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We consider the effect of broadband decoherence on the performance of refocusing sequences, having in
mind applications of dynamical decoupling in concatenation with quantum error correcting codes as the first
stage of coherence protection. Specifically, we construct cumulant expansions of effective decoherence opera-
tors for a qubit driven by a pulse of a generic symmetric shape and for several sequences of � and � /2 pulses.
While, in general, the performance of soft pulses in decoupling sequences in the presence of Markovian
decoherence is worse than that of the ideal � pulses, it can be substantially improved by shaping.
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I. INTRODUCTION

Dynamical decoupling �DD� �1–3� can be very effective
in protecting coherence of a quantum system against low-
frequency environment �4–25�. This, combined with low re-
source requirement, makes it attractive as the first-level co-
herence protection technique in combination with quantum
error correcting codes �QECCs� �26,27�. For such a com-
bined decoherence protection technique to work universally,
the performance of the DD should not be reduced in the
presence of fast environment modes whose effect on coher-
ence is to be dealt with by QECC.

Previously, the effects of broadband noise on DD were
analyzed in a number of publications, with the primary target
being the 1 / f or telegraph noise �16,17,28–31�. However, the
effectiveness of refocusing sequences was mostly studied nu-
merically apart from special exactly solvable cases �30,32�.
No attempt has been made to investigate general properties
and limitations of decoupling under these conditions. Cer-
tainly, there were no analytical studies of effects of pulse
shaping on decoupling in the presence of broadband deco-
herence.

In this work, we concentrate on the DD of a single qubit
�spin� in the presence of a broad-spectrum oscillator bath
�Fig. 1�. We first consider the effect of the pulse shape in the
special case where the external spin couplings can be de-
scribed by a combination of a Markovian noise �described by
the Lindblad decoherence operators� and a time-independent
magnetic field. This basic problem is similar in importance to
the canonical pulse shaping for a nuclear spin in the presence
of a chemical shift. For a qubit driven by an arbitrarily
shaped pulse, we construct an analytical expansion of the
average decoherence operator �34�, an analog of the average
Hamiltonian expansion �35,36� but for the qubit density ma-
trix evolution. Analyzing the first two terms of such expan-
sions for several decoupling sequences, we formulate the
conditions necessary for improved coherence of the qubit
and construct numerically the pulse shapes that satisfy these
conditions. We then compare the performance of the ob-
tained pulse shapes with “hard” pulses and the conventional
first- and second-order NMR-style self-refocusing pulses in
several decoupling sequences both analytically and numeri-

cally. For numerics, we model the oscillator bath as a com-
bination of classical correlated Gaussian noise and the Mar-
kovian noise �Figs. 1�a� and 1�c�, respectively�.

We analyze two kinds of decoupling sequences, the usual
decoupling sequences utilizing � pulses and the sequences
using composite pulses constructed of three � /2 pulses simi-
lar to those used in the NMR Waugh-Huber-Haerberlen
�WaHuHa� pulse sequence experiment �35�. While the
former sequences interact relatively little with the decoher-
ence operators �ideal � pulses leave the diagonal parts of the
decoherence operators invariant, where � stands for a Greek
letter pi�, the latter ones are constructed to symmetrize the
decoherence operator between all three channels. Such a re-
distribution seeks to minimize the detrimental effects of the
non-Hermitian evolution caused by the decoherence opera-
tors on higher-level control sequences.
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FIG. 1. Assumed spectral function of a generic oscillator bath
�schematic�. Dynamical decoupling can be very effective in pre-
serving coherence in the presence of �a� featureless low-frequency
bath �21� and also �b� sharp resonances �33�. In this work we con-
sider the effect of Markovian noise �c� on DD of a single qubit. We
assume F���=const up to a large cut-off frequency �max�� so that
the qubit dynamics associated with the modes �c� can be modeled
by the Linblad Eq. �11�. When the high-frequency spectrum is not
flat but is, e.g., a power law �1 /�� as in Refs. �30,32�, the decom-
position into �a� low-frequency and �c� Markovian parts becomes
approximate, with the Markovian decoherence rates �̃ determined
by F��� near �=��2� /	 determined by the sequence duration 	.
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II. MODEL

A. Hamiltonian

A system of individually controlled qubits in the presence
of an oscillator thermal bath can be described by the follow-
ing idealized Hamiltonian:

H = HC�t� + HS + HSB + HB, �1�

where the control Hamiltonian

HC�t� =
1

2�
n,�

Vn
��t�
n

�, �2�

the system Hamiltonian with one- and few-qubit terms,

HS =
1

2�
n,�

Bn
�
n

� +
1

4 �
n,n�,�,�

Jn,n�
��


n
�
n�

� + ¯ , �3�

the linear oscillator bath,

HB = �
�

��a�
† a�, �4�

and the bath-coupling Hamiltonians,

HSB =
1

2�
n,�

b̂n
�
n

� +
1

4 �
n,n�,�,�

ĵn,n�
��


n
�
n�

� + ¯ . �5�

Here 
n
�, with �=x ,y ,z, are the Pauli matrices for nth qubit,

a� and a�
† are the annihilation and creation operators for the

oscillators of the bath, and the operators b̂n
� and ĵnn�

�� describe
the various couplings with the bath. A linear in phonons cou-
pling, e.g., for the single-spin term can be written as

b̂n
� = �

�

fn�
� a� + f̄ n�

� a�
†

�2m����1/2 . �6�

In the limit where the oscillator modes have a continuous
spectrum, the kinetics of the decoherence effects is deter-
mined by the set of spectral coupling functions �matrices�,
e.g., for the single-qubit coupling,

Fn�,n����� �
�

2 �
�

fn�
� f̄ n��

�

m���

��� − ��� . �7�

A schematic plot of a single representative component of this
function is shown in Fig. 1.

