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Green’s function for multielectron ions and its application to radiative recombination involving
dielectronic recombinations
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We propose a general method to calculate the full Green’s function of multielectron atomic ions. The key
point exists in the usage of L? integrable functions as a complete basis set in a finite region together with an
optical potential to guaranty the outgoing scattering boundary condition. In such a way, the cumbersome
procedure of adjusting boundary conditions in solving the differential Schrodinger equation is avoided. To
show the validity of the method, we studied the radiative recombination involving dielectronic recombinations
of Be-like Hg (Z=80) ions. The radiative damping effect is taken into account naturally in the present method.
The calculated results reproduce well the asymmetric line profile observed in the experiments.
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I. INTRODUCTION

Green’s function plays an important role in understanding
many dynamic processes in atomic systems. Direct calcula-
tion of the Green’s function is a powerful and rigorous the-
oretical way but its application has been so far limited to
single electron or quasi-single-electron systems [1,2] because
huge computational resources are required for multielectron
systems. In principle, all the scattering processes can be stud-
ied by solving the following Schrédinger equation

HUt = EP, (1)

under proper scattering boundary conditions. Here, H is the
Hamiltonian of the total system, E the collision energy, and
WP+ the wave function satisfying a given scattering boundary
condition. The above equation can be solved by the R-matrix
method [3], for instance, if not many open channels are in-
volved. Note that the R-matrix has a numerical difficulty
when the radiative damping is important [4]. Solving directly
the above equation for multielectron ions is still a challeng-
ing work when many open channels are coupled.

Alternatively, the scattering wave function can be written
in an integral form as

(W) =|Wo) + —VIWo) = W)+ GHE)WVIWy).  (2)

E-H+in

Here, W, is the initial state for a given scattering process, V
the residual interaction absent in the initial channel, and 7 a
positive infinitesimal to ensure the outgoing boundary con-
dition. Different from the differential Eq. (1), the boundary
conditions are already taken into account fully in the integral
Eq. (2). The radiative decay can be included by making the
energy complex if necessary. Equation (2) can be further
transformed into a time-dependent equation, which was
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solved to study the protonium formation for antiproton col-
lisions with hydrogen atoms [5]. The key ingredients of the
time-dependent approach are (1) to discretize the space on
the pseudospectral grid for forming a complete basis set (L
integrable basis), (2) to use an energy dependent optical po-
tential for filtering out the outgoing flux and guarantying the
outgoing boundary conditions, and (3) to calculate the scat-
tering wave function by a time-propagation method.

We can use the same approach [6,7] basically to investi-
gate other dynamic processes. But for some processes, for
example, the radiative recombination (RR) correlated with
the dielectronic recombination (DR), it is not practical to
carry out the time-propagation directly because of the two
reasons. (1) Highly accurate calculations are required be-
cause interference effects induce delicate cancellation and
(2) calculations have to be done at many energy points in
order to resolve the energy spectra at fine intervals. These
make the computational time extremely long. In this paper,
we propose an alternative method to solve Eq. (2) without
the time propagation, yet keeping the first two key ingredi-
ents. We present our theoretical method in Sec. II and an
application of the method to the radiative combination in
Be-like Hg ions in Sec. III.

II. THEORETICAL METHOD

The relativistic Hamiltonian of the N-electron system may
be written as (atomic units m=f=e=1 are used throughout
unless otherwise stated)

N

N
H=2, (Cai P+ Bict - z) +2 V(r,r)) = > h;

i=1 T i<j i=1

N N
- 2 (Vef_'f(ri) + Z) + 2 V(l‘i,l'j) = 2 hi=V,.(N). (3)
i=1 1

T i<j i=

Here, c is the velocity of light, a, S the Dirac matrices, Z the
atomic number, V,,(N) the residual interaction and i,j are
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the electron indices. A; is a single-electron Dirac Hamiltonian
defined as h;=cay-p;+Bic>+V, (), with V,;Ar) the effec-
tive potential, which was obtained from the relativistic den-
sity functional theory with the self-interaction correction [8].
a;, and B; operate on the spinor components of the i-th elec-
tron. V(r,-,rj) stands for the electron-electron interactions
which include both the Coulomb and the generalized Breit
interactions (GBI) [9]. The expression of V(r;,r;) used in the
present work is

cos(vr;;)
aj—lL +(a;- V)
Tij ij

V(rn 1) -

x(a;-V )cos(vr !) 1 @)

P,
where r;;=r;—r; and v is the virtual photon energy divided
by c. If we choose v=0, we get the Breit interaction (BIO0) in
the low-frequency limit.

