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Two-photon transitions between atomic states of total electronic angular-momentum Ja=0 and Jb=1 are
forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang
theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is
impossible to construct a total angular-momentum J2�=1 quantum-mechanical state of two photons that is
permutation symmetric, as required by Bose-Einstein statistics. In atoms with nonzero nuclear spin, the selec-
tion rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-
induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evalu-
ated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external
magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-
state sublevels, and off-diagonal mixing of states with different total electronic angular momentum in the final
state. The present theoretical treatment is relevant to the ongoing experimental search for a possible Bose-
Einstein-statistics violation using two-photon transitions in barium, where the hyperfine-induced transitions
have been recently observed, and the magnetic-field-induced transitions are being considered both as a possible
systematic effect, and as a way to calibrate the measurement.
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I. INTRODUCTION

Among the selection rules for two-photon transitions
�1–4�, there is a peculiar rule that forbids to all orders
Ja=0→Jb=1 transitions when the two photons are collinear
and degenerate �i.e., when their frequencies are the same�,
even when the transition is allowed for nondegenerate pho-
tons. This selection rule has the same origin as the Landau-
Yang theorem �5,6� that forbids a vector particle, i.e., a par-
ticle with intrinsic angular momentum one, to decay into two
photons. It arises because, for two photons, it is impossible
to construct a quantum-mechanical state that would corre-
spond to total angular-momentum J2�=1 and would be sym-
metric with respect to permutation of the two photons, as
required by Bose-Einstein �BE� statistics.

It is just this selection rule that is the basis of the experi-
ment �3,7� with two-photon atomic transitions in barium that
has searched for and set stringent limits on a possible small
violation of the BE statistics for photons. A more recent ver-
sion of the experiment �8–10�, using an improved experi-
mental technique, has further tightened the limit on a pos-
sible statistics violation for photons. The probability for two
556-nm photons to be in a “wrong” permutation-symmetry
state has been constrained to be less than 3·10−11.

In the experiment of Refs. �9,10�, two independent tun-
able narrow-band cw dye lasers with orthogonal polariza-
tions are locked to an in-vacuum optical power-buildup
cavity �PBC�. An atomic beam of barium, moving perpen-
dicularly to the PBC optical axis, passes through the coinci-
dent waists of the laser beams at the cavity’s center. The sum

of the frequencies of the photons from the two lasers is
scanned over the frequency of the two-photon resonance be-
tween the ground 6s2 1S0 and the excited 5d6d Jb=1 states
�relevant energy levels of Ba I are listed in Table I�. Fluores-
cence from the upper state is monitored.

When the two lasers are frequency locked to the same
optical mode of the PBC, the photons are degenerate, and the
transition is forbidden by the above-mentioned selection
rule. However, when the lasers are locked to different modes
of the cavity, there arises a nonzero transition probability that
scales as the square of the frequency difference between the
two lasers. This signal is used to calibrate the sensitivity of
the experiment to a possible forbidden transition.

Of the seven stable barium isotopes, only two have non-
zero nuclear-spin I: 135Ba �6.6% natural abundance, I=3 /2�
and 137Ba �11.2%, I=3 /2�. The present paper is a theoretical
investigation of how hyperfine interactions relax the strict
suppression of degenerate two-photon transitions. We iden-
tify two distinct mechanisms that are responsible for the
hyperfine-interaction-induced �HFI� two-photon transitions:
hyperfine splitting of the intermediate state of the transition,
and off-diagonal mixing of the states of different total elec-
tronic angular-momentum �mostly mixing of state b with c in
the case of Ba, see Table I�.

We note that, while we are not aware of any previous
studies of HFI two-photon transitions, there are several other
situations where hyperfine interactions render nonzero am-
plitudes to forbidden transitions. These include J-forbidden
transitions relevant to atomic clocks based on trapped ions
and neutral atoms, forbidden transitions in highly charged
ions, and highly suppressed magnetic-dipole transitions of
relevance to atomic parity-violation experiments �see, for ex-
ample, Problems 1.11 and 3.18 in Ref. �11� and references
therein�.*budker@berkeley.edu
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Apart from hyperfine interactions, the degenerate two-
photon-transition selection rule is also relaxed, even for zero-
nuclear-spin atoms, by application of an external magnetic
field. This is related to the modification of the Landau-Yang
theorem in the presence of a magnetic field considered in
Ref. �12�. Once again, there are two mechanisms at play here
as in the case of the HFI transitions: Zeeman splitting of the
intermediate-state sublevels, and off-diagonal mixing of the
final state with states of different total electronic angular mo-
menta. The former effect has been investigated in Ref. �13�
using numerical methods. Below, we present an analytical
treatment of both effects.