For simplicity, we assume a combination of weak bath
coupling and finite temperature T so that the �generally non-
Markovian� master equation �21,37–40� in the leading order
�“Born approximation”� is satisfied. For the case of a single
qubit, which is primarily discussed in this work,

̇ = − i�HS + HC�t�,� −
1

4
�

0

t

dt�F1
���t − t��†
�,�
�,�‡

−
i

4
�

0

t

dt�F2
���t − t���
�,�
�,	� , �8�

where the dissipation kernel F̂1�t�+ iF̂�t�� F̂�t� is defined as

F̂�t� = �
0

� d�

�
�F̂����n� + 1�ei�t + F̂����n�e−i�t� , �9�

where n��exp����−1 is the oscillator occupation number
and ��� /T.

Dynamical decoupling in the presence of a low-frequency
bath �Figs. 1�a� and 1�b�� was analyzed in Refs. �21,33�.
General conclusion is that a carefully designed sequence
with the period 	�2� /� provides an excellent decoherence
protection as long as the adiabaticity condition ���c is
satisfied. Here �c is the bath cut-off frequency such that all
����c in Eq. �4�.

More precisely, the analysis in Ref. �21� was done for a
featureless low-frequency bath �Fig. 1�a�� in the approxima-
tion of non-Markovian quantum kinetic �master� equation.
The approach was to design a decoupling sequence effective
for a closed system with the “frozen” bath, where each term
in the bath-coupling Hamiltonian HSB �Eq. �5�� is replaced by
the corresponding term with a nonzero c-number coefficient

in Eq. �3� �e.g., b̂n
�→Bn

�, ĵn,n�
�,� →Jn,n�

�,� , etc., with the matching
indices.� The corresponding unitary evolution operator U�t
=	� after one decoupling period can be characterized by the
decoupling order K, the number of terms in the Magnus �cu-
mulant� expansion in powers of HS which are suppressed
identically. Such a suppression can be expressed in terms of
certain algebraic conditions which were used in the analysis
of the solutions of the full master equation, order-by-order in
powers of the adiabaticity parameter �c /�. At K=1, the
single-phonon T1 processes are completely suppressed as
long as �c�� �this can also be seen by analyzing the ab-
sorption spectra of the driven system �41��. Additionally,
since the bath coupling is modulated at the frequency �, the
effective dephasing rate is reduced by the factor of �c /�
�21�. At K=2, in many cases �e.g., for a single qubit�,
dephasing rate is suppressed faster than any power of
�c /��1: terms of every order in the corresponding expan-
sion are suppressed �21�.

The description in terms of the master equation fails in the
presence of sharp resonances �Fig. 1�b��; the corresponding
modes have to be included in the Hamiltonian of the system
and the controlled dynamics reanalyzed �33�. Compared to
qubits-only systems, presence of oscillators in HS can gener-
ate some additional terms in the Magnus expansion of the
unitary evolution operator U�	� for the closed system which
requires more careful sequence design. When this is done,
only the effective DD-renormalized coupling to such modes
matters. Nonequilibrium effects such as mode heating do not
occur as long as this renormalized coupling is small com-
pared to either the width of the spectral peak or the corre-
sponding frequency bias �33�.

B. Markovian decoherence

We now consider the dynamical decoupling in the pres-
ence of broadband bath modes, see Fig. 1�c�, assuming that
the corresponding inverse correlation time ���max is much
larger than the control bandwidth which determines the pulse
rate which can be implemented for the system. Out of the
master Eq. �8�, we separate a part D��, Markovian on the
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time scale slow compared to �max, and assume that the re-
maining relatively slow modes are limited to frequencies �
��c��max. Most generally, Markovian evolution implies
the dissipator in the Lindblad form �42�

D�� �
1

2�
j

��� j,� j
†� + �� j,� j

†�� , �10�

where  is the density matrix and � j are the decoherence
operators. Such a form can also be recovered from Eq. �9� in
the Markovian limit where the time-dependence of the kernel

F̂�t� becomes �-function-like. We note that this separation of
the approximately Markovian part of the bath �Eq. �10�� does
not imply the conditions of high temperature or weak cou-
pling combined with adiabaticity which are usually neces-
sary for the applicability of the Markovian master equation
�38,40,43�.

For example, with flat part of F���
const as in Fig. 1�c�,
we could set the low-frequency cutoff �c��−1 and include
the effect of �2n�+1�F1��� in Eq. �9� in the non-Markovian
part of the bath kernel. This is precisely the case solved
numerically in Sec. IV where the slow bath modes are re-
placed by correlated classical noise as appropriate for ��
�T.

