
Modeling two-spin dynamics in a noisy environment

M. J. Testolin,1 J. H. Cole,1,2 and L. C. L. Hollenberg1

1Centre for Quantum Computer Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia
2Institut für Theoretische Festkörperphysik und DFG-Center for Functional Nanostructures (CFN),

Universität Karlsruhe, 76128 Karlsruhe, Germany
�Received 1 April 2009; published 23 October 2009�

We describe how the effect of charge noise on a pair of spins coupled via the exchange interaction can be
calculated by modeling charge fluctuations as a random telegraph noise process using probability density
functions. We develop analytic expressions for the time-dependent superoperator of a pair of spins as a
function of fluctuation amplitude and rate. We show that the theory can be extended to include multiple
fluctuators, in particular, spectral distributions of fluctuators. These superoperators can be included in time-
dependent analyses of the state of spin systems designed for spintronics or quantum information processing to
determine the decohering effects of exchange fluctuations.
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I. INTRODUCTION

The exchange interaction is of increasing importance in
the study of controllable quantum mechanics using solid-
state systems. As well as being fundamentally important in
many-body physics, it is this interaction which is often used
to mediate spin flips or entanglement in spintronics and
quantum information processing �QIP� �1–7�. For these rea-
sons, there has been considerable study recently on the origin
and control of the exchange interaction �8–13� and its char-
acterization �14–16�. For applications involving the time-
varying control of the exchange interaction, such as QIP, the
stability in time of this interaction is of crucial importance.
As the origin of the exchange interaction is essentially the
overlap of electron wave functions, the interaction strength is
sensitive to the local charge environment. Recent work �17�
has shown that the dependence of the exchange interaction is
approximately linearly dependent on fluctuations in the local
electric field.

In this paper, we develop a general framework with which
the effect of these fluctuations can be analytically included
in time-dependent calculations of the state of a spin sys-
tem. The formalism can be used to investigate the effect
of exchange fluctuations on spintronics, quantum control
schemes, and specifically quantum error correction �QEC�.
Although we focus on the exchange interaction, our analytic
solutions do not depend �in general� on the structure of the
system Hamiltonian and can therefore also be applied to
other systems where the perturbation obeys the required
commutation relationships. Taking the exchange interaction
example, in Sec. II, we introduce the superoperator formal-
ism �18–23� and the random telegraph noise �RTN� model.
In Sec. III, we develop analytic expressions for the probabil-
ity density function of the RTN process and use them to
determine the corresponding time-dependent superoperators
for a pair of spins as a function of fluctuation amplitude and
rate in Sec. IV. The extension to multiple fluctuators, in par-
ticular, spectral distributions of fluctuators is considered in
Sec. V. Finally, in Sec. VI, we outline the application and
limitations of our analytic solutions for more complex calcu-
lations.

II. NOISE MODEL

We begin by studying the exchange coupling Hamiltonian
in the presence of a single charge fluctuator with the aim of
understanding the decohering effects of the fluctuator. The
Hamiltonian for the process is

H�t� = J�t��1 · �2. �1�

The exchange coupling J�t� varies in time due to a RTN
process, ��t�, and we assume a net effect of the form

J�t� = J0 + ���t� , �2�

where ��t� describes the fluctuator. This RTN process
couples with strength � �ultimately dependent on the dis-
tance between the coupled spins and the fluctuator� to the
bare exchange term, J0. The time evolution of the system can
then be described by the density-matrix master equation

�̇�t� = − i�H�t�,��t�� , �3�

where ��t� is the density matrix of the system. Additional
terms can be added to this master equation to also model
nonunitary evolution such as decohering processes.

As a matter of convenience, we may re-express the sys-
tem evolution in superoperator form. In superoperator form,
the density matrix is given a vector representation, denoted
by ���t�, by transforming the matrix into a single column, one
row at a time �24�. A superoperator P�t� contains all the
evolutions of the system �both unitary and nonunitary�

��̇�t� = P�t����t� . �4�

For purely Hamiltonian evolution, the superoperator P�t� can
be written down in terms of H�t� and the identity operator

P�t� = − i�H�t� � I − I � H�t�T� . �5�

The superoperator simplifies to

P�t� = − iJ�t��H �6�

for the Hamiltonian we consider. Here, �H is the Heisenberg
interaction in superoperator form. If the Hamiltonian is time

PHYSICAL REVIEW A 80, 042326 �2009�

1050-2947/2009/80�4�/042326�7� ©2009 The American Physical Society042326-1

http://dx.doi.org/10.1103/PhysRevA.80.042326


independent, then the superoperator P is also time indepen-
dent and the density matrix at some time t is

���t� = ePt���t0� �7�

�q�t����t0� , �8�

given an initial state ���t0�. We show how this time-
independent formalism is relevant to our problem shortly.