II. HFI TRANSITIONS: A QUALITATIVE DISCUSSION

The BE suppression of a Ja=0→Jb=1 degenerate two-
photon transition can be understood as destructive interfer-
ence between alternate quantum paths connecting the initial
state a to the final state b �one possible example is illustrated
in Fig. 1�. While degenerate two-photon transitions between
the states of total angular momentum �Fa→Fb� other than
0→1 are not BE-statistics forbidden; in the absence of hy-
perfine mixing and energy shifts, the presence of the
nonzero-spin nucleus does not allow the transition because
the underlying electronic transition is still the degenerate
Ja=0→Jb=1 case.

We identify two distinct mechanisms by which this per-
fectly destructive interference can be spoiled by hyperfine

interactions. Consider a transition between specific hyperfine
levels �illustrated in Fig. 2� which proceeds via intermediate
Jn=1 states. The first mechanism is the hyperfine splitting of
the intermediate Jn=1 states. Their slightly different energies
result in slightly different energy denominators associated
with the quantum paths that would otherwise cancel. The
second mechanism �illustrated in Fig. 3� is off-diagonal mix-
ing of states of different total electronic angular momenta.
While, in principle, both the initial and the final states can be
mixed, the effect in the transitions of interest in barium is
dominated by the mixing of the final state b with nearby
states c of the same parity with Jc=2.

III. CALCULATION OF THE HFI AMPLITUDES

A. General expression

The starting point of our calculation is the general expres-
sions for the amplitude of a degenerate two-photon �E1-E1�
transition �see the derivation of similar expressions in Ref.
�14�� between specific hyperfine-structure components Fa
and Fb of the initial and the final level

Wb,a = �
�=0

2

�
Q=−�

�

�− 1�QAQ
� P−Q

� . �1�

Here, � is the tensorial rank, whose range �0–2� is deter-
mined by the possible values of the total angular momentum
associated with a system of two photons;

TABLE I. Relevant energy levels in Ba I �18� and the hyperfine-structure constants for 135Ba.

Label Parity
E

�cm−1�
E−Eb

�cm−1� Designation
A

�MHz�
B

�MHz� Reference

a Even 0 6s2 1S0

n Odd 18060.261 6s6p 1P1 −98.16�14� 34.01�22� �16�
b Even 35933.806 5d6d 3D1 −103.7�6� −6.9�7� �10�
c Even 35616.949 −317 6s7d 3D2 298�5� 14.7�5� �17�
c� Even 35762.187 −172 6s7d 1D2 34.1�3� 3�2� �17�

Even 36200.412 267 5d6d 3D2 22�1� −10�3� �17�
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∆

FIG. 1. �Color online�. A two-photon transition between Ja=0
and Jb=1 states must proceed via a virtual intermediate state with
Jn=1. There are two quantum paths between the initial and the final
state that differ by the order of absorption of the photons, and which
cancel each other in the case of degenerate photons. The transition
to one particular upper-state Zeeman component �MJ=0� is shown
as an example.
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FIG. 2. �Color online�. With the addition of nuclear-spin
I=3 /2, hyperfine-structure splitting in the intermediate-states n may
lift the cancellation between the two quantum paths of the two-
photon transition. Zeeman splitting of the intermediate state has a
similar effect �see text�.
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P−Q
� = �

q1,q2=−1

1

�1,q1,1,q2��,− Q��q1

1 �q2

2 , �2�

where �1,q1 ,1 ,q2 �� ,−Q� are the Clebsch-Gordan coeffi-
cients, is a tensor built out of the polarization vectors of the
two light fields ��q1