To start, we will follow the approach of Ref. �21� and
begin by analyzing the dynamics of the system with “frozen”
dynamics of the slow modes in Fig. 1�a�. That is, we will
assume that the decoupling frequency � is large compared to
�c so that any bath couplings can be approximated by appro-
priate terms in HS. Then, the effect of the fast environmental
modes �Fig. 1�c�� on dynamical decoupling can be analyzed
by considering the driven Lindblad equation,

̇ = − i�HC�t� + HS,� + D�� . �11�

For a single qubit, parametrize the dissipator in terms of a
Hermitian non-negative-definite rate matrix �̃��,

D�� =
1

4 �
�,�=x,y,z

�̃����
�,
�� + �
�,
��� . �12�

It is convenient to separate the symmetric real and antisym-
metric imaginary parts of the rate matrix,

�̃�� = ��� + i����R�. �13�

Then, if we rewrite the density matrix in terms of the Bloch
vector R�R�t�,

�t� =
1

2
�1 + R�t� · 
� �, R2 � 1, �14�

the equation for spin kinetics in the presence of the single-
spin control �Eq. �2�� and system �Eq. �3�� Hamiltonians be-
comes

Ṙ = �V�t� � R� − �̂R − R� , �15�

− �̂R � �B � R� + ��̂ − 1 Tr �̂�R�t� . �16�

The terms with V�t� and B describe precession in the effec-
tive magnetic fields of the control and the system Hamilto-

nians, the term with �̂ describes the coherence loss due to
Markovian bath, while the last term in Eq. �15� ensures the
correct equilibrium value of R in the absence of control.

If we work in the basis associated with the dissipator, the
rate matrix �̂ is diagonal. In particular, for the case of nuclear
magnetic resonance �or any physical qubit with large energy
difference between the levels�, we have �xx=�yy =�, �zz
=��, and the matrix �Eq. �16�� takes the form

�̂ = �� + �� Bz − By

− Bz � + �� Bx

By − Bx 2�
� . �17�

These decay rates correspond to the usual coherence times
T1

−1=2� and T2
−1=�+��. The corresponding vector R has

only one component, Rz�0. In the special case ��=�, the
rate matrix is proportional to the identity matrix, �̂=�1.

We emphasize again that, while the analytical analysis is
done assuming time-independent “magnetic field” B in Eq.
�17�, the decoupling accuracy for obtained pulse shapes is
also verified numerically in Sec. IV with the components
B��t� taken as a classical time-dependent Gaussian correlated
noise.

C. Interaction representation and Magnus expansion

In dynamical decoupling, it is the control Hamiltonian
HC�t� that dominates the dynamics. The evolution associated
with the system Hamiltonian HS �Eq. �3�� or the dissipator
D�� �Eq. �10�� is much slower. Thus, it is convenient to
consider the dynamics in the interaction representation with
respect to HC�t�. To this end, we introduce the nonperturbed
unitary evolution operator U0�U0�t�,

U0�t� = Tt exp− i�
0

t

dt�HC�t��� , �18�

where Tt represents the usual time-ordering operator, and the

corresponding orthogonal spin-rotation matrix, Q̂0� Q̂0�t�,
can be computed as follows:

U0

�U0

† = Q0
��
�. �19�

The components Q0
�� satisfy the Bloch equation

Q̇0
���t� = e���V��t�Q0

���t�, Q̂0�0� = 1 . �20�

If we write the solution of the uniform version of Eq. �15�
�i.e., with R� =0� in terms of the full evolution matrix Q̂

� Q̂�t�,

R�t� = Q̂�t�R0, �21�

we can introduce the decomposition Q̂= Q̂0S, where the ma-
trix S defines the slow evolution of the Bloch vector in the
rotating frame defined by the control fields. The equation for
S reads
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Ṡ = − �̂�t�S, �̂�t� � Q̂0
t �t��̂Q̂0�t� , �22�

where �̂�t� is the evolution operator �Eq. �16�� in the inter-
action representation. The formal solution of Eq. �22� can be
again written as a time-ordered exponent,

S�t� = Tt exp− �
0

t

dt��̂�t��� . �23�

For a periodic control field, Hc�t+	�=Hc�t�, such that the
zeroth-order rotation matrix is also periodic, Q0�t+	�
=Q0�t�, the time-ordered exponent can be evaluated in terms

of the average decoherence operator �̄, an analog of the av-
erage Hamiltonian �35,36�:

S�n	� = e−n	�̄, �̄ � �̄�0� + �̄�1� + ¯ , �24�

where

�̄�0� =
1

	
�

0

	

dt1�̃�t1� , �25�

�̄�1� = −
1

2	
�

0

	

dt2�
0

t2

dt1��̂�t2�,�̂�t1�� , �26�

etc. Generally, the term �̄�k�, k�0, of this expansion contains
a �k+1�-fold integration of commutators of the rotating-

frame decoherence operator �̂�tj�; it scales as �	k. Trace of a

commutator is zero, thus Tr �̄�k�=0 for all k�0; this implies

Tr �̄ = Tr �̄�0� = Tr �̂ = 2 Tr �̂ . �27�

Generally, the trace-conserving modifications of the effective
decoherence operator correspond to �some degree of� sym-
metrization between the decoherence channels. More pre-

cisely, the real part of the smallest eigenvalue of �̄ cannot be

smaller than that of �̂. This can be seen by separating out the

trivial part of �̂ proportional to identity matrix, which corre-
sponds to uniform decoherence for all channels and remains
unchanged in the interaction representation �Eq. �22��.