The RTN process, ��t�, is modeled as in Ref. �25�. The
noise fluctuates randomly between −1 and 1 with the fre-
quency of the fluctuations controlled by the correlation time
1 /�. Here, � is the typical frequency of jump times, where
the jump time instants are

ti = �
j=1

i

−
1

�
ln�pj� , �9�

and the pj are random numbers such that pj � �0,1�. The
noise process ��t� is described as

��t� = �− 1��i��t−ti���0� , �10�

where ��t� is the Heaviside step function and ��t� can fluc-
tuate between ���0�. We choose ���0��=1 and control the
coupling strength via � as in Eq. �2�.

The density-matrix evolution for our system can be found
by numerically averaging over many such noise histories
��t� to obtain the correct system dynamics. For an initial
state ��t0�,

��t� = lim
N→	

1

N�
k=1

N

Uk��t0�Uk
†, �11�

where the �Uk	 are the evolution operators for trajectories
�k�t�. Since the Hamiltonian �Eq. �1�� commutes with itself
at all times,

�H�t0�,H�t�� = 0, �12�

the �Uk	 may be expressed as

Uk�t,t0� = Uk
−�t−�Uk

+�t+� , �13�

where t− and t+ describe the total time the fluctuator exists in
the −1 and +1 states, respectively, for a particular noise his-
tory and

Uk
��t� = exp�− i�J0 � ���1 · �2t� . �14�

Using the result of Eq. �8� for the superoperator form of a
density matrix governed by a time-independent Hamiltonian,
we re-express Eq. �11� such that

���t� = lim
N→	

1

N�
k=1

N

qk
−�t−�qk

+�t+����t0� . �15�

The ensemble averaged superoperator, Q�t�, is the average of
all the individual trajectory superoperators qk�t�,

Q�t� = lim
N→	

1

N�
k=1

N

qk
−�t−�qk

+�t+� . �16�

This implies that Q�t� may be constructed by numerically
averaging over many noise histories. The averaging is crucial

in obtaining the correct system dynamics as the RTN is a
stochastic process and so there are many unique noise trajec-
tories. Averaging over these noise trajectories results in non-
unitary evolution despite the Hamiltonian being strictly uni-
tary.

Conversely, it is possible to derive Q�t� analytically by
describing the stochastic RTN using an appropriate probabil-
ity density function �PDF�. By considering all unique qk�t� as
a function of the average fluctuator state 
= ���0���t+− t−� /T,
weighted by a PDF giving the occurrence likelihood of the
average fluctuator state, and integrating this over all possible

, the resulting expression for Q�t� is

Q�t� = 




q
�t���
,T�d
 . �17�

Here, q
�t� is the unique individual superoperator corre-
sponding to a particular value of 
 and ��
 ,T� is the PDF,
which determines the probability that during the time inter-
val T, the average fluctuator state is 
. In Sec. III, we show
how to specify the PDF so that we can use it to analytically
determine Q�t� in Sec. IV.

III. CALCULATING THE PROBABILITY
DENSITY FUNCTION

The statistical properties of an RTN process have been
studied extensively in the context of reliability theory, alter-
nating renewal processes, and queueing theory �26–31�. In
our case, we are specifically interested in the probability of
the RTN spending a certain fraction of the observation period
in a particular state. The PDF for an RTN signal fluctuating
between the states 0 and +1 is given by �31� as

p��,T� = �e−�T� �

T − �
I1�2����T − ��� , �18�

where I1 is the modified Bessel function of the first kind.
This PDF assumes the initial state is +1 and that at least a
single fluctuation occurs. Here, � is used to describe the time
spent in the state 0 and T is the duration of the process we
are considering. The parameter � characterizes the fluctuator
rate as before. Properly normalized, the PDF is