To calculate the Green’s function of the N-electron sys-
tem, we first prepare single-electron wave functions {¢,} by
solving the following Dirac equations

=[ca-p+Bc*+ Vers(r)1¢i = €y, (5)

on a generalized pseudospectral grid [10,11] within a sphere
of a radius r,,,. The wave functions {¢,} form a complete
basis set within the sphere. We divide the wave functions
into two groups, bound states with €;<c? and continuum
states with €>c?. Note that the eigenvalue ¢; contains the
rest energy ¢>. The positron solutions of the above equation
are not used in the subsequent calculations. From the single-
electron wave functions {¢,;}, we construct a configuration
wave function of the N-electron system. The configurations
are divided into two types, bound-type configurations {®, ;}
where all the electrons are in bound states and continuum-
type configurations {@C’j} where one electron is in a con-
tinuum state and all others are in bound states. The configu-
rations with the same (N—1)-electron core structure and a
different continuum wave function with the same €,;j form
an ionization channel. Here, €, are the single-electron or-
bital and total angular momenta. After adding an optical po-
tential V,,,, to Vs, the matrix elements of the single-electron
operator h are written as

<¢z|h|¢j =§ 51]’

o € for bound states
with €= . . (6)
€;—i7y; for continuum states
and y;=(¢|V p,| ¢,;). The energy dependent optical potential
Vopi 18 expressed as

0 for r<r.

V(,p[(E,V) = V()( r—=re ) for r= r. (7)
Fmax c

-

with €2/ (rpax—710) < Vo< €*(rmax—re) [5,12]. Here, r, is
the starting position of the optical potential. Mathematically,
introducing v; is equivalent to adding a filter to absorb the
outgoing wave [7]. Using a unified notation {d;} to represent
both the bound configurations {®, ;} and the continuum con-
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figurations {®, ;}, we get the matrix elements for configura-
tion mixing as

Hy o = (D H| D). (8)

The coupling coefficients of the spin-angular momenta and
the angular coefficients of the multipole transition matrix
elements are calculated by ANCO package by Gaigalas and
Fritzsche [13]. Note that the H matrix is not Hermitian but
symmetric complex since we have introduced the complex
optical potential V,,, and it contains both diagonal and off-
diagonal matrix elements of the Breit interaction. Diagonal-
izing the H matrix, we obtain the eigenenergies {E;} and the
eigenfunctions {¥;=2,A,®,}, which are calculated once for
all. The Green’s function of the scattering system with total
scattering energy E is expressed as

GH(E) =2 |¥)

i

E_E+i 77<‘1’,-|- )

The dynamic processes can be studied by the Green’s func-
tion once we obtain {¥;} and {E;}.

To test the idea, we calculated the photoionization cross
sections of hydrogen atoms by the present Green’s function
method. The calculated photoionization cross sections are in
agreement with the analytical ones within 1% when the pho-
toelectron energies are of the order of the ionization potential
and the agreement becomes better for lower photoelectron
energies. In the present study of the radiative recombination,
the electron energy is comparable to or smaller than the ion-
ization potential and thus we can expect that Eq. (9) gives
accurate reliable results. The idea of the combination of an
L? basis set and an optical potential to study the resonant
process might be related to the complex scaling method
[14-16] in some respects but the present method is more
general and it can be easily extended to multielectron sys-
tems.

III. RESULTS AND DISCUSSION

Once we obtain the full Green’s function, we can extract
information of various dynamics. Taking Be-like Hg ions as
an example, we study the RR process involving DR reso-
nances via 152s*2p,,2ps, configurations, which was inves-
tigated experimentally [17]. The configurations included in
the  calculations are  1s%2s%kj,  1525°2pkpsns
152522pspkpy,  for the total angular momenta J
=1/2,3/2,5/2 with k running over all the eigenstates of Eq.
(5) calculated on the generalized pseudospectral grid. The
scattering wave function is obtained from Eq. (2) with V
=V,es(N) =V, (N=1). The initial state W=V (N-1)¢.(ry)
is the product of the ground state wave functlon (15%25?) of
the (N—1)-electron system and the incident electron wave
function ¢.(r), which is obtained by solving Eq. (5) numeri-
cally as a regular solution near the nucleus at a given inci-
dent energy E,. In the asymptotic region, the two-component
radial wave function of ¢.(r) is of the form,

- (G(r) sin «
}E(F(}’) ) =N(EE)<6 cos a)’ (10)

with
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FIG. 1. (Color online) The total and partial radiative recombi-
nation cross sections of Be-like Hg ions without (upper panel) and
with (lower panel) the radiative damping.

