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We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation
due to Unruh effect between two partners Alice and Rob. Under the single mode approximation �SMA� a
fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields
which had an infinite number of excitable levels. This was argued to justify entanglement survival in the
fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes
are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy
with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics
through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly,
the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of
fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this
surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole
information paradox.
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I. INTRODUCTION

Studying quantum information in noninertial settings re-
quires using tools coming from general relativity �1–15�. In
particular, the Unruh effect �16–19�—which consists in the
emergence of noise when an accelerated observer is describ-
ing Minkowski vacuum using Rindler coordinates—affects
the possible entanglement that an accelerated observer Rob
would share with an inertial observer Alice. The first ques-
tion to be answered by theory is how much entanglement
degrades due to Rob’s acceleration a.

Some partial answers are in the existing literature
�5,6,15�. All of them share the shortcomings inherent in the
single mode approximation �SMA� �1,2�, which consists in
considering only one mode of sharp momentum in the analy-
sis of Unruh degradation. For scalar fields, a Minkowskian
maximally entangled state becomes separable in the limit a
→�; i.e., the Unruh effect completely destroys entangle-
ment. This is a consequence of the excitation of an un-
bounded number of modes as Rob accelerates. Contrary to
this, finite correlations survive the limit a→� when consid-
ering fermion fields. Pauli exclusion principle—which
bounds the maximum number of possible excited modes—
has been argued as the rationale for this �6�. However, that
argument was only applied under the �somewhat unphysical�
SMA.

We will show that an unbounded number of modes be-
come excited by Unruh effect even for fermion fields if we
relax SMA, and so, the above argument ceases to be plau-
sible. Here a fundamental question arises: does fermionic
statistics protect the entanglement? Or is this a mere artifact
emerging from the SMA? In this paper we shall show that
such entanglement survival is fundamentally inherent in the
Fermi-Dirac statistics and that it is independent of the num-

ber of modes considered, of the maximally entangled state
we start from, and even of the spin of the fermion field
studied.

We will proceed step by step for the sake of clarity. In
Sec. II we will introduce the Unruh effect and its impact on
entanglement when one of the partners is accelerated. In Sec.
III we will express the multimode vacuum and one-particle
state in the coordinates of an accelerated observer and for
two different kinds of fermionic fields �a Dirac field and a
“spinless” fermion field�. After that, we will analyze en-
tanglement degradation for two very different kinds of maxi-
mally entangled states of a Dirac field: the case of vacuum
entangled with one-particle state in Sec. IV and the case of a
spin and momentum maximally entangled state in Sec. V.
Both cases were considered under SMA in �15�. Here, we get
that, even for the radically different final states obtained in
each case, after nontrivial computations entanglement degra-
dation ends up being the same for both and, more impor-
tantly, it is independent of the number of modes considered.
Then, in Sec. VI, we will investigate degradation for a maxi-
mally entangled state of a “spinless fermion” field �consid-
ered under SMA in �6��. Here, the field and occupation num-
bers allowed are completely different from the previous
cases; hence, the final state is, as well, notably different from
them. However, the dependence of entanglement on a turns
out to be exactly the same as in the spin-1/2 cases analyzed
before. Finally, we will trace back this behavior to fermionic
statistics �which all the cases share�. Specifically, fermionic
statistics translates into a peculiar structure in the density
matrices for Rob, which is responsible for those striking co-
incidences.

Summarizing, although it is true that now we have an
infinite number of excited fermionic modes, statistics coun-
terbalances that effect and allows entanglement preservation
even at the limit a→� contrarily to the intuition we would
get from the bosonic case. The meaning of this remaining
entanglement and its relation with information content of
black holes is discussed in the conclusions.
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II. UNRUH EFFECT AND ENTANGLEMENT
DECOHERENCE

The Unruh effect appears when we try to describe fields
in the frame of a noninertial observer. When this happens, an
accelerated observer of the Minkowskian vacuum would
observe a thermal particle distribution of temperature
TU=�a /2�kBc.

To understand where this effect comes from we need to
start from a Minkowskian frame and consider the Dirac field
expansion in terms of the positive �particle� and the negative
�antiparticle� energy solutions of Dirac equation notated �k,s

+

and �k,s
− ,

� = �
s
� d3k�ak,s�k,s

+ + bk,s
† �k,s

− � . �1�

Here, the subscript k notates momentum which labels the
modes of the same energy and s= �↑ ,↓� is the spin label that
indicates spin-up or spin-down along the quantization axis.
ak,s and bk,s are, respectively, the annihilation operators for
particles and antiparticles and satisfy the usual anticommu-
tation relations.