1 ,�q2

2 are the spherical components of the
polarization vectors�; and where

AQ
� = �− 1�Fb−Mb	 Fb � Fa

− Mb Q Ma

A�, �3�

where the term in parentheses preceding A� is a 3j symbol;
and where

A� = �− 1�2I+2Fa+Fb��2� + 1��2Fa + 1��2Fb + 1�

� �
Fn=�Jn−I�

Jn+I

�− 1�2Jn+Fn�2Fn + 1�

��Fn Fb 1

� 1 Fa

� Jn Fn I

Fb Jb 1

� Jn Fn I

Fa Ja 1

�dan�

� �dbn�	1 + �− 1��

Eb+Ea

2 − En

 . �4�

In this expression, I is the nuclear spin; a single intermediate
state of total electronic angular-momentum Jn is assumed
�otherwise, a summation over intermediate states should be
done�; �� denote 6j symbols; �d� denote the reduced electric-
dipole matrix elements in the J basis and do not depend on
the total angular-momentum F. Expression �4� can be de-
rived in a straightforward way using angular-momentum
theory �Ref. �15�, for example�.

B. Intermediate-state-splitting effect

Examining the expression in the parentheses of Eq. �4�,
we see that the amplitudes of odd rank � identically vanish
for the present case of degenerate two-photon transitions. In
the absence of the hyperfine interactions, all other amplitudes
also vanish for the case of Ja=0, Jb=1. For zero spin I=0,
we have Fa=0, Fb=1 and the triangle rules for Eq. �3� re-

quire �=1. For nonzero nuclear spin, the sum over Fn in Eq.
�4� turns to zero for ��1 even though individual contribu-
tions may be finite.

However, this is no longer the case when we take into
account the hyperfine splitting in the intermediate state

En =
Eb + Ea

2
+ � +

An

2
Cn

+
Bn

8
	3Cn�Cn + 1� − 4I�I + 1�J�J + 1�

I�2I − 1�J�2J − 1� 
 , �5�

where � is the energy difference between the state n �before
including the HF splitting� and the midpoint between the
energies of the states a and b. The last two terms in Eq. �5�
are the HF splitting; An and Bn are the magnetic-dipole and
electric-quadrupole hyperfine constants, and

Cn = Fn�Fn + 1� − Jn�Jn + 1� − I�I + 1� . �6�

Because of the energy shifts of Eq. �5�, the energy denomi-
nators in Eq. �4� now depend on Fn, and the sum over Fn is
not necessarily zero. The amplitudes of the specific Fa→Fb
components of the transition Ja=0→Jb=1 are first order in
An /� and/or Bn /�.

C. Off-diagonal mixing effect

A small hyperfine-interaction-induced admixture to the
upper state Fb of a state of the same parity and total angular
momentum, but with a total electronic angular-momentum
Jc�Jb, can be described by a mixing coefficient

��Fb I Jc

1 Jb I

Acb + �Fb I Jc

2 Jb I

Bcb� �− 1�Jb+I+Fb

Eb − Ec
,

�7�

where Acb and Bcb are the off-diagonal magnetic-dipole and
electric-quadrupole hyperfine-mixing coefficients, respec-
tively. This form follows directly from perturbation theory
and angular-momentum algebra. The two-photon transition
amplitude induced by the mixing effect is calculated as the
product of this mixing coefficient and the A� of Eq. �4� with
a substitution of Jb→Jc and �dbn�→ �dcn�. The resulting am-
plitudes are first order in Acb / �Eb−Ec� and/or Bcb / �Eb−Ec�.

For the Ba transition of present interest, there are three
states �see Table I� with J=2 close to the final state
5d6d 3D1, namely, 5d6d 3D2, 6s7d 1D2, and 6s7d 3D2. The
energy separations for all three states are comparable �fourth
column of Table I�. Note that here, we follow level assign-
ments from Ref. �18�. In Ref. �19�, the level at 35762 cm−1

is listed as 3D2, not 1D2. As we derive below, a large mag-
netic hyperfine splitting is expected for a triplet state of the
6s7d configuration, so the fact that the splitting is small sup-
ports the term assignment of Ref. �18�. Note also that various
properties of these and other nearby levels, including mea-
surement of their unusually high electric polarizabilities,
polarization-dependent photoionization cross sections, and
lifetimes have recently been reported in Refs. �20,21�.