p��,T� =
�

2
� �

T − �

I1�2����T − ���

sinh2��T

2
 . �19�

We could equally describe a process which begins in the
state 0, with T−� describing the time spent in this state.
Assuming at least a single fluctuation occurs, the full PDF is
obtained by averaging over both possible starting states

p���,T� =
1

2
�p��,T� + p�T − �,T�� . �20�

We may re-express this PDF in terms of the mean fluctuator
state 
, where 
� �−1,1�. Taking care to preserve the nor-
malization, the PDF for an RTN process of duration T as-
suming at least one fluctuation occurs is
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�0�
,T� =
T

2
p��T

2
�
 + 1�,T� �21�

=
�T

4

I1��T�1 − 
2�

�1 − 
2 sinh2��T

2
 . �22�

The case where no fluctuations occur must be treated
separately. In this case, we expect 
 to be either of �1. The
properly normalized PDF for this case can be described us-
ing two delta functions

�0�
,T� =
1

2
���
 − 1� + ��
 + 1�� . �23�

The full, general PDF is constructed by appropriately
weighting �0�
 ,T� and �0�
 ,T�, with the fluctuation prob-
ability given by the Poisson distribution

pk��T� =
e−�T��T�k

k!
, �24�

where k denotes the number of fluctuations such that

��
,T� = p0��T��0�
,T� + p0��T��0�
,T� �25�

and p0��T�=1− p0��T�. After simplification, the resulting
PDF is

��
,T� =
e−�T

2
���
 − 1� + ��
 + 1�� +

�T

e�T − 1

I1��T�1 − 
2�
�1 − 
2

.

�26�

In what follows, we examine the three limiting cases of
the PDF and use these to construct an approximate PDF. The
approximate PDF provides greater physical insight when
working within these limits.

Examining the two limiting cases of the PDF �0�
 ,T�,
the fast and slow fluctuator limits, and combining them with
�0�
 ,T� leads to a simplified expression which approximates
��
 ,T�. We begin by considering the slow fluctuator limit
�→0 for the distribution describing at least one fluctuation,
�0�
 ,T�. This is the regime where no more than one fluc-
tuation occurs. In this limit,

Ia�x� �
1

��a + 1�� x

2
a

�27�

and

sinh�x� = x + O�x3� . �28�

This reduces the PDF to

�0�
,T� �
1

2
�29�

��̃1�
,T� . �30�

This uniform distribution implies that a fluctuation is just as
likely to occur at any time during the system evolution.

The limit �→	 represents a fast fluctuator. In this re-
gime,

Ia�x� �
1

�2�x
ex �31�

and

sinh�x� �
ex

2
, �32�

which reduces the PDF to

�0�
,T� ���T

2�
exp�−

�T
2

2
�1 +

3

4

2 �33�

���T

2�
exp�−

�T
2

2
 + O�
2� . �34�

In this limit, 
 is small, so the O�
2� term is negligible. Mak-
ing the substitution �=1 /��T we find the PDF to be Gauss-
ian about the origin

�0�
,T� �
1

��2�
exp�−


2

2�2 �35�

��̃1�
,T� , �36�

which we expect intuitively. We note that this approach is
similar to that used by Happer and Tam when considering the
Gaussian limit of rapid spin exchange in alkali-metal vapors
�32�.

Weighting these two limiting cases and the PDF describ-
ing no fluctuations using the Poisson distribution as before
allows us to construct an approximate PDF

��
,T� � p0��T��0�
,T� + p1��T��̃1�
,T�

+ p1��T��̃1�
,T� , �37�

where p1��T�=1− p0��T�− p1��T�. This approximate
��
 ,T� provides nice analytic solutions for Q�t� in each of
the three interesting fluctuator regimes. While this is only an
approximation to the exact solution �Eq. �26��, it can provide
more physical insights as will become apparent later.

IV. USING THE PDF TO DETERMINE Q(t)

The superoperator Q�t� can be derived analytically via
Eq. �17� using the PDFs determined in the previous section.
Of particular interest is the nonunitary part of the superop-
erator.