For each mode of frequency k and spin s the positive and
negative energy modes have the form

�k,s
� =

1
	2�k0

us
��k�e�i�k·x−k0t�, �2�

where us
��k� is a spinor satisfying the normalization relations

�ūs
��k�us�

��k�= �k0 /m��ss� and ūs
��k�us�

��k�=0.
The modes are classified as particle or antiparticle respect

to �t �Minkowski Killing vector directed to the future�. The
Minkowski vacuum state is defined by the tensor product of
each frequency mode vacuum


0� = �

k,k�

0k�+
0k��

− �3�

such that it is annihilated by ak,s and bk,s for all values of s.
A uniformly accelerated observer viewpoint is described

by means of the Rindler coordinates �20�. In order to cover
the whole Minkowski space-time, two different sets of coor-
dinates are necessary. These sets of coordinates define two
causally disconnected regions in Rindler space-time. If we
consider that the uniform acceleration a lies on the z axis, the
new Rindler coordinates �t ,x ,y ,z� as a function of
Minkowski coordinates �t̃ , x̃ , ỹ , z̃� are

at̃ = eaz sinh�at�, az̃ = eaz cosh�at�, x̃ = x, ỹ = y �4�

for region I and

at̃ = − eaz sinh�at�, az̃ = − eaz cosh�at�, x̃ = x, ỹ = y

�5�

for region IV. As we can see from Fig. 1, although we have
covered the whole Minkowski space-time with these sets of
coordinates, there are two more regions labeled II and III. To
map them we would need to switch cosh↔sinh in Eqs. �4�
and �5�. In these regions t is a spacelike coordinate and z is a
timelike coordinate. However, the solutions of Dirac equa-
tion in such regions are not required to discuss entanglement

between Alice and an accelerated observer, since he would
be constrained to either region I or IV, having no possible
access to the opposite regions as they are causally discon-
nected �5,6,20,21�.

The Rindler coordinates z and t go from −� to � inde-
pendently in regions I and IV. It means that each region
admits a separate quantization procedure with their corre-
sponding positive and negative energy solutions1 ��k,s

I+ ,�k,s
I− �

and ��k,s
IV+ ,�k,s

IV−�.
Particles and antiparticles will be classified with respect to

the future-directed timelike Killing vector in each region. In
region I the future-directed Killing vector is

�t
I =

� t̃

�t
�t̃ +

� z̃

�t
�z̃ = a�z̃�t̃ + t̃�z̃� , �6�

whereas in region IV the future-directed Killing vector is
�t

IV=−�t
I.

This means that solutions in region I, having time depen-
dence �k

I+�e−ik0t with k0	0, represent positive energy solu-
tions, whereas solutions in region IV, having time depen-
dence �k

I+�e−ik0t with k0	0, are actually negative energy
solutions since �t

IV points to the opposite direction of �t̃

�6,21�. As I and IV are causally disconnected �k,s
IV� and �k,s

I�

only have support in their own regions vanishing outside
them.

Let us denote �cI,k,s ,cI,k,s
† � the particle annihilation and

creation operators in region I and �dI,k,s ,dI,k,s
† � the corre-

sponding antiparticle operators. Analogously we define
�cIV,k,s ,cIV,k,s

† ,dIV,k,s ,dIV,k,s
† � the particle/antiparticle operators

in region IV.

1Throughout this work we will consider that the spin of each
mode is in the acceleration direction and, hence, spin will not un-
dergo Thomas precession due to instant Wigner rotations �6,22�.

FIG. 1. �Color online� Rindler space-time diagram: lines of con-
stant position z=const are hyperbolae and all the curves of constant
proper time t for the accelerated observer are straight lines that
come from the origin. A uniformly accelerated observer Rob travels
along a hyperbola constrained to region I.
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These operators satisfy the anticommutation relations
�cR,k,s ,cR�,k�,s�

† �=�RR��kk��ss� where the subscript R notates
the Rindler region of the operator R= �I , IV�. All other anti-
commutators are zero. That includes the anticommutators be-
tween operators in different regions of the Rindler space-
time.

Taking this into account we can expand the Dirac field in
Rindler coordinates analogously to Eq. �1�:

� = �
s
� d3k�cI,k,s�k,s

I+ + dI,k,s
† �k,s

I− + cIV,k,s�k,s
IV+ + dIV,k,s

† �k,s
IV−� .

�7�

Equations �1� and �7� represent the expansion of the Dirac
field in its modes in Minkowski and Rindler coordinates,
respectively. We can relate Minkowski and Rindler creation
and annihilation operators by taking appropriate inner prod-
ucts and computing the so-called Bogoliubov coefficients
�6,18,21,22�:

ak,s = cos rcI,k,s − ei
 sin rdIV,−k,−s
† ,

bk,s
† = cos rdIV,k,s

† + e−i
 sin rcI,−k,−s, �8�

where

tan r = e−��k0c/a� �9�

and 
 is a phase factor that will turn out to be irrelevant for
our purposes. Notice that since in Rindler regions I and IV
the temporal Killing vectors pointing to the future have op-
posite senses, all the magnitudes that are not invariant under
time reversal change among regions.

It is shown in the literature �5,6,15� that Unruh effect
provokes decoherence of entangled states when one of the
partners is describing the system from an accelerated frame.
As it can be thoroughly seen in �15�, this comes about be-
cause the fact of accelerating introduces a horizon in the
space-time and, as Rob is always constrained to region I or
IV of the Rindler space-time, for a quantum description of
Rob’s subsystem it will be necessary to trace over the region
causally disconnected from Rob.

It is this partial tracing which transforms the total state
�which would be pure for an inertial observer� into a mixed
state whose entanglement decreases as Rob acceleration in-
creases. This phenomenon has been called Unruh decoher-
ence in the literature. We are not tackling here the complete
problem of expressing the vacuum and the one-particle state
for the different fields beyond the SMA, because its calcula-
tion, although easy, may take a bit long and it is detailedly
done in �15�. Instead we will start from the results obtained
in �15� for the multimode vacuum expressed as a squeezed
state in Rindler coordinates.