Hyperfine interactions are sensitive to the wave function
near the origin. The 6d and 7d orbitals are rather weakly

+2 +1 0 −1 −2MJ
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FIG. 3. �Color online�. Off-diagonal hyperfine interaction mixes
the upper state with nearby states with Jc�1, which leads to a
nonvanishing degenerate two-photon amplitude. Upper-state mixing
can also be induced by an external magnetic field.
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bound, defuse orbitals. Because of this, their contribution to
the hyperfine amplitudes is strongly suppressed, so that the
main contribution to the hyperfine amplitudes between states
of interest should come from the 6s and 5d orbitals. The
former does not contribute to the quadrupole term but gives
the largest contribution to the magnetic term. The latter con-
tributes to both terms, but these contributions are suppressed
by the strong centrifugal barrier. Below we assume that the
magnetic 6s amplitude is much larger than both 5d ampli-
tudes.

Hyperfine interactions are short range, so they are the
strongest for the lowest allowed partial wave. For the mag-
netic interaction, the largest contribution comes from the s
wave. The electric-quadrupole interaction for s electrons is
zero, so the dominant contribution, in this case, comes from
the p wave. In the single-particle approximation, going to the
next partial wave typically results in the loss of the strength
of the interaction by an order of magnitude. Because of this,
hyperfine constants for d states are usually dominated by
electron-correlation effects �see, for example, Refs. �22,23��.
In the approximation where only the s electrons contribute,
and where we ignore the contributions that require configu-
ration mixing in both states �i.e., the contributions propor-
tional to the product of two small mixing amplitudes�, we
can neglect the mixing between the final state b �5d6d 3D1�
and the state 5d6d 3D2 and focus on the admixtures of state
b with states c �6s7d 3D2� and c� �6s7d 1D2�.

Let us start with the hyperfine mixing of state b with state
c. Nominally, the levels b and c cannot be mixed by hyper-
fine interactions, which are described by a one-electron op-
erator that can only mix configurations that differ by one
electron at most. However, the HFI mixing is allowed by
configuration mixing.

According to the configuration-mixing analysis of Ref.
�19�, the two relevant states can be written as

�b� = �0.73�5d6d 3D1� + �0.064�6s7d 3D1� , �8�

�c� = �6s7d 3D2� , �9�

so that the state c can be considered pure.
The magnetic-dipole hyperfine-interaction operator can

generally be written as Ĥhfs= I� ·V� , where V� is a pseudovector
operator related to the electronic spin and orbital angular-
momentum operators �15�. With this, we write �using formu-
las given in Ch. 4 of Ref. �15��:

�c�Ĥhfs�b� = �0.064�6s7d 3D2�Ĥhfs�6s7d 3D1�

= �0.064�− 1�1+I+Fb�Fb I 2

1 1 I



��6s7d 3D2��V��6s7d 3D1��I��I��I� . �10�

The nuclear reduced matrix element is �I��I��I�
=�I�I+1��2I+1�, and we can relate the reduced matrix ele-
ment of V� to the hyperfine-structure constant of the level c
by writing a formula for the hyperfine shift in the hyperfine
component of the state �c� with total angular-momentum
Fc=Fb in a way analogous to Eq. �10�:

�c�Ĥhfs�c� = �− 1�2+I+Fb�Fb I 2

1 2 I



��6s7d 3D2��V��6s7d 3D2��I��I��I� . �11�

On the other hand, from the definition of the hyperfine con-
stant Ac, we also have

�c�Ĥhfs�c� = Ac�c�I� · J��c� = Ac
Fb�Fb + 1� − Jc�Jc + 1� − I�I + 1�

2
.

�12�

Comparing Eqs. �11� and �12�, for example, for a specific
case of Fb=3 /2, we obtain

�6s7d 3D2��V��6s7d 3D2� = �30Ac. �13�

Finally, we need to relate the diagonal and off-diagonal re-
duced matrix elements of V� in Eqs. �10� and �13�. From the
Wigner-Eckart theorem, we can write the matrix elements for
specific MJc

=1 components

�3D2,1�V� �3D2,1� = �− 1�2−1	 2 1 2

− 1 0 1

�3D2��V��3D2� ,

�14�

�3D2,1�V� �3D1,1� = �− 1�2−1	 2 1 1

− 1 0 1

�3D2��V��3D1� ,

�15�

where, for compactness, we are no longer explicitly writing
the electron configurations. Using these equations and Eq.
�13�, we obtain

