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In this paper, we investigate multipartite unlockable stabilized bound entanglement. First, the mathematical
structure of these stabilized bound entangled states is studied. Second, since stabilizer states are the local
equivalent to the graph states, we study such stabilized mixed states in the graph-state formalism. As a result,
the unlockable stabilized bound entangled states can be graphically depicted and decomposed in the product
form. Some examples are discussed.
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I. INTRODUCTION

Entanglement is the most peculiar phenomenon in quan-
tum physics. In quantum information processing, entangle-
ment now has been regarded as a physical resource. For ex-
ample, the two-qubit Bell states can be exploited in one-
qubit teleportation �1�, dense coding of two classical bits �2�,
quantum key distribution �3�, and other applications. In
physical realization, environments always spoil the pure en-
tangled states into mixed ones. As a result, entanglement
distillation against such random disturbance is an essential
challenge in quantum information technology. By definition,
a mixed entangled state is said to be distillable if pure en-
tanglement can be obtained using local operations and clas-
sical communication �LOCC� �4�. On the other hand, how-
ever, there exist mixed entangled states, which are also
known as bound entanglement states �BESs�, which do not
allow for entanglement distillation �5�. Although BESs can
be undistillable, some of them can be stabilized. Smolin ini-
tially introduced a four-qubit BES, known as Smolin state,
which can be stabilized �6�. Recently, stabilized bound en-
tangled states �SBESs� have been demonstrated to be useful
for quantum information processing. For example, SBESs
can be exploited in reducing communication complexity �7�,
remote quantum information concentration �8,9�, quantum
secret sharing, and nonadditivity of quantum channels with
multiple receivers �10�. Also, the nonlocality of certain
SBESs can be demonstrated via the violation of Bell-type
inequalities �7�.

In this paper, we focus on unlockable SBESs �USBESs�.
The SBESs are unlockable or activated in the following
sense. The pure entanglement can be distillable when the
qubits are divided into several groups. Therein, the collective
quantum operations on qubits in the same group can be per-
formed. For example, Bandyopadhyay et al. considered the
generalized 2N-qubit Smolin BESs, and demonstrated that
these states are can be unlocked and superactivated �11�.
Very recently, the stabilizer formalism of USBESs has been
proposed by Wang and Ying �12�.

On the other hand, under local Clifford operations, any
�inseparable� stabilizer state is local equivalent to a �con-
nected� graph state. Therefore, the segments of stabilizer
generators in any partition are local equivalent to the stabi-
lizer generators of a connected stabilizer state. From this
perspective, we propose how to construct USBESs in the

graph-state formalism. Graph states are “visible,” since there
is always an associated graph for any given graph state. As a
result, it will be shown that the USBESs can also become
visible. Under the proposed approach, another advantage is
that the above conditions for USBESs are automatically sat-
isfied.

The paper is organized as follows. In Sec. II, we present
some simple but essential mathematics exploited in con-
structing the USBESs. In Sec. III, we study the USBES in
the graph-state formalism. Wherein, the corresponding den-
sity matrix can be graphically decomposed. Some discus-
sions are made in Sec. IV.

II. MATHEMATICS OF UNLOCKABLE STABILIZED
BOUND ENTANGLED STATES

Before proceeding further, according to the Theorem 1 of
Ref. �12�, we briefly review the formal definition of an
USBES, S, as follows. Suppose g1 ,g2 , . . . ,g3 are commuting
elements that stabilize S. If

Condition 1. S is separable with respect to some specific
partition �Q1 ,Q2 , . . . ,QM�;

Condition 2. there exists a partition �T1 ,T2 , . . . ,Tk� with
�T1��1 such that S is separable with respect to this partition
and g1

T1 ,g2
T1 , . . . ,gk

T1 form a complete set of stabilizer genera-
tors on T1. Then the maximally mixed state S is an USBES.

For more details, readers can refer to Ref. �12�. The con-
struction of N-qubit USBESs is essentially based on the fol-
lowing simple algebraic equations. Denote two binary vec-
tors x� = �x1 , . . . ,xm� and �� = ��1 , . . . ,�m�, where each xi and
�i� �0,1�∀ i� �1, . . . ,m�. Here, x� and �� are dual to each
other. That is

x� · �� = 0 mod 2. �1�

In the following, x� is a nonzero vector. For a given x�, all
legitimate vectors ��s can be regarded as codewords and form
a �m−1�-dimensional closed linear subspace C. Here, the
codespace C can be spanned by �m−1� vectors e1 , . . . ,em−1
and a legitimate �� can be expressed as

�� = �
i=0

m−1

�iei,

where each �i� �0,1�. On the other hand, x� and zero vectors
0� form the closed linear subspace C�, which is the dual of C.
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In general, for a given classical linear code, there exists a
parity check matrix, H, such that

Hei = 0.