D. Coherence loss in controlled system

As would be expected on general grounds, Eq. �27� im-
plies that the DD cannot eliminate the Markovian dissipa-
tion; at best we can hope to eliminate the off-diagonal terms

of matrix �̂ and redistribute the rates over the decoherence
channels. For example, for an NMR qubit decoherence
model �Eq. �17�� redistribution �symmetrization� over all
three channels would lead to

�̄ =
2

3
�2� + ���1 . �28�

With ����, this is equivalent to a 33% reduction in the
maximum decoherence rate or a 50% increase in the coher-
ence time measured by the fidelity minimized over the initial
conditions.

We should note that the quoted estimate for the maximum
decoherence rate improvement does not take into account the

antisymmetric part of the rate matrix �̃ �Eq. �13�� or, equiva-
lently, the nonuniform term R� in Eq. �15�. In the absence of
control fields, this term is responsible for asymptotic
thermal-equilibrium orientation of the spin; it is small and
can be ignored at sufficiently high temperatures �e.g., room-
temperature NMR�, but it can be large at temperatures small
compared to the qubit level difference �E01= �B�.

We can drop the nonuniform term R� in the analysis of
decoherence since it does not affect the evolution of the av-
erage fidelity, that is, the fidelity averaged by the initial con-
ditions, F�t��Tr��0��t��0. Indeed, Eq. �15� is a set of lin-
ear differential equations for the components of the Bloch
vector R�t�; the solution with given initial conditions R�0�
�R0 can be written as a sum of the solution �Eq. �21�� of the
uniform equation with the same initial condition and that of
the nonuniform equation but with zero initial condition. In
the expression for the average fidelity,

F�t� =
1

2
�1 + �R0 · R�t��R0

� , �29�

the solution of the uniform equation is bilinear in the com-
ponents of R0, while the nonuniform part is linear; the aver-
aging over all directions of R leaves only the bilinear part,

F�n	� =
1

2
+

1

6
Tr Q̂�n	� =

1

2
+

1

6
Tr e−n	�̄, �30�

where we assumed the zeroth-order rotation matrix to be

periodic, Q̂0�n	�=1, and used the representation �Eq. �24�� in

terms of the average decoherence operator �̄.
The obtained expression �30�, along with the properties of

the average decoherence operator �̄ discussed in the previous
section �see Eq. �27��, imply that the average fidelity cannot
be improved by means of dynamical decoupling beyond
eliminating the effect of the system Hamiltonian HS �Eq.
�3��. With B=0, this follows directly from the convexity of
exponentials in Eq. �30� if one works in the basis where the
average decoherence matrix �̄=diag��1 ,�2 ,�3�, 0��1��2
��3. In particular, the maximum possible fidelity with given
Tr �̂ corresponds to only one nonzero component, �3=Tr �̂.
In this case two �or any even number� qubit errors compen-
sate each other. On the other hand, the symmetric case �1
=�2=�3=Tr �̂ /3 in the absence of error correction corre-
sponds to the fidelity minimum.

We should also note that a symmetrization of decoherence
rates over channels �complete as in Eq. �28� or partial� would
prohibit the use of special QECCs designed for strongly
asymmetric error rates between the channels �44–49�.

In this work we assume that the benefits of dynamical
decoupling �due to reduced decoherence coming from the
slow degrees of freedom� outweigh the detrimental effects
related to symmetrization of the coherence rates.

III. PULSE AND SEQUENCE CHARACTERIZATION

A. Hard pulses

Let us now use the discussed formalism to analyze con-
trolled dynamics. We start with hard pulses, with the � func-
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tion centered at the middle of the interval of duration 	p. For
example, for a ��0�x pulse �rotation angle �0 with respect to
x axis�, the nonzero control field in Eq. �2� can be written as

Vx�t� = �0��t − 	p/2�, 0 � t � 	p. �31�

For the special case �0=� �pulse �x�, the corresponding ro-
tation matrix �Eq. �20�� is

Q̂0�t� = � 1 , 0 � t � 	p/2
diag�1,− 1,− 1� , 	p/2 � t � 	p.

� �32�

Over the second half of the interval, the components �xy and
�xz are inverted; as a result in the leading order

�̄�0���x� = ��yy + �zz

�zz + �xx Bx − �yz

− Bx − �yz �xx + �yy
� . �33�

The expression for �̄�1���x� is too complicated to quote here.
However, for the symmetric sequence 2s�XX of X��x
pulses �which is the repeated part of the Carr-Purcell se-
quence�, the first-order average decoherence operator

�̄�1��2s�=0, while the zeroth-order term �̄�0��2s� is the same
as for a single pulse given by Eq. �33�.

Deriving similar expressions for a �y pulse, we can easily
construct the expressions for standard two-dimensional de-
coupling sequences of hard � pulses. In particular, the

group-averaging �10,50� four-pulse sequence 4p�XYX̄Y re-
sults in cancellation of all off-diagonal terms to leading or-
der,

�̄�0��4p� = ��yy + �zz 0 0

0 �xx + �zz 0

0 0 �xx + �yy
� , �34�

while the symmetric sequence 8s�XYX̄YYX̄YX �symme-
trized version of 4p� results in cancellation of all off-

diagonal terms ��̄�0��8s�= �̄�0��4p�, see Eq. �34�� and does not

produce any first-order corrections, �̄�1��8s�=0. We note that

with the hard pulses, the contribution to �̄�2��8s� is nonzero
already for a Hamiltonian evolution with �̂=0, as long as
both Bx and By are nonzero.