�3D2��V��3D1� =
�3D2,1�V� �3D1,1�

�3D2,1�V� �3D2,1�
�10Ac. �16�

Explicitly, the 6s7d 3DJc
, MJc

=1 states can be written as

�3D2,1� =
1
�3

�s↓��d2↓� +
1

2�3
�s↑��d1↓� +

1

2�3
�s↓��d1↑�

−
1
�2

�s↑��d0↑� , �17�

�3D1,1� =�3

5
�s↓��d2↓� −

�3

2�5
�s↑��d1↓� −

�3

2�5
�s↓��d1↑�

+
1

�10
�s↑��d0↑� , �18�

where electron spin projection is designated by an up or
down arrow, and electron orbital angular-momentum eigen-
states are written �m, where � is the orbital angular momen-
tum �s=0, d=2�, and m is the magnetic quantum number.
We can now explicitly evaluate the matrix elements
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�3D2,1�V� �3D2,1� = 	1

3
+

1

12

�s↓�V� �s↓� + 	1

2
+

1

12

�s↑�V� �s↑�

=
1

6
�s↑�V� �s↑�; �19�

�3D2,1�V� �3D1,1� = 	 1
�5

−
1

4�5

�s↓�V� �s↓� + 	−

1

4�5
−

1

2�5



��s↑�V� �s↑� = −
3

2�5
�s↑�V� �s↑� . �20�

Substituting these results into Eq. �16�, we obtain

�3D2��V��3D1� = − 9�2Ac, �21�

and, substituting into Eq. �10�, we get

�c�Ĥhfs�b� � 3.2�− 1�I+Fb�Fb I 2

1 1 I

�I�I + 1��2I + 1�Ac.

�22�

Comparing Eqs. �22� and �7�, we obtain

Acb � − 3.2�I�I + 1��2I + 1�Ac. �23�

Calculation of the mixing of the state b with the state c�
�6s7d 1D2� can be done in the same way. If we write the
wave function for MJc�

=1 as

�1D2,1� =
1
�2

��s↑��d1↓� − �s↓��d1↑�� , �24�

we find that, under the adopted approximations, the hyper-
fine splitting of the singlet state c� vanishes as

�1D2,1�V� �1D2,1� =
1

2
��s↑�V� �s↑� + �s↓�V� �s↓�� = 0. �25�

Experimentally, we indeed find that the magnetic hyperfine
constant for the state c� is an order of magnitude smaller than
those for the nearby triplet states of the same configuration.
Next, using Eqs. �18� and �24� we evaluate the off-diagonal
matrix element

�1D2,1�V� �3D1,1� = −
�3

2�10
��s↑�V� �s↑� − �s↓�V� �s↓��

= −� 3

10
�s↑�V� �s↑� . �26�

From Eqs. �26� and �19�, we have:

�1D2,1�V� �3D1,1�

�3D2,1�V� �3D2,1�
= −

6�3
�10

. �27�

Finally, using the Wigner-Eckart theorem, and taking into
account Eq. �13�, we obtain for the reduced matrix elements
of V�

�1D2��V��3D1� = − 6�3Ac, �28�

and from an expression analogous to Eq. �10� combined with
Eq. �7�,

Ac�b � − 2.6�I�I + 1��2I + 1�Ac. �29�

Since the energy intervals between the state b and the states
c and c� are comparable, Eqs. �23� and �29� indicate that the
states c and c� are mixed into the state b in comparable
amounts, despite the smallness of the hyperfine splitting in
the singlet state c�.

IV. RESULTS FOR SPECIFIC LIGHT POLARIZATIONS

Using the formulas derived above, we now perform spe-
cific calculations for the two-photon transition in 135Ba and
137Ba as an example. We envision an experimental arrange-
ment where two counter-propagating laser beams interact
with barium atoms. We assume that during the transition, a
single photon is absorbed from each of the beams. While it is
possible for two photons from the same beam to be absorbed,
these two scenarios can be distinguished by their different
spectral profiles: Doppler-free in the former case, and
Doppler-broadened in the latter.

In order to develop intuition for the relative importance of
various effects, we first calculate the transition rates in terms
of the magnitude squares of the irreducible amplitudes A�

�see Table II� summed over all possible final magnetic sub-
levels and averaged over the initial sublevels. Then the val-
ues of the amplitudes for the splitting and mixing effects are
calculated �see Table III� using the known values of the
hyperfine-structure constants for the single, dominant,
intermediate-state 6s6p 1P1 at 18060.261 cm−1 �see Table I�.
In Table III, we have multiplied the calculated values
of A� by �2�� /Anorm�2, where �= �Eb+Ea� /2−En, and
Anorm=100 MHz, so that “1” in the resulting units roughly
corresponds to a two-photon transition probability sup-
pressed by �� /An�2�109 compared to an allowed two-
photon transition with similar parameters such as, for ex-
ample, the separation �.