Notice that since the observer Rob is accelerated, his pos-
sible measurements are affected by a Doppler-like effect. A
discussion of this effect and how it would affect our study is
given in �15�.

III. VACUUM AND ONE-PARTICLE STATES OF
FERMIONIC FIELDS BEYOND SMA

In this section we shall go beyond the single mode ap-
proximation to build the vacuum state and the one-particle
excited state for two very different kinds of fermionic fields:
first a Dirac field and then a spinless fermion field. Both
kinds of fields were analyzed under the SMA in previous
literature �the spinless case in �6� and the Dirac field in �15�
whose notation we will follow in this paper�.

To begin with, let us consider a discrete number n of
different modes of a Dirac field k1 , . . . ,kn, labeling with si
the spin degree of freedom of each mode, so Minkowski
multimode vacuum should be expressed as a squeezed state
in Rindler coordinates which is an arbitrary superposition of
spins and momenta as it is discussed in �15�,


0� = �
m=0

2n

�
s1,. . .,sm

k1,. . .,km

Cs1,. . .,sm,k1,. . .,km

m �s1,. . .,sm

k1,. . .,km
m̃�I
m̃�IV, �10�

where the notation is


ĩ�I
ĩ�IV = 
s1,k1; . . . ;si,ki�I
− s1,− k1; . . . ;− si,− ki�IV

�11�

with


k1,s1; . . . ;km,sm�I = cI,km,sm

† . . . cI,k1,s1

† 
0�I. �12�

The label outside the kets notates Rindler space-time region
and the symbol � is 0 if �ki ,si�= �kj ,sj� for any i� j, and it is
1 otherwise, imposing Pauli exclusion principle constraints
on the state �quantum numbers of fermions cannot coincide�.

Due to the anticommutation relations of the fermionic op-
erators, terms with different orderings are not independent.
So, without loss of generality, we could choose not to write
all the possible orderings in Eq. �10� selecting one of them
instead. In this fashion we will write the elements �Eq. �11��
with the following ordering criterion:

ki � ki+1,

ki = ki+1 ⇒ si = ↑, si+1 = ↓ . �13�

The coefficients Cm are constrained because the Minkowski
vacuum should satisfy ak0,s0


0�=0, ∀k0, s0. In �15� we
showed that imposing this constraint translates into

Cm = C0eim
 tanm r , �14�
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where tan r=exp�−�k0c /a�. Cm is independent of si and ki.
Therefore, we obtain the vacuum state by substituting Eq.
�14� in Eq. �10� and factoring the coefficients out of the ki, si
summation,


0� = �
m=0

2n

Cm �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km
m̃�I
m̃�IV. �15�

The only parameter not fixed yet is C0. We can fix it impos-
ing the normalization of the Minkowski vacuum in Rindler
coordinates 0 
0�=1 �5,6,15�, which implies


C0
 = cos2n r , �16�

where we have taken into account our ordering choice ex-
plained above. This expression is explicitly derived in Ap-
pendix A.

Equation �16� gives the value of C0 except for a global
phase. Next, the one-particle state can be worked out trans-
lating the Minkowski one-particle state 
k ,s�=ak,s

† 
0� into
Rindler coordinates


k,s� = �
m=0

2n−1

Am �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,s
k1,. . .,km,k
m̃;k,s�I
m̃�IV, �17�

where

Am = �Cm cos r + Cm+1e−i
 sin r� , �18�

and the notation 
m̃ ;s ,k�I, consequently with Eq. �11�, means
the ordered version of 
s1 ,k1 ; . . . ;sn ,kn ;k ,s�I.

Another different kind of field that we are going to con-
sider appears by neglecting spin keeping the fermionic sta-
tistics �like considering Grassman scalar fields�. This kind of
field is used under the SMA in the literature �6�. Here we will
relax such approximation and will analyze Unruh decoher-
ence when we allow n different momenta ki. Barring spin,
the Minkowski multimode vacuum state would be expressed
as


0� = �
m=0

n

�
k1,. . .,km

�k1,. . .,km
Ĉk1,. . .,km

m 
m̃�I
m̃�IV, �19�

where in this occasion 
m̃�I
m̃�IV= 
k1 , . . . ,km�I
−k1 , . . . ,
−km�IV. Using the same procedures as for the spin-1/2 case
�Eq. �10�� we can prove that all the coefficients are indepen-

dent of ki and can be related to Ĉ0 as in Eq. �14�, Ĉm

= Ĉ0eim
 tanm r. We can now fix Ĉ0 imposing the normaliza-
tion relation 0 
0�=1 giving

Ĉ0 = ��
m=0

n

m tan2m r�−1/2

, �20�

where

m � �
k1,. . .,km

�k1,. . .,km
= � n

m
� , �21�

such that Eq. �20� can be simplified to

Ĉ0 = ��
m=0

n � n

m
�tan2m r�−1/2

= cosn r . �22�

Finally, the one-particle state ak
†
0� is


k� = �
m=0

n−1

Âm �
k1,. . .,km

�k1,. . .,km,k
m̃,k�I
m̃�IV, �23�

where Âm has expression �18� but substituting Cm by Ĉm.