Equivalently, x� can be regarded as 1�m parity check matrix.
A useful formula is �13�

�
���C

�− 1�u� ·�� = 	2m−1 u � C�

0 u � C�
 . �2�

With Eq. �1� as the constraint, we have

�
���C

�
i=1

m �1 + �− 1��igi

2
 =

1 + �i=1
m gi

xi

2
, �3�

where 1 denotes the identity operator and �g1 , . . . ,gm� is a set
of commuting operators.

Proof of Eq. (3). Note that, the left-hand side of Eq. �3�,
can be expanded as

1

2m�
i=1

m

�
���C

�− 1�y�·��gi
yi,

where y� = �y1 , . . . ,ym� and each yi� �0,1�. According to Eq.
�2�, the sum are nonvanishing only when y� � �x� ,0��. This
completes the proof. �

Equation �3� can be extended as follows. Without loss of
generality, 1�n1�n2� . . . �nm is assumed. Denote the
given nm binary vector xj�= �x1j

, . . . ,xmj
�, 1� j�nm, as the

1�m parity matrix, H, of the �m−1� classical linear code
with the codespace, Cj, with a legitimate codeword vector
� j�= ��1j

, . . . ,�mj
�. We have

xj� · � j� = 0 mod 2, �4�

and hence

�
all �G

�
i=1

m 	�
j=1

ni �1 + �− 1��ijgij

2

 = �

j=1

nm �1 + gj
x� j

2
 , �5�

where the vector set �G= ��1� , . . . ,�m��, and

gj
x� j = �

i=1

m

gij

xij.

Notably, the set S= �g11
, . . . ,gm�nm�

� is a set of commuting

operators. In the following, each element in S is the multi-
plication by either the identity matrix or the Pauli matrices:

X = �0 1

1 0
, Y = �0 − i

i 0
, Z = �1 0

0 − 1
 ,

acting on each qubits. We denote Xj the matrix X acting on
the j-th qubit, and similarly for Y j and Zj. Some remarks are
made as follows. First, the right-hand side of Eq. �5� can be
recognized as the density matrix of the N-qubit USBES.

Wherein, the normalization constant 2−�i=1
m ni is ignored.

These nm operators gj
x� j, where j=1, . . . ,nm, can be regarded

as the stabilizer generators of the USBES. Second, in the
left-hand side of Eq. �5�,

�
j=1

ni �1 + �− 1��ijgij

2
 �6�

can be recognized as the density matrix of the pure state
which is the common eigenstate of the commuting and inde-
pendent operators gi1

, . . ., and gi�ni�
with eigenvalues �−1�i1,

. . ., and �−1�i�ni�, respectively. There are ni qubits that com-
prise the pure state in Eq. �6�. As a result,

N = �
i=1

m

ni, �7�

In the following it is further required that the pure state with
the corresponding density in Eq. �6� is an entangled state.

To verify that Eq. �5� is a density matrix of an USBES,
define the Qi= �the ni qubits comprising the density matrix of
the pure state in Eq. �6��. To satisfy condition 1, it is obvi-
ously to verify that, according to Eqs. �5� and �6�, arbitrary
two qubits belonging different partitions, Qi and Qj, must be
separable. To satisfy condition 2, without loss of generality,
it is required that xij

=1 for ∀ j� �1, . . . ,ni�. In this case,
T1=Qi, the segments of the stabilizer generators gj

x� j of the
USBES in T1 are gij

. Since the state of Eq. �6� is entangled,
the Abelian subgroup �gi1

, . . . ,gini
� is inseparable and forms a

complete set of stabilizer generators. As a result, not any
given vector set X= �x1� , . . . ,xm�� can always be exploited to
construct an USBES. For example, if xij

=�ij, the Eq. �5�
cannot be a density matrix of an USBES. Another constraint
is that, for ∀ i=1, . . . ,m, a legitimate set X for an USBES
must the make �i1