A. What happens in a power-buildup cavity?

In the experiments of Refs. �9,10�, light with orthogonal
linear polarizations from two single-frequency cw dye lasers
is coupled, from opposite directions, into a Fabry-Perot

TABLE II. Resonant degenerate two-photon transition rate per
atom for Fa=3 /2→Fb, where �̂1 and �̂2 are the photon polariza-
tions, and A� is the rank-� irreducible component of the total am-
plitude �Eq. �4��. The expressions are general, for amplitudes that
are irreducible of rank 0–2. In our application, A1=0. The values of
A�, for ��1, are found in Table III.

�̂1�̂2 Fb Rate

x̂ẑ 1
2 , 3

2 , 5
2

1
120�5�A1�2+3�A2�2�

ẑẑ 1
2 , 5

2
1

1204�A2�2

ẑẑ 3
2

1
120�10�A0�2+4�A2�2�

�̂+�̂−
1
2 , 5

2
1

120�5�A1�2+ �A2�2�
�̂+�̂−

3
2

1
120�10�A0�2+5�A1�2+ �A2�2�

�̂+�̂+
1
2 , 3

2 , 5
2

1
1206�A2�2
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power-buildup cavity. Assuming equal intensities and fre-
quencies of the two light beams and an ideal high-finesse
cavity, each of the input beams establishes a standing wave
in the cavity with a corresponding linear polarization. A su-
perposition of two such waves with orthogonal polarizations
is also a standing wave; however, the polarization of the
resultant wave depends on the �arbitrary� phase between the
two laser beams, and could be any elliptical polarization with
a restriction that a principal axis of the polarization ellipse be
at � /4 to each of the laser polarizations. Thus, the experi-
mental situation can be described as when the two photons in
the above formulas are of the same elliptical polarization.
The time-averaged signal can be found by averaging the cal-
culated signal over the relative phase of the two laser fields.

Because the two-photon transition rate goes as the product
of the two lasers’ intensities, a power-buildup cavity greatly
increases �by a factor of �104 in the case of �9,10�� the
excitation rate when the transition is allowed. But the en-
hancement comes at the expense of a complicated lineshape:
Atoms enter the laser beams with a distribution of velocities
and entry points, and sample different intensities in the light
beam, resulting in an asymmetrical ac Stark broadened and
shifted resonance �Ref. �24�, for example�.

B. Comparison with experiment

The details of the experimental procedure and results of
the measurement of the HFI transitions will be presented

elsewhere �10�. Briefly, when the two lasers driving the a
→b transition are detuned in frequency from each other �up
to 60 GHz in our experiment�, we observe a spectral profile
�Fig. 4, top trace� with peaks evident for all the isotopic �for
the isotopes with abundance in excess of 1%� and hyperfine
components of the transition. As the frequencies of the two
lasers are tuned toward the same value, the signal decreases
in proportion to the inverse square of the frequency detuning
of the two lasers. However, at the point of degeneracy, while
there is no trace remaining of the zero-spin isotopes, weak
lines remain standing for the nonzero-spin isotopes. The in-
tensity of these lines corresponds to a suppression of �109

compared to an allowed two-photon transition.
The observations are in qualitative agreement with the

theoretical analysis presented in this work, assuming
Rc��dnc� / �dnb��1, Rc���dnc�� / �dnb��0.7, and that the
mixing AMix

� and splitting ASplit
� amplitudes are of opposite

sign. Nominally the n→b transition is a two-electron
transition, while the n→c and n→c� transitions are one-
electron singlet-triplet and singlet-singlet transitions, respec-
tively. Knowing nothing else, we would expect that
�Rc��	 �Rc�	1. However, all three even levels are strongly
mixed. Simple test calculations show that configurational
mixing leads to corrections to the amplitudes on the order of
unity. That makes any quantitative theoretical conclusions
very difficult, but shows that �Rc����Rc��1 is plausible.

In future work, we will perform quantitative analysis of
the intensity ratios of various HFI transitions. These mea-
surements will allow us to measure the off-diagonal
hyperfine-mixing parameters, and compare them with the
forthcoming atomic-structure calculations. We note that this
technique provides a way to measure the phase of the ad-
mixed configuration.