The nonunitary superoperator can be found by expanding
the superoperator into a unitary and nonunitary part, such
that Q�t�=Q�u��t�Q�nu��t�. The evolution in the absence of a
fluctuator is contained within the unitary part

Q�u��t� = exp�− iJ0�Ht� , �38�

while the effect of the charge fluctuator is contained within
the nonunitary part Q�nu��t�. Note that these two parts can be
factored out due to the commutation relation �Eq. �12��. We
now determine the nonunitary parts of the superoperator for
��
 ,T� and its various approximations.
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Beginning with the case where no fluctuations occur and
the PDF is given by �0�
 ,T�, as in Eq. �23�, we find

Q0
�nu��t� = cos���Ht� , �39�

where �H is the Heisenberg superoperator introduced earlier.
When there is at least one fluctuation �see Eq. �22��, the
resulting form of the superoperator is

Q0
�nu��t� =

cos�����Ht�2 − ��T�2� − cos���Ht�

2 sinh2��T

2
 . �40�

Examining the limiting cases of the general PDF, we find
that for the slow fluctuator �see Eq. �30��

Q̃1
�nu��t� =

sin���Ht�
��Ht

�41�

and in the fast fluctuator limit �see Eq. �36��

Q̃1
�nu��t� = exp�− ����Ht�2/2� . �42�

It should be noted that this final superoperator corresponds
exactly to that which would be obtained using the Lind-
bladian formalism �33,34� if a decoherence operator of the
form L= �

��
�1 ·�2 was included. This equivalence between

classical RTN and a Lindblad model with a single decoher-
ence channel is often observed for single qubit systems
�25,35�, especially in the high-temperature limit or in the
limit where there is no direct energy exchange with the en-
vironment. For this system, the fast fluctuator limit is equiva-
lent to purely Markovian decoherence due to interaction with
the environment via an exchange-like two-spin decoherence
channel. This is in contrast to conventional dephasing which
is modeled using two independent �Z channels: one for each
spin. This distinction is particularly important as it implies
that exchange fluctuations due to environmental charge fluc-
tuations introduce correlated errors which can have impor-
tant implications for fault-tolerant QEC �36�.

Using the previous results, we can determine Q�nu��t� for
the full weighted PDFs in both the approximate and exact
cases. The exact PDF given in Eq. �26� yields

Q�nu��t� = e−�T cos���Ht� +
2

e�T − 1
�cos�����Ht�2 − ��T�2�

− cos���Ht�	 , �43�

while for the approximate PDF given in Eq. �37�, we find

Q�nu��t� � e−�T cos���Ht� + �Te−�Tsin���Ht�
��Ht

+ �1 − e−�T − �Te−�T�exp�− ����Ht�2/2� .

�44�

In general, it is difficult to graphically compare these ana-
lytic forms of the superoperator to the numerical result.
However, it is possible in this case, as the superoperator
Q�nu��t� is a sparse matrix with the same underlying structure
of the �H superoperator which defines it. It follows from the
definition of �H �see Eq. �6�� that the only nonzero matrix

elements of the Heisenberg superoperator are �2. Conse-
quently, a comparison of the resulting nonzero matrix ele-
ment of Q�nu��t�, denoted as QNU, proves effective in deter-
mining the agreement between the analytic �exact and
approximate� superoperators and exact numerical solution
for the superoperator.

The results, as a function of time for a range of fluctuator
rates, shown in Fig. 1, reveal very good agreement between
the exact analytic and numerical results for all rates �. The
approximate solution also matches closely, particularly in the
slow and fast fluctuator limits. Slight deviations from the
exact solution can be seen when the fluctuations occur on the
time scale of the process we are considering ��T�1�. In this
regime, the contribution from the uniform distribution

�̃1�
 ,T� is at its maximum and approximately on par with
contributions from the other two distributions. The devia-
tions from the exact results do not come as a surprise as the
approximate PDF is constructed from contributions due to
zero, one, or many fluctuations. Adding contributions from
two, three, and more fluctuations would reduce this discrep-
ancy. We now present the generalization of the single fluc-
tuator formalism to multiple fluctuators in the following sec-
tion.