IV. ENTANGLEMENT DEGRADATION FOR A �00‹+ �11‹
ENTANGLED STATE OF A DIRAC FIELD

BEYOND SMA

In the following we will analyze Unruh entanglement
degradation in various settings corresponding to different
maximally entangled states of fermion fields. First we con-
sider the following state in Minkowskian coordinates


�� =
1
	2

�
0�A
0�R + 
kA,sA�A
kR,sR�R� . �24�

The density matrix for the accelerated observer Rob is ob-
tained after expressing Rob’s state in Rindler coordinates—
which means using Eqs. �10� and �17� in Rob’s part of Eq.
�24�—and afterward, tracing over Rindler’s region IV since
Rob is causally disconnected from it and he is not to extract
any information from beyond the horizon. Following this
procedure we obtain the density matrix

� =
1

2��
m=0

2n

�D0
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km
0�A
m̃�I0
Am̃
I� + �
m=0

2n−1

�D1
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,sR

k1,. . .,km,kR
0�A
m̃�IkA,sA
Am̃;kR,sR
I�
+ �

m=0

2n−1

�D2
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,sR

k1,. . .,km,kR
kA,sA�A
m̃;kR,sR�IkA,sA
Am̃;kR,sR
I�� + �H.c.�nondiag, �25�
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where �H.c.�nondiag means Hermitian conjugate of only the
nondiagonal terms and

Di
m = 
C0
2

tan2m r

cosi r
, �26�

with i=0,1 ,2. The derivation of Eq. �25� can be found in
Appendix B.

Notice that as Rob accelerates, the state becomes mixed
with all the available modes �k1 , . . . ,kn� excited. This con-
trasts with Minkowskian state �24� where only one Rob
mode is excited �kR ,sR�. Notice also that the Hilbert space
dimension has changed from 2�2 to 2n�2n.

We will compute the negativity as a function of a as a
measure of the state entanglement; the negativity is the sum
of all the negative eigenvalues of the partial transpose of �.
The partial transpose of Eq. �25� has a 2�2 and 1�1 blocks
structure. Each eigenvalue in the 1�1 blocks is non-
negative �since Di

m�0�, so we are interested in the 2�2
which are the ones that may have negative eigenvalues.
These 2�2 blocks expressed in the basis

�
0�A
m̃;kR,sR�I, 
sA,kA�A
m̃�I�m=0
2n−1 �27�

are of the form

1

2
�D0

m+1 �D1
m

�D1
m 0

� . �28�

There is no D2
m element because it goes with


kA ,sA�A
m̃ ;kR ,sR�IkA ,sA
Am̃ ;kR ,sR
I which cannot have any
element within our block as Pauli exclusion principle im-
poses kR, sR� �ki ,si�i=1,. . .,m.

Each 2�2 block of Eq. �28� appears a number of times
Bm given by

Bm = �2n − 1

m
� . �29�

The derivation of this formula can be found in Appendix A.
Using Eq. �26�, the negative eigenvalue of each block can

be expressed as


�m
− 
 =

1

2

C0
2tan2m r , �30�

where C0 is given by Eq. �16�. Therefore, the negativity is
expressed as the summation of the negative eigenvalue of
each block 
�m

− 
 multiplied by the number of times Bm that
block appears in the partially transposed density matrix. The
summation of the series is

N = �
m=0

2n−1

Bm
�m
− 
 =

cos4n r

2 �
m=0

2n−1 �2n − 1

m
�tan2m r �31�

but this result can be easily simplified to

N =
1

2
cos2 r , �32�

which is independent of the number of modes n that we have
considered. This surprising result shows that, even if we con-
sider more than one mode in our field analysis, the entangle-

ment degradation due to Unruh effect is the same as consid-
ering only one mode as it is done in �15�. In other words,
despite the fact that all the available modes are excited when
Rob accelerates �Eq. �25��, the quantum correlations behave
as if we were considering only one possible mode for the
field. This is a consequence of the peculiar structure of the
density matrix for Rob, being the fermionic nature of the
field the final responsible of this structure �27�.

V. ENTANGLEMENT DEGRADATION FOR A SPIN AND
MOMENTUM ENTANGLED STATE OF A DIRAC

FIELD BEYOND SMA

If instead of Eq. �24� we start from a Bell momentum-spin
state in Minkowski coordinates


�� =
1
	2

�
kA
1 ,sA

1�A
kR
1 ,sR

1�R + 
kA
2 ,sA

2�A
kR
2 ,sR

2�R� . �33�

As it can be seen in Appendix B the density matrix for Rob
takes the form

� = �
m=0

2n−1
D2

m

2 �
s1,. . .,sm

k1,. . .,km

��
s1,. . .,sm,sR

1
k1,. . .,km,kR

1


kA
1 ,sA

1�A
m̃;kR
1 ,sR

1�I

�kA
1 ,sA

1 
Am̃,kR
1 ,sR

1 
I + �
s1,. . .,sm,sR

2
k1,. . .,km,kR

2


kA
2 ,sA

2�A
m̃;kR
2 ,sR

2�

�kA
2 ,sA

2 
Am̃;kR
2 ,sR

2 
I

+ �
s1,. . .,sm,sR

1 ,sR
2

k1,. . .,km,kR
1 ,kR

2


kA
1 ,sA

1�A
m̃;kR
1 ,sR

1�IkA
2 ,sA

2 
Am̃;kR
2 ,sR

2 
I�

+ �H.c.�nondiag. �34�

Analogously to Eq. �25�, the partial transpose of Eq. �34� has
a 2�2 and 1�1 blocks structure. Again, we are interested in
the 2�2 blocks—the ones that may have negative eigenval-
ues. These blocks expressed in the basis