V. MAGNETIC-FIELD-INDUCED TRANSITIONS

The amplitude of a two-photon transition in the presence
of an external magnetic field B=B0ẑ is a special case of a
three-photon amplitude, where the third photon corresponds
to the static magnetic field. A general consideration of such
amplitudes is rather cumbersome, and the irreducible tensor
formalism does not appear particularly useful here. There-
fore, we write the two-photon transition amplitude in a re-
ducible form �Ref. �15�, Sec.4.3.6�

Wb,a = �
q1,q2

�− 1�q1+q2Aq1,q2
�−q1

1 �−q2

2 , �30�

Aq1,q2
= �

n

�b�dq1
�n��n�dq2

�a� + �b�dq2
�n��n�dq1

�a�

Eb + Ea

2
− En

. �31�

As above, we can restrict the sum of Eq. �31� to the magnetic
sublevels of the single intermediate state. We now neglect
hyperfine structure, but account for the Zeeman splitting of
the intermediate state: En→En+
0gnB0Mn. Here, 
0 is Bohr
magneton and gn is the Landé factor of the state n �for the
dominant intermediate-state 6s6p 1P1 for our barium case,
gn=1.02 �18��.

TABLE III. Resonant degenerate two-photon transition ampli-
tudes due to splitting �ASplit

� � of the intermediate states and mixing
�AMix

� � in the final states, calculated in 135Ba and 137Ba. The ratios
Rc= �dnc� / �dnb�, Rc�= �dnc�� / �dnb�, have not been measured. All
amplitudes have been multiplied by �2 /Anorm�dan��dnb�, where
�= �Eb+Ea� /2−En, and Anorm=100 MHz. The total amplitude A�

is the sum of ASplit
� and AMix

� , but the relative sign between them is
unknown. Untabulated amplitudes are zero.

Fb �

135Ba 137Ba

ASplit
� AMix

� ASplit
� AMix

�

3
2 0 2.1 0 2.3 0
1
2 2 −0.77 −0.72Rc−1.1Rc� −1.0 −0.81Rc−1.2Rc�
3
2 2 1.6 1.8Rc+2.7Rc� 2.0 2.0Rc+3.1Rc�
5
2 2 −1.5 −2.6Rc−3.9Rc� −1.6 −2.9Rc−4.3Rc�

TABLE IV. Resonant degenerate two-photon amplitude for
Ja=0→Jb=1 transition in the presence of a 1 kG magnetic field
directed along the light-propagation axis. The units are the same as
in Table III. Untabulated amplitudes are zero.

�̂1�̂2

Wa,b
Spl Wa,b

Mix

mb=+1 0 −1 +1 0 −1

x̂ẑ 2.4 −2.4 −0.71 0.71

ẑẑ −1.34

�̂+�̂− 6.7 −0.67

�̂+�̂+
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Expanding the amplitude of Eq. �31� up to the linear
terms in magnetic field, we get

Aq1,q2

�0� =
�dan��dbn�

�
�
Mn

�− 1�Mn−MbK , �32�

Aq1,q2

�1� =

0gnB0�dan��dbn�

�2 �
Mn

�− 1�Mn−MbMnK . �33�

Here, the superscript in parentheses indicate the zeroth and
first-order terms, and, as above, �= �Eb+Ea� /2−En, and we
have defined

K = 	 Jb 1 Jn

− Mb q1 Mn

	 Jn 1 Ja

− Mn q2 Ma



+ 	 Jb 1 Jn

− Mb q2 Mn

	 Jn 1 Ja

− Mn q1 Ma

 . �34�

For the case of Ja=0 and Jb=1, the sum over Mn for the
zero-order amplitude of Eq. �32� turns to zero. The first-order
amplitude of Eq. �33� contains the extra factors Mn, and the
sum does not generally vanish for q1�q2. Note that the am-
plitude of Eq. �33� is suppressed compared to that of an
allowed two-photon transition by a factor on the order of

0gnB0 /�.

The second mechanism through which a magnetic field
induces degenerate two-photon 0→1 transitions is the mix-
ing of the upper level b, Jb=1, with levels c, Jc�1. Since we

have assumed that the magnetic field is applied along the
quantization axis, only sublevels with the same magnetic
quantum number can mix. Moreover, since the magnetic-
dipole operator only connects atomic states of the same elec-
tronic configuration and term �as is well-known, for ex-
ample, in the context of the selection rules for M1
transitions�, the mixing of interest to us only occurs between
the components of the upper-state fine structure with differ-
ent values of the total electronic angular momentum.