The hard � pulses do not modify the structure of the
diagonal part of the evolution matrix �. A redistribution
�symmetrization� over different decoherence channels can be
done if we deliberately orient the spin along different axes
with � /2 pulses. In the absence of the system Hamiltonian
�B=0�, for NMR decoherence model �Eq. �17��, the symme-
trization can be achieved with the WaHuHa �MREV-4� NMR
experiment �35,51�, a sequence of � /2 pulses with the cycle

5=XY0ȲX̄ of duration 	=5	p, where each pulse is centered
as in Eq. �31� and 0 stands for a free evolution interval equal
to the pulse duration 	p. The averaging of the second-rank
coupling achieved by this sequence is used to eliminate di-
polar coupling between nuclei. However, the accuracy
achieved by this sequence is rather sensitive to chemical
shifts; the corrections are present already in the leading-order
effective evolution operator.

To achieve both the decoherence symmetrization and the
decoupling, we constructed several pulse sequences based

upon the composite pulses R��XȲX, R��XYX, and the in-

verted versions R̄�� X̄YX̄ and R̄�� X̄ȲX̄. Here, X and Y now
denote the � /2 pulses applied in the corresponding direc-
tions. The composite pulses R� and R� are mutually orthogo-
nal � pulses constructed in such a way that the spin’s x, y,
and z axes spend equal time oriented along the z axis. As a
result, they achieve a leading-order symmetrization of the
NMR decoherence matrix, see Eq. �17� with B� =0� . The 12-
and 24-pulse sequences, 12 and 24, respectively, are merely
the universal decoupling sequences 4p and 8s constructed
from these composite pulses,

12 = R�R�R̄�R�, �35�

24 = R�R�R̄�R�R�R̄�R�R�, �36�

while the 48-pulse sequence includes an additional cycle of
phase ramping analogous to that in MLEV-16 and higher-
order sequences �52�,

48 = R�R�R̄�R�R̄�R̄�R�R̄� + �reverse� . �37�

The basic 12-pulse sequence achieves symmetrization but
not the decoupling; the leading-order average decoherence
operator reads

�̄12
�0� =

1

6�4�2� + ��� 2By − Bz

− 2By 4�2� + ��� − Bz

Bz Bz 4�2� + ���
� . �38�

The longer sequence 24 achieves both the decoupling and
symmetrization of the decoherence operator �Eq. �17�� in the

leading order, i.e., �̄24
�0� is given by Eq. �28�. The sequence 48

achieves symmetrization to subleading order, i.e., �̄48
�0� is

given by Eq. �28� while �̄48
�1�=0. Moreover, in the experimen-

tally relevant case Bx=By =0, the �̄48
�2� only has nonzero ele-

ments �Bz
2��−���	p

2 along the diagonal.

B. Finite-duration pulses

Let us now analyze the performance of discussed se-
quences when finite-duration “soft” pulses are used instead
of the ideal hard pulses. Basically, we extend the formalism
of Refs. �33,53� to the case of non-Hermitian evolution �Eq.
�15�� with the most general symmetric rate matrix �̂.

1. Average evolution operator for a single pulse

We begin with the qubit evolution driven by a one-
dimensional pulse of arbitrary shape,

Hc�t� =
1

2
V�t�
x. �39�

The �zeroth-order� evolution operator due to control field
alone is given by
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Uc�t� = exp�− i
x��t�/2�, ��t� = �
0

t

dt�V�t�� . �40�

This is just a rotation by angle ��t� around the x axis,

Q̂0�t� = �1 0 0

0 cos ��t� sin ��t�
0 − sin ��t� cos ��t�

� . �41�

With nonzero decoherence matrix �̂�0, the evolution opera-
tor in the interaction representation �Eq. �22�� will contain
terms that depend both linearly and bilinearly on the compo-
nents of the matrix �Eq. �41��. In other words, the time de-

pendence of �̂�t� will be only through terms proportional to
cos �, sin �, cos 2�, and sin 2�. The functions of the
doubled angle are specifically due to the Markovian decoher-
ence operators; they were not present in the analysis of
Hamiltonian dynamics in Refs. �33,53�.

For the symmetric pulse shape,

Vx�	p − t� = Vx�t�, ��	p − t� = �0 − ��t� , �42�

it is convenient to introduce the symmetrized angle

��t� � ��t� − �0/2, ��	p − t� = − ��t� . �43�

The averages of time-dependent terms can be then written as
follows:

�cos �� = � cos
�0

2
, �sin �� = � sin

�0

2
, �44�

�cos 2�� = �2 cos �0, �sin 2�� = �2 sin �0, �45�

where

� � �cos ��t��, �2 � �cos 2��t�� , �46�

and the pulse-averages are defined simply as

�f�t�� �
1

	p
�

0

	p

dtf�t� . �47�

We see that, to leading order, the pulse-shape dependence of

the average evolution operator �̄�0� �Eq. �25�� is reduced to
only two constants. The parameter � gives an effective pulse
length to first order; it is equal to zero, �=0 for ideal
�-inversion pulses �rotation angle �0=��, as well as for Her-
mitian pulses �54� or other first-order self-refocusing pulses
�19,53,55�. The parameter �2 vanishes for ideal � pulses with
the rotation angle �0=� /2; for hard inversion pulses �Eq.
�31�� we have �= �� /2, thus cos 2�=−1 throughout the
interval, which gives �2=−1. For soft pulses with limited
amplitude, ��2��1. The values of the parameters for some
other pulse shapes are listed in Table I.

