the Be*-H
long-range interaction could be used to help construct a very
accurate global potential surface for this system.

IV. CONCLUSION

Fully correlated Hylleraas variational wave functions
have been used to determine definitive values for the oscil-
lator strengths, polarizabilities and hyperpolarizabilities for
the Be* ion 2 %S ground state and the 2 P excited state. The
Hylleraas results for the polarizabilities of the 2 S state im-
prove the accuracy of previous values by more than one or-
der of magnitude. Complementary calculations using a semi-
empirical method have also been done. The high level of
agreement between the two calculations at the 0.1% level of
precision attests to the utility of carefully formulated effec-
tive potential approaches, which can give good descriptions
of atomic structure with low computational expense.

The long-range dispersion coefficients for the Be* ion in-
teracting with a H, a He, or a Li atom have been evaluated.
The polarizabilities and dispersion coefficients provide reli-
able references for the description of ion-atom collisions in-
volving Be* ion and also for high precision calculations of

PHYSICAL REVIEW A 80, 042511 (2009)

the potential curves between the Be™ ion and atoms such as
H, He, or Li.

In addition, all the parameters of the effective polarization
potential for the Be* ion up to the r™® term have been ob-
tained. These parameters are extremely useful in the descrip-
tion of high-L Rydberg states of beryllium, and could be used
in future experiments to determine the ionization potential of
beryllium and also to describe the fine structure of beryllium
atom Rydberg series. Furthermore, the present calculations
lay the foundation for the further investigations of relativistic
and QED effects on the polarizabilities and other properties
of the Be™ ion.
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