Taking into account this mixing, and assuming the upper-
state mixing is dominated by just one level c, we arrive at the
amplitude for the two-photon transition that is first order in

0B0

Ãq1,q2

�1� =

0B0�Scb��dan��dcn�

��Eb − Ec�
�
Mn

�− 1�Jc−Mn	 Jc 1 Jb

− Mb 0 Mb



� �	 Jc 1 Jn

− Mb q1 Mn

	 Jn 1 Ja

− Mn q2 Ma



+ 	 Jc 1 Jn

− Mb q2 Mn

	 Jn 1 Ja

− Mn q1 Ma

� . �35�

Here, we have written the magnetic-moment operator as

� =−
0�J� +S�� and taken into account that J� has only diagonal
matrix elements. This leaves us with the reduced matrix el-
ement �Scb� of spin S� . This matrix element is nonzero for the
components of the same term with �J=1.
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Ba 6s2 1S0 → 5d6d 3D1 excitation
Eb = 35934 cm−1

FIG. 4. �Color online�. Fluorescence intensity of Ba 5d6d 3D1 during two-photon excitation. Upper trace shows nondegenerate excita-
tion: The two photons are separated in frequency by 60 GHz. Lower trace shows degenerate excitation: The two photons have the same
frequency. The horizontal frequency variable is �1+�2−Eb of 138Ba. “Sticks” indicate the line positions of the isotopic and hyperfine
components. Stick heights indicate the calculated relative intensities of the peaks. The two traces are plotted on the same frequency scale
�with a possible mismatch of no more than 50 MHz�. The vertical scale of the lower plot is expanded �100� the upper. The excitation
intensity is �103 to 104 times higher in the case of the lower spectrum than in the upper one. The broad asymmetric line shapes in the lower
trace are due to the ac Stark effect �see Sec. IV A�. Comparison of upper and lower traces shows that the nuclear-spin zero isotopes disappear
during degenerate excitation, and that the relative intensities of the hyperfine components change, in qualitative agreement with calculations.
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For the Ba transition of present interest, the upper Jb=1
state is nominally 5d6d 3D1. The fine-structure “partner”
state 5d6d 3D2 lies only 266 cm−1 higher. Assuming pure
LS coupling, we estimate the mixing matrix element:
�Scb��−3 /�2. There are other nearby states. However, they
belong to the 6s7d configuration and cannot be mixed by
magnetic field.

In principle, two-photon transitions induced by stray mag-
netic fields could lead to false systematic signals in the ex-
periments testing Bose-Einstein statistics for photons. How-
ever, in the current experiment, 
0B0 /��10−7 while
Ahfs /��10−5. So the magnetic field is too feeble to create a
problem at the present level of sensitivity. On the other hand,
applying a stronger magnetic field �see Table IV for a 1 kG
example�, the effect can be used to calibrate the apparatus
without the need to adjust the lasers. In addition, it provides
an additional tool for measuring isotope shifts and hyperfine
splittings, as well as for spectral-line identification.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a theory of the
hyperfine-interaction-induced two-photon transitions that
have recently been observed in experiments �10� searching
for small violations of Bose-Einstein quantum statistics for
photons. There are two distinct physical mechanisms by

which the hyperfine-induced transitions arise, which can be
distinguished by measuring the relative intensities of the
hyperfine-structure components of the transition. Note that
the transition amplitude related to the hyperfine splitting is
calculated from the known hyperfine-structure constants of
the intermediate state, and can thus be used to calibrate the
measurement of the off-diagonal hyperfine mixing in the up-
per state. We were also able to directly calculate the latter
effect for the relevant transition in Ba relating it to the
hyperfine-structure splitting in one of the excited states. We
propose the use of these transitions for measuring off-
diagonal hyperfine-mixing parameters, which could consti-
tute a powerful test of atomic-structure calculations for com-
plex atoms.

Additionally, we have considered the degenerate two-
photon transitions which, rather than being induced by hy-
perfine interactions, are induced by an external magnetic
field. Again, there are two mechanisms that lead to such
transitions: Zeeman splitting of the intermediate state and
off-diagonal mixing in the final state.
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