, . . . ,�i�ni�
random distributed and hence

�
�i1

,¯,�i�ni�

�
j=1

ni �1 + �− 1��ijgij

2
 � 1 . �8�

In other words, the ni-qubit state in Eq. �8� is maximally
mixed. As an example, if xij

=1∀ i, j, it is easy to verify that
all �ij

s each must be random distributed �see Sec. III�.
Finally, it is noteworthy that the set of commuting opera-

tors, S, is not unique. It is not surprising from the perspective
of physical realization. There are infinite ways of preparing a
mixed state. As an illustration, in example 1, it will be shown
that, the four-qubit mixed state with right-hand side of Eq.
�5� as density matrix can be prepared in different ways.

Example 1. Consider the four-qubit bound state �n=4�,
where the density matrix is

	2 =
1

4
�1 + X1Z2X3Z4

2
�1 + Z1X2Z3X4

2
 . �9�

It is noteworthy that 	2 local equivalent to the density matrix
of four-qubit Smolin state �6�. To derive 	2, the parameters in
Eqs. �4� and �5� are set as follows: m=n1=n2=2 and x11
=x21

=x21
=x22

=1. As a result, two constraints are

�11
+ �21

= 0 �10�

and
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�12
+ �22

= 0, �11�

respectively. In addition, let either

g11
= X1Z2, g12

= Z1X2, g21
= X3Z4, and g22

= Z3X4.

�12�

or

g11
= X1Z4, g12

= Z1X4, g21
= X3Z2, and g22

= Z3X2.

�13�

It will be seen the stabilizer generators in Eqs. �12� and �13�
are those of the two-qubit graph states. Alternatively, the
commuting operators can be also set as

g11
= X1X3, g12

= Z1Z3, g21
= Z2Z4, and g22

= X2X4.

�14�

III. GRAPHIC DECOMPOSITION OF UNLOCKABLE
STABILIZED BOUND ENTANGLED STATES

A. Review of graph states

In this section, we will focus on the visualization of the
USBESs. Before proceeding further, we briefly review the
graph states as follows. We denote a given n-qubit graph
state by �Gn�. The associated graph of Gn= �V,E� can be
composed of a set V of n vertices and a set E of edges. The
neighboring set of the vertex i is denoted by N�i�= �j � �i , j�
�E�. Notably, for the vertex i, there correspond the stabilizer
generators, gi

gi = Xi �
j�N�i�

Zj, ∀ i = 1, . . . ,n , �15�

and �Gn� is stabilized by gi. In addition, it is obvious that

�Zi,gi� = 0, �16�

where �,� is the anticommutator. In the following, we define
the generalized n-qubit colored graph state as � j=1

n Zj
�j�Gn�.

According to Eqs. �15� and �16�, the corresponding density
matrix is

�
j=1

n

Zj
�j�Gn��Gn��

j=1

n

Zj
�j = �

j=1

n �1 + �− 1��jg j

2
 . �17�

The associated colored graph of the � j=1
n Zj

�j�Gn� is Gn with
colored vertices. The coloring rule is as follows. The j-th
vertex is filled if the corresponding � j is 1 and blank if � j is
0. In addition, �� j=1

n Zj
�j�Gn� � ∀ � j � �0,1�� forms a complete

orthonormal set.
Moreover, in the following, edges can be divided into

segments. The end of a segment is called unconnected if no
vertex is attached. That is, a segment must have an uncon-
nected end and attach a vertex. Two segments can be recov-
ered into an edge. After the recovery, there is no unconnected
end. As an illustration, we graphically describe the two-qubit
state Z1�G2� in equivalent twofold ways, which are shown in
Fig. 1. The generic representation is shown in Fig. 1�a�. In
Fig. 1�b�, two vertices each attach one divided edge.