�
kA
1 ,sA

1�A
m̃;kR
2 ,sR

2�I, 
sA
2 ,kA

2�A
m̃,kR
1 ,sR

1�I�m=0
2n−2 �35�

are of the form

1

2
� 0 �D2

m

�D2
m 0

� . �36�

Notice that there are no diagonal elements in the block be-
cause the terms that would go in the diagonal are forbidden
by Pauli exclusion principle, which imposes that kR

1 , sR
1; kR

2 ,
sR

2 � �ki ,si�i=1,. . .,m. This time, each 2�2 block of form �36�
appears a number of times Bm� given by

Bm� = �2n − 2

m
� �37�

�see Appendix A�. The negative eigenvalue of each block is


�m
− 
 =

D2
m

2
=

cos4n−2 r

2
tan2m r , �38�

where C0 has been substituted by Eq. �16�. Therefore, the
negativity results
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N = �
m=0

2n−2

Bm� 
�m
− 
 =

cos4n−2r

2 �
m=0

2n−2 �2n − 2

m
�tan2m r . �39�

This can be readily simplified to

N =
1

2
cos2 r . �40�

Strikingly we run into the same simple result as above �Eq.
�32��. Even starting from a spin Bell state, the entanglement
is degraded by Unruh effect in the same way as in the pre-
vious case.

VI. ENTANGLEMENT DEGRADATION FOR �00‹+ �11‹
ENTANGLED STATE OF A SPINLESS FERMION FIELD

BEYOND SMA

Now we can go one step further neglecting spin and con-
sider a spinless field on which we have imposed the fermi-
onic statistics. The maximally entangled state of the vacuum
and one particle in this setting


�� =
1
	2

�
0�A
0�R + 
kA�A
kR�R� . �41�

As it is discussed in Appendix B, this leads to the following
density matrix for the accelerated observer Rob after using
expressions �19� and �23� and after tracing over Rindler’s
region IV,

� =
1

2��
m=0

n

D̂0
m �

k1,. . .,km

�k1,. . .,km

0�A
m̃�I0
Am̃
I

+ �
m=0

n−1

�D̂1
m �

k1,. . .,km

�k1,. . .,km,kR

0�A
m̃�IkA
Am̃;kR
I

+ D̂2
m �

k1,. . .,km

�k1,. . .,km,kR

kA�A
m̃;kR�IkA
Am̃;kR
I��

+ �H.c.�nondiag, �42�

where D̂i� is given by expression �26� but substituting C0 by

Ĉ0.
Analogously to Eqs. �25� and �34�, the partial transpose of

Eq. �42� has a 2�2 and 1�1 blocks structure. The 2�2
blocks expressed in the basis

�
0�A
m̃;kR�I, 
kA�A
m̃�I�m=0
n−1 �43�

would have the form

1

2� D̂0
m+1 �D̂1

m

�D̂1
m 0

� . �44�

The main difference with Eq. �28� is that Ĉ0 is a different

value �22� instead of C0 given by Eq. �16�. Here, D̂2
m does

not appear because Pauli exclusion principle imposes that
kR� �ki�i=1,. . .,m. Now, each 2�2 block multiplicity is

Bm� = �n − 1

m
� �45�

�see Appendix A�. The negative eigenvalue of each block is
given by the same expression �30� but C0 is now given by
Eq. �22�, which is to say


�m
− 
 =

1

2

Ĉ0
2tan2n r =

1

2
cos2m tan2m r . �46�

We can compute the negativity

N = �
m=0

n−1

Bm� 
�m
− 
 =

1

2
cos2n r�

m=0

n−1 �n − 1

m
�tan2m r . �47�

At this point, the reader might not be surprised by the result-
ing negativity after straightforward simplification

N =
1

2
cos2 r , �48�

which is the same result as in cases �24� and �33�. Again,
entanglement degradation due to Unruh effect is the same as
considering one mode of a Dirac field �15�.

VII. CONCLUSIONS AND COMMENTS

Let us summarize our results so far. We have studied en-
tanglement degradation by Unruh effect as Rob accelerates
beyond the single mode approximation and three different
Minkowskian maximally entangled states: �1� vacuum-
vacuum plus one-particle–one-particle maximally entangled
state of a Dirac field; �2� spin-momentum Bell state for a
Dirac field; �3� vacuum-vacuum plus one-particle–one-
particle maximally entangled state of a spinless fermion
field. In spite of the essential differences among these states,
the negativity degrades in exactly the same way for any ac-
celeration. This result may look surprising considering that
this is the same degradation obtained under the single mode
approximation �6,15� but as it is discussed in this paper, this
is an outcome of fermionic statistics.

In the bosonic case acceleration excites an infinite number
of modes and this completely degrades the entanglement in
the limit a→�. Although one could expect the same behav-
ior here—as an infinite number of modes is also excited
when we let n→�—our results show that some entangle-
ment is preserved for a→�. It is remarkable that the en-
tanglement degradation coincides for all the different cases
considered with independence of the number of modes n.