Specifically for a symmetric �x pulse, we get

�̄�0���x� =�
�yy + �zz ��By + �xz� ��Bz − �xy�

��− By + �xz� �xx + �yy
1 + �2

2
+ �zz

1 − �2

2
v2�yz + Bx

− ��Bz + �xy� v2�yz − Bx �xx + �yy
1 − �2

2
+ �zz

1 + �2

2
� , �48�

which goes over to Eq. �33� for �=0 and �2=−1.
The first-order average evolution operator �Eq. �26�� con-

tains the double integral of the commutator of the rotating-

frame evolution operator �̂�ti� taken at different moments ti,
i=1,2. There are only a few combinations of trigonometric
functions of the symmetrized angle �Eq. �43�� and the time-

independent terms that result in nonzero contributions to �̄�1�

for a single symmetric pulse with the duration 	p:

� � �sin�� − ���� , �49�

� ��� t

	p
−

1

2
�sin �� , �50�

�2 � �sin�2� − 2���� , �51�

�2 ��� t

	p
−

1

2
�sin 2�� , �52�

� � �sin�2� − ���� , �53�

where ����t�, �����t��, and the two-parameter averages
are defined as

�f�t,t��� �
1

	p
2�

0

	p

dt�
0

t

dt�f�t,t�� . �54�

The parameters � and � completely characterize the Hermit-
ian evolution during the pulse; they were introduced and
discussed in detail in Refs. �33,53�.

2. Decoupling sequences of finite-length � pulses

Given the computed terms of the average evolution opera-
tor for a single finite-duration pulse along the x axis, the
corresponding expressions for a pulse along an arbitrary di-
rection can be found by an orthogonal transformation, using
the appropriately transformed vector B and decoherence ma-
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trix �̂. We checked that in simple cases, n̂= �ex and n̂
= �ey, the results coincide identically with those obtained
directly as outlined in Sec. III B 1.

With these expressions, the evolution matrix Q̂ for a se-
quence of pulses can be computed as a product of the evo-
lution operators for individual pulses,

Q̂i = Q̂0,i1 − 	p�̄i
�0� − 	p�̄i

�1� +
	p

2

2
�̄i

�0� · �̄i
�0� + O�	p

3�� .

For a sequence of pulses, the net average evolution operator

�̄seq can be obtained in terms of a logarithm of the obtained

series �multiplied from the left by the corresponding Q̂0,seq
when it is not equal to 1�.

For the cycle 2s=XX of the Carr-Purcell sequence, the
leading-order evolution operator is the same as for a single
�x pulse �Eq. �48�� but with �→0. The corresponding ex-

pression in the subleading order is complicated and contains
terms proportional to �, �2, ��2, �, �2, and �2; all of these
terms disappear in the limit of hard pulses. An antisymmetric

version of the same sequence, 2a= X̄X, results in the leading-
order evolution operator of form �48�, including the terms

with �, but the subleading order disappears, �̄�1��2a�=0. Fi-

nally, for the phase-ramped four-pulse sequence 4a= X̄X̄XX,
the leading-order effective decoherence operator is the same
as for the Carr-Purcell cycle,

�̄�0��4a� = �̄�0��2s� = �̄�0��X���→0,

while the subleading order vanishes, �̄�1��4a�=0.
For the two-dimensional decoupling sequence 4p

=XYX̄Y, the leading-order effective decoherence operator
reads

�̄�0��4p� =�
�yy + �zz

3 − �2

4
+ �xx

1 + �2

4
−
�

2
�Bx + �yz�

�

2
��xy − Bz�

�

2
�Bx − �yz� �xx + �zz

3 − �2

4
+ �yy

1 + �2

4
0

�

2
�Bz + �xy� 0 ��xx + �yy�

3 − �2

4
+ �zz

1 + �2

2

� . �55�

Note that the corresponding diagonal terms are determined
by the diagonal terms of the original matrix �̂ and the pa-
rameter �2 �see Eq. �46��, while off-diagonal terms are pro-
portional to the effective width of the pulse �. For Hamil-

tonian evolution, �̂=0, one could achieve �̄�0��4p�=0 by
using self-refocusing pulses with �=0. The next-order term
is complicated, but it is eliminated for the antisymmetric

sequence, 8a=XYX̄YȲXȲX̄. Specifically, for this sequence

we obtain the same leading-order expression �̄�0��8a�
= �̄�0��4p� �Eq. �55��, and �̄�1��8a�=0. On the other hand, for

the symmetric sequence 8s=XYX̄YYX̄YX, it is the leading-
order off-diagonal corrections proportional to � that vanish,

�̄�0��8s� = �̄�0��4p���→0,

while the subleading order contains terms proportional to �,
�, �2, and �2. All of the corrections can be eliminated by a
supercycle of phase ramping which leads to an antisymmet-
ric 16-pulse sequence 16a constructed as the 8s sequence
followed by the same sequence with inverted pulses. Specifi-
cally,

�̄�0��16a� = �̄�0��8s� = �̄�0��8a���→0, �56�

�̄�1��16a� = �̄�1��8a� = 0, �57�

where �̄�0��8a�= �̄�0��4p� is given by Eq. �55�. We should
mention that for Hamiltonian evolution, �̂=0, one could

achieve �̄�0��8s�= �̄�1��8s�=0 by using second-order pulses
with �=�=0 �33,53�.