Now, we consider the graphic depiction of the density
matrix in Example 1, which is represented as Fig. 3. Therein,
the notation �E�. . .� denotes enumeration of the colored
graph configurations with even filled vertices in the paren-
theses. For example, Fig. 2 illustrates the two-vertex case
�without qubit index�. To recover the edges, two segments in
different parentheses are picked up and then these two un-
connected ends are joined. For illustration purposes, Fig. 3�a�
is to depict 	2 graphically, where the edges are divided and
decomposed as the product form �the subscript is the vertex
or, equivalently, qubit index�. Different recovering ways in-
dicate the different physical preparations. For instance, in
Example 1, the vertex pairs �1, 2� and �3, 4� are graphically
connected, as shown in Fig. 3�b�, with the corresponding
stabilizer generators are listed in Eq. �12�. Notably, accord-
ing to the constraints in Eqs. �10� and �11�, both vertices 1
and 3 �2 and 4� are both either filled or blank. As for the
corresponding preparation, two two-qubit connected graph
states �G2�12�G2�34 are initially prepared. Then it is followed
by the local operations �X1

i Z1
j � and �X3

i Z3
j �, where the value of

random variables i and j can be either 0 or 1. Similarly, if the
stabilizer generators are listed in Eq. �13�. Notably, accord-

FIG. 1. The dividing and recovering of an edge. Two divided
edges can be recovered into the connected two-vertex colored
graph, where the associated graph state is Z1�G2�. Notably, there is
no unconnected end after the recovery.

FIG. 2. Two-vertex case of all colored graph configurations with
even filled vertices.

FIG. 3. The graphic depiction of the four-qubit Smolin states in
Example 1.
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ing the constraints in Eqs. �10� and �11�, both vertices 1 and
2 �3 and 4� are both either filled or blank. The corresponding
mixed state can be graphically depicted as Fig. 3�c�.

Before further proceedings, some remarks on the edge-
recovering are made as follows. First, after the recovering,
the summation of graph configurations is obtained. Two ver-
tices i and j are always either connected or unconnected in
each graph configuration. Second, there exists no uncon-
nected end after the recovery process. In Example 3, it will
be shown that such condition implicitly constraints the pos-
sible ways of edge-recovering.

B. Family of n2-qubit USBESs and its relation with Greco-
Latin squares

As a generalization of Smolin state in Example 1, we
consider a specific class of n2-qubit USBESs in the graph-
state formalism �n�2�. According to Sec.II, the parameters
in Eq. �7� m ,n1 , . . . ,nm are set equal to n. For our conve-
nience, the qubits and the corresponding vertices are rein-
dexed as ij, where 1� i�n and 1� j�n. All xij

in Eq. �4�
are set equal to 1, ∀ i, j. According to Eq. �6�, the i-th qubit
set Ti= �ij �1� j�n� can be recognized as comprising the
n-qubit colored graph-state � j=1

n Zij

�ij�Gn�. Therein, the opera-

tor gij
corresponds to stabilizer generators gij

of �Gn�, where

gij
= Xij �

ik�N�ij�
Zik

, ∀ j = 1, . . . ,n . �18�

As a result, it is obvious that two qubits ij �Ti and ij�
� �Ti�

are separable if i� i�. the condition �a� is automatically sat-
isfied.

Moreover, a specific n-vertex graph Gn= �V,E� is ex-
ploited as the “template.” After the edge-recovering, all as-
sociate graphs of the density matrix are the template graphs
with different vertex index and coloring. For instance, in the
Example 1, the two-vertex connected graph is the template
graph. In the following, the associate graph Gn with colored
vertices comprises vertices 1 ,2 , . . . ,n. The density matrix of
the n2-qubit USBES is denoted by 	n. As a result, the j-th
stabilizer generator gj of 	n is

gj = �
i=1

n

gij
, j = 1, . . . ,n . �19�

Therefore, in the graphic representation, even number of the
vertices in the corresponding qubit set �ij �1� i�n� must be
filled. As for the graphical decomposition of 	n, the ij-th
vertices attaching the divided edges with the same index j
are put in the j-th parentheses. To construct a colored-vertex
graph �a� ∀ j, pick a vertex ij� from the unpicked vertices in
the j-th parentheses. The ij�-th vertex is exploited as the j-th
vertex of the template graph. �b� According to the connec-
tions of the template graph, join the unconnected ends of the
divided edges to construct Gn. �c� Repeat �a� and �b� until all
the vertices in the parentheses are used up.

Interestingly, the Greco-Latin squares of order n can help
the recovery of the edges. A Greco-Latin square or orthogo-
nal Latin square of order n is an n�n arrangement of cells,
such that �i� each cell containing an ordered pair �i , j�, where

i , j� �1,2 , . . . ,n�, where every row and every column con-
tains exactly one i and exactly one j, and �ii� no two cells
contain the same ordered pair of symbols.