V. MULTIPLE FLUCTUATORS

Extending this formalism to multiple fluctuators is
straightforward and provides a method for the treatment of
many physically realistic scenarios. The total ensemble-
averaged superoperator, ��t�, for N fluctuators is just the
product of all the individual ensemble-averaged superopera-
tors, Q�t�, such that

��t� = Q�u��t��
i=1

N

Qi
�nu��t� . �45�

This result is useful for a finite number of fluctuators each
with known strength and rate. However, in most instances,

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

Q
N

U

t units of
`

α−1
´

λT = 100

λT = 10λT = 1

λT = 0.1

numerical
exact

approximate

FIG. 1. �Color online� Comparison of the analytical �exact �Eq.
�43�� and approximate �Eq. �44��� and exact numerical �simulated
from Eq. �16�� solutions of Q�nu��t�. Plotted is the nonzero matrix
element of Q�nu��t�, denoted QNU, as a function of time for a range
of fluctuator rates, which span each of the three limiting regimes.
The results show very good agreement between all three solutions,
with the analytic approximation deviating only slightly when the
fluctuator rate is on the time scale of T.
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only the spectral distribution in strength and rate will be
known and therefore Eq. �45� offers no further insight. By
considering all possible unique superoperators Q�nu���i ,�i , t�
weighted by their probability of occurrence pi �where pi
� �0,1��, in a similar way to the method used to construct
Q�t� in Eq. �17�, we may re-express Eq. �45� as

��t� = Q�u��t��
i=1

M

�Q�nu���i,�i,t��Npi, �46�

where in general there are M possible fluctuator types and N
fluctuators. We would like to interpret the pi as a spectral
distribution function in �i and �i. By expressing � as a sum
of logarithms

��t� = Q�u��t�exp�N�
i=1

M

pi ln�Q�nu���i,�i,t��� �47�

and extending the definition of � to the continuum, we may
replace the pi with a spectral distribution function S�� ,��
such that

��t� = Q�u��t�exp�N
 
 S��,��ln�Q�nu���,�,t��d�d�� ,

�48�

ensuring that the spectral distribution function is properly
normalized


 
 S��,��d�d� = 1. �49�

The effects of a region of charge noise can now be mod-
eled using either approach �Eq. �45� or �48��. The choice will
depend on exactly what information is known about the sys-
tem. In the following section, we outline how to implement
the superoperators and provide a discussion of some impor-
tant limitations of this approach.

VI. USING THE SUPEROPERATORS

The analytic solutions derived in Secs. IV and V do not
depend on the structure of the Hamiltonian and can therefore
be applied to other systems obeying the commutation rela-
tion in Eq. �12� such as the Ising interaction. Considering the
exchange interaction in spin systems, without approximation,
our solutions can be used to determine how charge noise in
the interaction affects the system dynamics.

In more complex systems, where dynamics are controlled
via a sequence of single spin and spin-spin interactions
which do not commute, a further approximation is required
before using the superoperator solutions. The problem arises
in the slow-fluctuator limit when two or more instances of
the superoperators are separated by a noncommuting opera-
tion, G, as in Fig. 2.

In these cases, the superoperator solutions introduce cross
terms which describe fluctuations in a regime that should be
fluctuation free. As the fluctuation rate increases, the Poisso-
nian weighting of these cross terms in the overall superop-
erator reduces, hence reducing the cross terms significance.

All other cases can be treated without approximation. We
now consider a simple example which illustrates how these
unphysical cross terms manifest themselves in the slow fluc-
tuator limit before showing how an approximate solution can
be constructed in this regime by removing the cross terms.

Consider the simple example of a noncommuting operator
sandwiched by two superoperators as in Fig. 2, for which we
express the total superoperator as

Qtotal = Q�t2�GQ�t1� . �50�

Our analysis can be restricted to observing the action of the
superoperator describing no fluctuations Q0

�nu��t�, which may
be expanded in terms of the superoperators, Q0

��t�, each de-
scribing one of the two fluctuator states �
 in the no fluc-
tuator limit