This striking result can be traced back to the fanciful
block structure of Rob’s density matrix, which produces the
same negativity even when the characteristics of the en-
tangled states �and even the field� change. The culprit of this
structure is fermionic statistics �as we have discussed after
Eqs. �28�, �36�, and �44�� which is responsible for the iden-
tical, and somewhat unforeseen, negativity behavior. This is
a global feature of maximally entangled states of fermion
fields and not a consequence of the specific cases chosen and
the number of modes considered.

So, N→1 /4 when a→�, and this happens independently
of the number of modes of the field that we are considering,
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of the starting maximally entangled state, and even of the
spin of the field which we study. What all the cases have in
common is the fermionic statistics itself, so, widening the
margin for Unruh degradation for fermionic fields will not
affect entanglement degradation.

Notice that a very different scenario would come from a
setting in which we erase partial information for the state as
Rob accelerates �e.g., angular momentum�. In that case, it
was shown that entanglement degradation is greater than in
the cases where all the information is taken into account
�15�, but this has more to do with this erasure of information
than which the fermionic nature of the states.

One question immediately arises from these results: are
the remaining correlations purely statistical? In other words,
does any useful information really survive the limit a→�?
As all the states undergo the same degradation, everything
points that statistics is the only information which survives
this limit.

Furthermore, the limit a→� can be understood as consid-
ering an observer moving in a trajectory arbitrarily close to
the event horizon of a Schwarzschild black hole �5�. So, even
if Alice is free falling into a black hole and Rob stands at the
event horizon, a fixed degree of entanglement survives to
Unruh decoherence. Apart from the interest of describing the
entanglement between accelerated observers, the regularity
and universality of our result �N= �1 /2�cos2 r� could be a
useful hint in the solution of the information paradox in
black holes and deserves further investigation in future
works.
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APPENDIX A: DERIVATION OF C0 AND THE
COMBINATORY FORMULAS

To derive C0 except for a global phase, we impose the
normalization of the vacuum state in Rindler coordinates
0 
0�=1, from Eq. �15�, we see that this means that

C0 = ��
m=0

n

�m tan2m r + �
m=n+1

2n

�2n−m tan2m r�−1/2

,

�A1�

where

�m = �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km. �A2�

Now, we are going to show that Eq. �A2� has the form

�m = �
p=0

�m/2� � n − p

m − 2p
��n

p
�2m−2p. �A3�

To see how this expression comes from Pauli exclusion prin-
ciple, we have to read p as an index that represents the num-

ber of possible spin pairs �ki=ki+1 ,si= ↑ ,si+1=↓� which can
be formed, and goes from 0 to the integer part of m /2, and
then the following:

�i� The combinatory number � n−p
m−2p � represents the pos-

sible combinations of modes that can be formed taking into
account that p different momenta ki are not available since
they are already occupied by the p pairs. Hence, it is given
by the combinations of the n− p available momenta taken
m−2p at time, since m−2p is the number of free momentum
“slots” �the total number of different momenta m minus the
number of positions taken by pairs 2p�.

�ii� The combinatory factor � n
p � represents the different

possible combinations for the configuration of the p pairs,
which have n possible different momenta to be combined
among them without repetition and in a particular order.

�iii� The factor 2m−2p represents the possible combination
for the spin degree of freedom of each mode. As a spin pair
only admits one spin configuration, only the unpaired modes
will give different spin contributions, so the factor is �2S
+1�m−2p giving formula �A2�.

After some lengthy but elementary algebra we can see
that

�m = �2n

m
� �A4�

and using the property � a
a−b �= � a

b �, we can express Eq. �A1�
as

C0 = ��
m=0

2n �2n

m
�tan2m r�−1/2

= cos2n r , �A5�

which is Eq. �16�.
Now we will do the same for Eq. �29�. This formula takes

into account the number of 2�2 blocks of form �28�. Taking
a look at the basis in which those blocks are expressed �Eq.
�27��, we can see that the expression for Bm is given by the
two following terms:

�i� The number of possible combinations of m modes with
n possible different momenta ki and two possible spins si
according to Pauli exclusion principle as in Eq. �A3�.

�ii� A negative contribution which comes from excluding
those combinations in which �kR ,sR� coincides with any
�ki ,si�, which means excluding the number of combinations
in Eq. �A3� which have one of their values fixed to �ki ,si�
= �kR ,sR�. This number is given by the combinatory number
� 2n−1

m−1 � provided that m	0 and it is zero if m=0.
To see where this negative contribution comes from let us

assume that it is �ki ,si� the mode which coincides with
�kR ,sR�; we will have 2n−1 possible choices for each
�kj�i ,sj�i� �two values for s and n for k excepting ki ,si due to
Pauli exclusion principle�. This happens for all the combina-
tions of all the possible values �kj ,sj� with j� i. Hence, as
there are m modes and one of them is fixed ki=kR , si=sR,
we have to consider the combinations of 2n−1 elements
taken m−1 at time.

If m	n the situation is equivalent to having m�=2n−m.
Since having more modes m than possible values of ki we are

FERMIONIC ENTANGLEMENT THAT SURVIVES A BLACK HOLE PHYSICAL REVIEW A 80, 042318 �2009�

042318-7



forced to have n−m pairs and we lose freedom to combine
the available modes.