N(E,) = \/ 2 ¢
¢ 7(E, + OVE> + 2¢°E,

e=VEJ(E,+2c%),

a=kr+ nln(kr)—€mw/2 + 5,

Z
c -1
n="t(e+ ).
2c( )

Here, & is the phase shift, Z,. the effect charge and k= \TEe
The system decays to the ground state | W )=|15*25*2p, ) or
the first excited state |W,)=|15?25?2p;,,) radiatively. Using
Eq. (2), the reduced multipole transition matrix element for
the radiative decay is expressed as

T, =V, ||IT

c—g.e

all )= (W NITe, W0

(W T ) ||V [W )
+> : :
; E-E;+in

(11)

Here, Tﬁ’m is the electric and magnetic multipole transition
operator [18]. The radiative transitions consist of two parts,
the direct RR and the radiative decay through DR resonant
states. The partial radiative recombination cross section is
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FIG. 2. (Color online) The convoluted RR cross sections with
contributions of the electron-electron Coulomb interaction (dotted
line), the Breit interaction in the low-frequency limit (dashed line)
and the generalized Breit interaction (solid line).

27
ojr(r= 3 2 2 |TJ:—> e
c2k+ 1)1+ E,/2¢°)E, &

% (12)

with E, the incident electron energy and w the emitted pho-
ton energy. The total RR cross section is the sum of all the
partial cross sections. The DR resonant states are

[W1,,) = [1525*2p12]12P32) =112,
|\I’6,3/2> = |[152522171/2]02173/2)1:3/2,
W1 500 = [152572p15112p32) 1232

[W50) = [1525%2p12]12P32) s=502-

The upper panel of Fig. 1 shows the total and partial RR
cross sections near the resonant energies. The RR cross sec-
tions due to DR process are many orders of magnitude larger
than that of the direct RR. If we convolute the spectra with
the experimental energy resolution, we get an almost sym-
metric resonant profile which disagrees with the experimen-
tal observations [17]. Our theoretical treatment developed up
to this point is not satisfactory yet and some further improve-
ment is required. When we calculated the Green’s function
for all the bound-type configurations {®,, ;}, we assumed that
the life time comes only from the Auger processes. Since the
radiative decay rates are much larger than the Auger decay
rates for highly charged ions (HCI), we have to incorporate
the radiative damping effect [19] in the calculations. We take
into account the radiative damping in such a way that we add
an imaginary energy (—il'/2) to the bound-state energy rep-
resenting the radiative decay rate of a resonant state. The
lower panel of Fig. 1 shows the improved results, in which
the radiative decay rates are taken into account. Indeed the
spectra show asymmetric distributions. The asymmetry
arises from the typical bound-continuum interactions, which
result in the Fano profiles.

After we convolute the cross sections with the experimen-
tal energy resolution of 77 eV [20], we still observe the
asymmetric line profile (GBI+C) in the resonant region as
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TABLE 1. The resonant energies (in ev) and radiative decay rates (in ev) for B-like Hg ions. The
configuration interaction coefficients of peaks b and d are also listed.

Term Quantity Coulomb-only C+BIO0 (w=0) C+GBI
a E, —187733 —187697 —187702
r 5.4 5.4 5.4
c E, —187720 —187663 —187659
r 24.0 23.9 23.9
b E, —187776 —187694 —187696
r 1.8 7.4 7.0
(Cy,C)) (0.561,-0.828) (0.884,-0.467) (0.876,-0.483)
(c,,C) (0.189,-0.982) (0.297,-0.955) (0.277,-0.961)
d E, -187702 -187611 -187607
r 22.3 16.3 16.9
(Co,C)) (0.828,0.561) (0.467,0.884) (0.483,0.876)
(c,,C) (0.982,0.189) (0.955,0.297) (0.961,0.277)

shown in Fig. 2. To investigate the Breit interaction contri-
butions, we also plot the cross sections calculated with
electron-electron Coulomb interaction only (C-only) or with
BIO (BIO+C). Generally speaking, the Breit interaction shifts
the resonant peaks to the lower energy side and increases the
energy splitting as indicated in Table I. The Breit interaction
also reduces the transition strengths by more than a factor of
2 as shown in Fig. 2, consistently with the recent experiment
of Be-like Bi ions [21]. The GBI enhances the transition
strengths by about 10% from the BIO results. Our BIO con-
tributions to the transition energies are in good agreement
with the calculations by Harman er al. [22].