Q0
�nu��t� =

1

2
�Q0

+�t� + Q0
−�t�� . �51�

Expanding out each of the fluctuator superoperators using

Q�t� = Q�u��t��p0��t�Q0
�nu��t� + p0��t�Q0

�nu��t�� �52�

and Eq. �51�, with some rearranging, we find

Qtotal =
p0���t1 + t2��

4
Q�u��t2��Q0

+�t2�GQ0
+�t1�

+ Q0
+�t2�GQ0

−�t1� + Q0
−�t2�GQ0

+�t1�

+ Q0
−�t2�GQ0

−�t1��Q�u��t1� + ¯ , �53�

where we have only shown the terms which should describe
no fluctuations. Careful inspection shows the presence of two
cross terms, which actually imply the occurrence of a fluc-
tuation during the noncommuting gate operation. Cross
terms of this form are actually a manifestation of this super-
operator formalism and should be removed without also re-
moving any unitary evolution.

It should be emphasized that this problem only occurs in
the slow fluctuator limit, where there is a significant prob-
ability of there being no fluctuations during a two-spin op-
eration. As the fluctuation rate increases, the probability of a
fluctuation occurring during the single spin operation in-
creases, which means that each application of the two-spin
operation becomes statistically independent. In this limit, the
formalism as presented so far is exact and does not require
any attention to cross terms.

G

Q (t1) Q (t2)

FIG. 2. Multiple instances of the superoperator Q�t� separated
by a noncommuting operation. Attempting to use the superoperators
to determine the effects of charge noise in a process such as this can
lead to the introduction of errors in the slow fluctuator regime.
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It is possible to construct an approximate solution by
carefully removing these cross terms. In general, there may
be many cross terms, each of different order. The order refers
to the number of instances of the Q0

�nu��t� superoperator in
the cross term. The cross terms in Eq. �53� are the zeroth
order terms and statistically they are the most significant in
the small � limit. The first-order cross terms are composed
almost entirely of the Q0

�nu��t� superoperator except for a
single instance of the Q0

�nu��t� superoperator and so on. Suc-
cessive improvements to the approximate solution are
achieved by removing these higher-order cross terms also.
As we correct to higher order, the approximation improves
for increasing �, with the actual region of improvement de-
pendent on the Poissonian weighting of the cross terms being
removed.

Returning to our example, the zeroth-order cross terms,
denoted as X0, are removed by first reweighting Qtotal using
the Poisson distribution over the total process duration Ttotal
�i.e., including noncommuting operations�

Qtotal = p0��Ttotal�Qtotal + p0��Ttotal�Qtotal. �54�

The cross terms can now be removed

Qtotal � p0��Ttotal��Qtotal − X0� + p0��Ttotal�Qtotal,

�55�

taking care to not remove any unitary evolution. Cross terms
from the second term can also be removed, however, the
improvement from doing this is minimal due to the small
contribution from the zeroth-order terms at large �. In this
example, there were no higher-order cross terms.

VII. CONCLUSION

The exchange interaction is of fundamental importance
for controllable quantum mechanics in solid-state systems.
Its application to mediate spin flips or entanglement has par-
ticular importance in spintronics and QIP, hence the stability
of the exchange interaction is crucial for precise time-

varying control. In solid-state spin systems, this stability can
be affected by the local charge environment, in particular,
charge fluctuators, due to the exchange couplings depen-
dence on the electron wave-function overlap.

We have developed a model to describe the effect of
charge fluctuators on the exchange interaction as a function
of time using superoperators dependent on the noise ampli-
tude and rate. These superoperators can be included in time-
dependent calculations of the state of the spin system to
model the effect of the charge noise. Furthermore, this analy-
sis holds for other spin couplings, such as the Ising interac-
tion, when a commutation relation analogous to Eq. �12�
exists.

In the fast fluctuator limit, we demonstrated how interac-
tion with the environment via an exchange-like decoherence
channel leads to purely Markovian decoherence, although
the decoherence operator leads to correlated noise across the
two spins. The generalization to multiple fluctuators means
that the effect of charge fluctuators distributed according to a
spectral distribution function can also be modeled. In the
simpler case where only a small number of well-defined fluc-
tuators exist, the total superoperator is just the product of the
individual fluctuator superoperators.

As our model is completely analytic, the effects of ex-
change fluctuations can, in many instances, be included in
more sophisticated analyses without the need to explicitly
sum over noise histories. This is important for analyzing the
operation of spintronic devices as well as QEC and fault
tolerance for QIP.
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