Comparing these results with the analogous sequences of
hard pulses, we see that an equivalent cancellation with soft
pulses requires careful pulse shaping or doubling the number
of pulses in the sequence. On the other hand, while se-
quences of hard � pulses do not modify the diagonal part of
the effective decoherence operator, this is not so with shaped
pulses where �2�0. This corresponds to a reduction in the

effective decoherence rate T̄1
−1 due to redistribution between

the channels. For example, with the NMR decoherence
model �Eq. �17�� the inverse decoherence time becomes

T̄1
−1 = 2� − �� − ���

1 + �2

2
, �58�

for ���� and limited control fields ���2��1�, this is smaller
than the original T1

−1=2�. Note that the reduction is achieved
solely by redistribution of decoherence between the chan-

nels, that is, by a corresponding increase in T̄2
−1. For full

symmetrization �Eq. �28�� one needs �2=1 /3.
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3. Sequences of finite-length � Õ2 pulses

For the family of sequences 12, 24, 48 �see Eqs.
�35�–�37�� of � /2 pulses, the results are similar to those with
hard pulses. Specifically, when used with NMR decoherence
model �Eq. �17��, the sequence 12 achieves leading-order
coherence matrix symmetrization but not the decoupling.
The symmetrized �and phase ramped� sequences 24 and 48
achieve symmetrization and decoupling in the leading and
subleading orders, respectively. More explicitly, for symmet-
ric pulse shapes and the decoherence model �Eq. �17��,

�̄�0��24� = �̄�0��48� =
2

3
�2� + ���1, �̄�1��48� = 0. �59�

The nonzero matrix elements in �̄�1��24� contain terms scal-
ing as the products of ��−��� and the external field compo-
nents B� in all combinations; all of the coefficients cannot be
eliminated merely by pulse shaping. In the special case B�

=0, the correction �̄�1��24�� ��−���2 is suppressed for pulse
shapes with �2=�2=0.

With generic decoherence matrix �̂, �̄�1��48�=0 for 90°
pulses with �=�2=0. In this case the full symmetrization of
the decoherence matrix can be achieved as long as �xx=�yy,
which can be always made to be the case by an appropriate
choice of the basis in the x-y plane.

C. Pulse shaping

The obtained analytical results imply two possible appli-
cations for pulse shaping. First, a pulse can be shaped to
have the coefficients �, �, �2, and �2 zero so that the second-
order correction to effective decoherence operator is zero
already for the eight-pulse sequence 8s. The resulting effec-

tive decoherence operator �̄ will be diagonal, with the matrix
elements determined by the diagonal terms of the original
decoherence matrix �̂ and the parameter �2 �cf. the diagonal
elements in Eq. �55��. We note that up to terms of second
order in pulse duration, one might as well use the longer

sequence 16a to cancel the terms in �̄ proportional to coef-
ficients �, �, �2, and �2.

TABLE I. Expansion coefficients for different pulse shapes. See text for the definitions.