As indicated in Table I, the radiative decay rates of peaks
a and c are relatively insensitive to the Breit interaction,
while the rates of peaks b and d depend evidently on the
Breit interaction. The radiative decay is a single-electron
process and thus generally insensitive to the Breit interac-
tion. The decay rates of peaks b and d depend on the Breit
interaction because the Breit interaction changes the linear
combination of the two J=3/2 states.

In comparison with the partial cross sections of the differ-
ent total angular momentum J, we assign the resonant peaks
in Fig. 1 as peak a originated from J=5/2, and peak c origi-
nated from J=1/2. Peaks b and d are originated from the
linear combinations of the two J=3/2 configurations as

|W,5)=Col¥(30+Ci| W] 3,). Conventionally, we assign a
peak as a state with the largest coefficient. Following this
rule, we should assign peak d as [W( 5,) for Coulomb only
and reassign it as [} ;,) when GBI is taken into account as
indicated in Table I. The radiative decay rates of state d are
always larger than that of state b regardless of whether the
GBI is included not. This implies that there may be another
way to classify the two peaks better. If we define |W.)
=(|\I'(r),3/2> * |\I'1,3/2>)/ V2, and  rewrite |‘I'd,b>=c+|‘1’+>
+C_|W_), we assign peak d as state |V,) and peak b as state
|W_) for all the three cases as shown in Table 1. Although it
is convenient to use |W( 5,) and [W7 5,) as configurations for
the calculation, |W..) give better representation for the clas-
sification of the strongly mixed states. This situation is simi-
lar to the case of classification of the doubly excited states of
[2snp) and [2pns) of helium atoms [23].

Once we obtain the radiative recombination cross sections
as shown in the lower panel of Fig. 1, we fit the spectra to
the following Fano line profile [24] as

A | (e+q)’
F(E)_qzr[ e€+1 _1]’

with e=2(E-E,)/I". Here, E, is the resonant energy, I" the
width of the resonant state, and A the relative transition

(13)

TABLE II. The Fano ¢ parameter and the relative strength A (normalized to the strong line) for all the
possible transitions. The measured and MCDF calculated g parameters [17] are also listed for comparison.

a b c d

Trans. Term (J=5/2) (J=3/2) J=1/2) (3/2)
—>\‘lfg> q >100 194 -5.9 6.9

(A) (0.01) (0.08) (0.03) (0.61)
~|w,) g 20.1 ~11.9 23 >100

(A) (1.00) (0.11) (0.01) (0.05)
Ours g 20.1 6.9
Measured [17] q 18.2(6.6) 6.7(0.6)
MCDF [17] q 13 73
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strength of the resonant state and g the Fano parameter. The
fitted E, and I" are so close to the values listed in Table I that
we list only A and ¢ in Table II. For comparison, we also list
the measured ¢ parameters and the calculated ones [17]
based on the multiconfiguration-Dirac-Fock (MCDF)
method, in which the coupling between the resonant state
and the continuum was treated to the lowest order. From the
relative transition strengths, we see that the dominant contri-
butions come from the transitions from state a to the first
excited state (A=1.00), from state d to the ground state (A
=0.61), and from state b to the first excited state (A=0.11).
The contribution of the others is less than 10%. Thus, from
our calculations, we identify the two observed peaks as the
transition from state a to the first excited state and the tran-
sition from state d to the ground state. Our calculated g pa-
rameters are also in reasonable agreement with the measure-
ments. The present ¢ parameters agree with the experiment
ones better than the MCDF calculations because we have
taken into account all the bound-bound and bound-
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continuum interactions. The difference between ours and
MCDF calculations can be attributed to the high order con-
tributions missing in the MCDF calculations.

To summarize, we developed a method to calculate the
Green’s function of multielectron ions with one electron in
continuum. As an example, we studied the asymmetric line
profiles observed in the radiative recombination in HCIs and
found that the radiative damping plays an important role. The
present method can also be used to study other dynamic
processes of multielectron systems.
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