Now if we compute

Bm = �m − �2n − 1

m − 1
� = �2n

m
� − �2n − 1

m − 1
� . �A6�

After some basic algebra we obtain

Bm = �2n − 1

m
� , �A7�

which is expression �29�.
The derivation of expression �37� is quite straightforward

considering the one above. Looking at the basis of the 2
�2 blocks �Eq. �35�� we can see that this case would be
exactly the same as the previous one but now �ki ,si� cannot
coincide neither with �kR

1 ,sR
1� nor �kR

2 ,sR
2�. Repeating the

same reasoning as before we have to do three operations as
follows:

�i� Discounting the combinations which have a coinci-
dence �ki ,si�= �kR

1 ,sR
1� from the total number �A3� and obtain

expression �A7�.
�ii� Subtract the combinations with coincidences �kj ,sj�

= �kR
2 ,sR

2�.
�iii� Taking into account that we have subtracted twice the

cases in which we have double coincidences, we need to add
the number of double coincidences once to compensate it.

The number of cases with double coincidences �which
require m	1� is the combinatory number � 2n−2

m−2 �, as we have
2n possible spins and momenta minus the two fixed possi-
bilities ��ki ,si�= �kR

1 ,sR
1� and �kj ,sj�= �kR

2 ,sR
2�� and m modes

being two of them fixed. Taking this into account

Bm� = �m − �2n − 1

m − 1
� − �2n − 1

m − 1
� + �2n − 2

m − 2
� . �A8�

This expression can be simplified to

Bm� = Bm − �2n − 2

m − 1
� = �2n − 2

m
� , �A9�

which is Eq. �37�.
For the spinless fermion field, Eq. �21�, which has the

form

m � �
k1,. . .,km

�k1,. . .,km
= � n

m
� �A10�

corresponding to the possible combinations of m values of ki
imposing that ki�kj if j� i �which is the translation of Pauli
exclusion principle to spinless modes�. This can be readily
obtained taking into account that the n possible values of ki
should be combined without repetition in a particular order-
ing of the m modes, so the possible combinations are simply
the combinatory number � n

m �.
Equation �45� can be easily obtained taking into account

that the number of 2�2 blocks �43� is given by the number
of mode combinations allowed by Pauli principle �A10�, sub-
tracting the terms having ki=kR. The number of possible kj

values allowed for the rest m−1 modes having fixed ki=kR is
n−1, so the number of combinations we must subtract is the
combinatory number � n−1

m−1 �, obtaining

Bm� = � n

m
� − � n − 1

m − 1
� = �n − 1

m
� �A11�

which is Eq. �45�.

APPENDIX B: DENSITY-MATRIX CONSTRUCTION

In this appendix we will derive expressions �25�, �34�, and
�42� for the density matrix of the system Alice-Rob.

Using expression �15� we see that the Alice-Rob
Minkowskian operator P00�
0;0�0;0
 when Rob is accel-
erating translates into

P00 = �
m=0

2n

�
l=0

2n

Cm�Cl�� �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km

� �
s1�,. . .,sl�

k1,. . .,kl�

�
s1�,. . .,sl�
k1�,. . .,kl�
0�A
m̃�I
m̃�IVl̃
IVl̃
I0
A, �B1�

where

l̃
I = k1�,s1�; . . . ;kl�,sl�
I = 0
IcI,k1�,s1�
. . . cI,km� ,sm�

,

l̃
IV = − k1�,− s1�; . . . ;− kl�,− sl�
I
= 0
IVcIV,−k1�,−s1�

. . . cIV,−km� ,−sm�
. �B2�

In expression �B1�, and below in Eq. �B3�, bras and kets
refer to Alice’s mode in Minkowski coordinates and Rob’s
mode in Rindler coordinates.

Now, using expression �17� we can write the operator
P11

ij �
kA
i ,sA

i ;kR
i ,sR

i �kA
j ,sA

j ;kR
j ,sR

j 
,

P11
ij = �

m=0

2n−1

�
l=0

2n−1

Am�Al�� �
s1,. . .,sm

k1,. . .,km

�
s1,. . .,sm,sR

i
k1,. . .,km,kR

i

�
s1�,. . .,sl�

k1,. . .,kl�

�
s1�,. . .,sl�,sR

j
k1�,. . .,kl�,kR

j

�
kA
i ,sA

i �A
m̃;kR
i ,sR

i �I
m̃�IVl̃
IVl̃;kR
j ,sR

j 
IkA
j ,sA

j 
A,

�B3�

where Am is given by Eq. �18�.
Notice that the objects 
m̃ ;kR

i ,sR
i �I represent the appropri-

ate ordering of the elements inside with its sign, taking cri-
terion �13� into account. Now we can use expressions �15�
and �17� to obtain the operator P01�
00�kA ,sA ;kR ,sR
 as it
is expressed when Rob is describing the world using Rindler
coordinates,

P01 = �
m=0

2n

�
l=0

2n−1

Cm�Al�� �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km �
s1�,. . .,sl�

k1,. . .,kl�

�
s1�,. . .,sl�,sR

k1�,. . .,kl�,kR
0�A

�
m̃�I
m̃�IVl̃
IVl̃;kR,sR
I0
A. �B4�
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After obtaining the expressions for the operators
P00, P11, P01 we can write the density matrix associated with
state �24� in Rindler coordinates for Rob,