To recover the edges, the ordered pair �i , j� denote the
vertex ij. According the Greco-Latin square, the correspond-
ing vertices in the same row �or column� are exploited to
construct the template graph. In other words, the correspond-
ing qubits can be regarded as comprising the corresponding
colored graph state. The partitions Qi and Ti are the sets of
corresponding qubits in the i-th row. Two qubits are sepa-
rable if their qubit indexes appear different rows in a Greco-
Latin square.

Example 2. In Ref. �12�, a nine-qubit system is considered
as follows. Let

g1 = �
i=1

3

Xi1
Zi2

Zi3
�20�

g2 = �
i=1

3

Zi1
Xi2

Zi3
�21�

g3 = �
i=1

3

Zi1
Zi2

Xi3
. �22�

The fully connected three-vertex graph is exploited as the
template. For instance, a Latin squares of order 3 is

11 22 33

23 31 12

32 13 21

. �23�

For example, the ordered pair in the cell in first column and
the first row indicates the vertex 11. According to the first,
second, and the third rows of orthogonal Latin square in Eq.
�23�, the nine qubits are divided into three groups T1=Q1
= �11 ,22 ,33�, T2=Q2= �12 ,23 ,31�, and T3=Q3= �13 ,21 ,32�,
respectively. Vertices in the same group are exploited to con-
struct the template graph. In such partition, qubits in the
same group are separable from the qubits of the other groups.

Now we propose how to activate the entanglement of the
USBESs in the following scenario. Suppose there are 2n−1
distant parties. Wherein, j� �1,2 , . . . , �n−1��, the j-th party
holds the n qubits that correspond to the vertices in the j-th
row of a Latin square of order n. The remaining n parties
each hold a qubit that corresponds to one vertex in the n-th
row. The goal is to activate the entanglement of the n qubits
held by parties n, �n+1�, . . ., and �2n−1�. To achieve this,
the parties holding n qubits each perform the n-qubit projec-
tive joint measurement using the orthonormal basis
��i=1

n Zij

�ij�Gn� ��ij
� �0,1��. Without loss of generality, let

these �n−1� post-measurement states are �i=1
n Zi1

mi1�Gn�,

FIG. 4. The graphic decomposition of the nine-qubit USBES in
Example 2. Notice that, in Figs. 4 and 5, the subscript j is not the
exact vertex index.
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�i=1
n Zi2

mi2�Gn�, . . ., and �i=1
n Zi�n1�

mi�n−1��Gn�, respectively. The un-

measured n-qubit entangled state now becomes �i=1
n Zin

min�Gn�.
Wherein, since �i=1

n gij
is the stabilizer generator, we have

�
i=1

n

mij
= 0 mod 2 ∀ j � �1, . . . ,n� . �24�

Consequently, at last, the j-th party �j�n� publics the binary
message vectors �m1j

, . . . ,mnj
�. The values of m1n

, . . . ,mnn
can be induced using Eq. �24�. Therefore, the entanglement
can be activated.

IV. DISCUSSIONS

Note that there is high permutation symmetry in the US-
BESs in the previous section. In the following example, the
USBES with lower symmetry is considered.

Example 3. Here, we consider the nine-qubit USBES.
Therein, stabilizer generators g1 is the same as that in Eq.
�20�, and g2 and g3 now are modified as

g2 = Z11
X12

I13�
i=2

3

Zi1
Xi2

Zi3
�25�

g3 = Z11
I12

X13�
i=2

3

Zi1
Zi2

Xi3
. �26�

The graphics decomposition is shown in Fig. 5. Wherein,
Latin square cannot help design the edge-merging. More-
over, the vertices 12 and 13 both must be connected with the

same vertex i1 , i� �1,2 ,3�, to comprise the three-vertex lin-
ear graph.

As the end of the paper, we consider 2m-qubit USBES
�11�.

Example 4. Two stabilizer generators of 2m-qubit USBES
are

g1 = �
i=1

m

X2i−1Z2i �27�

g2 = �
i=1

m

Z2i−1X2i. �28�

Such USBES is locally equivalent to the one proposed by
Bandyopadhyay and co-workers �7,11,12�. The density ma-
trix can be graphically depicted in Fig. 6.

In conclusion, we investigate multipartite unlockable sta-
bilized bound entanglement in both algebraic and graphic
ways. Algebraically, the substantial mathematical structure is
studied. On the basis of graph states, it is also found that
such bound entangled state can be graphically depicted,
which can be represented in the decomposition form.
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