� =
1

2
�P00 + P01 + P01

† + P11
ii � , �B5�

where for P11
ii we are considering �kR

i ,sR
i �= �kR

j ,sR
j ���kR ,sR�

and �kA
i ,sA

i �= �kA
j ,sA

j ���kA ,sA�.
We can do the same to obtain the density matrix associ-

ated with Eq. �33� in Rindler coordinates for Rob,

� =
1

2
�P11

11 + P11
22 + P11

12 + �P11
12�†� . �B6�

Now, we must consider that, as Rob is causally discon-
nected from Ridler’s region IV, we should trace over that
region to obtain Rob’s density matrix. Hence, we need to
compute the trace over IV for each of the previous operators
�B1�, �B3�, and �B4�.

Taking this trace is actually quite straightforward taking
into account the orthonormality of our basis once we have
chosen one particular ordering criterion �13�,

m̃
m̃��IV = �mm���s1,s1�
�k1,k1�

. . . �sm,sm�
�km,km�

� . �B7�

Hence,

TrIV P00 = �
m�=0

2n

m̃�
IVP00
m̃��IV. �B8�

Using Eq. �B7� only the diagonal elements in region IV sur-
vive and Eq. �B8� turns out to be

TrIV P00 = �
m=0

2n


Cm
2 �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km
0�A
m̃�Im̃
I0
A,

�B9�

which, substituting Cm as a function of C0 using Eq. �14� and
then Eq. �26�, is expressed as

TrIV P00 = �
m=0

2n

D0
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm

k1,. . .,km
0�A
m̃�Im̃
I0
A.

�B10�

Now we will compute the trace

TrIV P11
ij = �

m�=0

2n

m̃�
IVP11
ij 
m̃��IV, �B11�

TrIV P11
ij = �

m=0

2n−1


Am
2 �
s1,. . .,sm

k1,. . .,km

�
s1,. . .,sm,sR

i
k1,. . .,km,kR

i

�
s1,. . .,sm,sR

j
k1,. . .,km,kR

j


kA,sA�A

�
m̃;kR,sR�Im̃;kR,sR
IkA,sA
A. �B12�

Substituting Cm as a function of C0 �combining Eqs. �18� and
�14�� we can express 
Am
2 as


C0
2tan2m r�cos r +
sin2 r

cos r
�2

= 
C0
2
tan2m r

cos2 r
= D2

m,

�B13�

such that

TrIV P11
ii = �

m=0

2n−1

D2
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,sR

k1,. . .,km,kR
kA
i ,sA

i �A

� 
m̃;kR
i ,sR

i �Im̃;kR
j ,sR

j 
IkA
j ,sA

j 
A, �B14�

when �kR
i ,sR

i �= �kR
j ,sR

j ���kR ,sR�, �kA
i ,sA

i �= �kA
j ,sA

j ���kA ,sA�.
However, in the general case i� j it would be

TrIV P11
ij = �

m=0

2n−1

D2
m �

s1,. . .,sm

k1,. . .,km

�
s1,. . .,sm,sR

i ,sR
j

k1,. . .,km,kR
i ,kR

j


kA,sA

��A
m̃;kR,sR�Im̃;kR,sR
IkA,sA
A. �B15�

Now, let us compute the trace

TrIV P01 = �
m�=0

2n

m̃�
IVP01
m̃��IV, �B16�

TrIV P01 = �
m=0

2n−1

Cm�Am�� �
s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,sR

k1,. . .,km,kR
0�A

�
m̃�I
m̃�IVl̃
IVl̃;kR,sR
I0
A, �B17�

from Eqs. �18� and �14� we see that the product Cm�Am�� is
real and has the expression

Cm�Am�� = 
C0
2tan2m r�cos r +
sin2 r

cos r
� = 
C0
2

tan2m r

cos r
= D1

m

�B18�

so that

TrIV P01 = �
m=0

2n−1

D1
m �

s1,. . .,sm

k1,. . .,km

�s1,. . .,sm,sR

k1,. . .,km,kR
0�A

�
m̃�I
m̃�IVl̃
IVl̃;kR,sR
I0
A. �B19�

Now we can compute Rob’s density matrices for each
case tracing over IV in expressions �B5� and �B6�. First,
matrix �B5� is, after tracing over IV,

TrIV � =
1

2
�TrIV P00 + TrIV P01 + TrIV P01

† + TrIV P11
ii � .

�B20�

Substituting expressions �B10�, �B15�, and �B19� we get ex-
pression �25�.

Now, concerning Eq. �B6�,
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TrIV � =
1

2
TrIV�P11

11 + P11
22 + P11

12 + �P11
12�†� . �B21�

Substituting expressions �B14� and �B15� we obtain expres-
sion �34�.

The derivation of Eq. �42� is completely analogous to Eq.

�25�, taking now into account that we have Ĉm and D̂m in-
stead of Cm and Dm and that we have no spin degree of

freedom. Notice that, even though the structure of Eq. �42� is
completely analogous to the structure of Eq. �25�lu, and
therefore, repeating the derivation will add nothing to this
appendix, these density matrices are completely different due

to the different dimensions, the different values of Ĉ0 and C0,
and the number of 2�2 blocks which give negative eigen-
values.
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