Pulse �0 � �2 � /2 �2 /2 � �2 �

�0��t−	p /2� �0 cos
�0

2 cos �0
1
8sin �0

1
8sin 2�0

1
4sin

�0

2
1
4sin �0

1
4sin

3�0

2

���t−	p /2� � 0 −1 0 0 1/4 0 −1 /4

G0.01 �56� � 0.0211 −0.9709 0.0104 0.000047 0.24996 0.00023 −0.2354

G0.10 �56� � 0.2107 −0.7086 0.0872 0.0047 0.2458 0.0233 −0.1035

S1 �19� � 0 −0.6135 0.0333 0.0393 0.2382 −0.0737 −0.1020

S2 �19� � 0 −0.6675 0.0250 0.0298 0.2414 −0.0557853 −0.1171

Q1 �19� � 0 −0.6761 0 −0.0079 0.2399 0.0027 −0.1234

Q2 �19� � 0 −0.7138 0 −0.0065 0.2422 0.0022 −0.1342

W11��� � 0 0 0.0511 −0.0039 0.1884 −0.1014 0.0353

W12��� � 0 0 0.0400 −0.0164 0.1904 −0.0871 0.0413

W21��� � 0 0 0 0.0088 0.0072 0.0677 −0.0093

W22��� � 0 0 0 0.0107 0.0634 0.0415 −0.0035

W31��� � 0 0 0 0.00061 0.0436 0 0.0014

W32��� � 0 0 0 0.00046 0.0847 0 0.0146

F1 � 0.0018 0.3307 0.0237 −0.01018 0.1134 −0.0260 0.0680

PKRU1��� �55� � 0 −0.6880 0.0278 0.0368 0.2420 −0.0614 −0.1250

PKRU2��� �55� � 0 −0.1501 0 −0.0078 0 0.0866 −0.0047
�

2��t−	p /2� � /2 �2 /2 0 1/8 0 �2 /8 1/4 �2 /8

G0.01�� /2� � /2 0.7136 0.0211 0.1272 0.0104 0.1767 0.2500 0.1872

G0.10�� /2� � /2 0.7722 0.2107 0.1388 0.0872 0.1706 0.2458 0.2599

Q1�� /2� �53� � /2 0 −0.2906 0 −0.0023 0.2021 0.0040 −0.0508

Q2�� /2� �53� � /2 0 −0.0109 0 0.0035 0.1617 0.0730 0.00077

W11�� /2� � /2 0 0 0.0106 −0.0022 0.1787 0.0114 0.0193

W12�� /2� � /2 0 0 −0.0057 −0.0020 0.1756 0.0482 0.0103

W21�� /2� � /2 0 0 0 −0.0059 0.1796 0.0301 0.0190

W22�� /2� � /2 0 0 0 −0.0021 0.1771 0.0324 0.0129

PKRU1�� /2� �55� � /2 0 −0.2529 −0.0260 −0.0242 0.1992 0.0541 −0.0422

PKRU2�� /2� �55� � /2 0 0.2711 0 0.0127 0 0.0483 0.00028
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The value �2=−1 corresponds to an ideal hard inversion
pulse, in which case the diagonal matrix elements of the

matrix �̄ are not modified. On the other hand, for �2=1 /3,
assuming �xx=�yy �which can always made to be the case by
a rotation in the x-y plane�, the effective decoherence opera-
tor is fully symmetrized �see Eq. �28��. This is the second
potential application for pulse shaping. Again, to second or-
der, the same symmetrization can be also achieved with the
composite-pulse sequence 48 using � /2 pulses with �=�2
=0 �generic decoherence matrix� or any pulses for the special
case of NMR decoherence model �Eq. �17��.

We followed Refs. �19,53� to construct a number of new
� /2 and inversion ��0=�� pulse shapes with �=�2=0
�W1s��0��, �=�2=�=0 �W2s��0��, and �=�2=�=�2=0
�W3s��0��, where the parameter s=1,2 determines the num-
ber of derivatives that vanish at the ends of the pulse interval
�2 and 4, respectively�. The parameters of the new and pre-
viously constructed pulses are listed in Table I and their co-
efficients in Table II. The shapes of the pulses we used in the
simulations are shown in Fig. 2.

IV. SIMULATIONS

Our analytical analysis was only done to second-order
cumulant expansion and assuming time-independent fields
B�. The results are asymptotically true in the limit where the
sequences are sufficiently short, that is, 	B�1, �	�1, and
	�	c, where 	c��c

−1 is the correlation time of the slow part
of the bath. To check for possible effect of ignored terms, we
performed numerical simulations of the controlled dynamics
of a qubit in the presence of time-dependent correlated clas-
sical Gaussian fields B��B��t�, as well as Markovian deco-
herence described by the Lindblad Eqs. �11� and �12�. We
specifically used the NMR decoherence model �Eq. �17�� in
the regime dominated by phase fluctuations, ���0, �=0
�note that with a nonzero � the decoherence matrix can be
decomposed as �̂=�1+ ���−��diag�0,0 ,1�; the part propor-
tional to the identity matrix commutes with decoupling
pulses and can be trivially eliminated.� The fields B��t� were
chosen as zero-average correlated Gaussian random func-
tions with the correlation function

�B��t�B �t��� = �� B0
2g�t − t��, g�t� = e−t2/2	c

2
, �60�

and the fixed value of the correlation time 	c=8	p. The con-
trol fields V��t�, �=x ,y, were generated according to the
chosen decoupling sequence and the pulse shape, with the
kth pulse of the sequence fitting in the interval �k−1�	p� t
�k	p; the corresponding decoupling period 	=n	p is given
by the number n of pulses in the sequence. For every se-
quence, pulse shape, and the realization of the random fields
B��t�, we solved Eqs. �15� and �16� with R� =0 for three sets
of initial conditions with R�=1, �=x ,y ,z; the solutions cor-

respond to the columns of the evolution matrix Q̂�t� �Eq.
�21��. The average decoupling fidelity �Eq. �29�� was then
evaluated using the expression

TABLE II. Pulse coefficients for various shapes constructed for this work. The control field during the
pulse, 0� t�	p, is represented as V�t�=2��n An cos�2�nt /	p�.

Pulse A0 A1 A2 A3 A4 A5 A6 A7

F1 0.5 −1.419474 −2.048028 1.549555 1.435813 −0.017867

W11��� 0.5 −1.242022 −1.009075 0.700828 0.530624 1652161644 0.277982 0.241663

W12��� 0.5 −1.291342 −0.753726 1.499438 0.364546 0.012680 −0.069983 −0.261614

W21��� 0.5 3.056086 −1.295369 −1.689687 −0.062202 −0.366646 −0.142183

W22��� 0.5 2.776007 −2.473314 −1.782314 0.958211 −0.444991 0.300165 0.166236

W31��� 0.5 −1.110710 −3.692547 1.248118 0.990698 1.394824 0.669618

W32��� 0.5 −1.686664 −2.108402 3.362253 1.029286 −0.260405 −0.836068

W11�� /2� 0.25 2.011311 0.041292 1.381531 0.262448 0.076040

W12�� /2� 0.25 2.023581 0.920572 1.341484 −0.113434 −0.144034 −0.231008

W21�� /2� 0.25 2.018463 0.588295 1.393403 −0.206226 0.095943 −0.1029524

W22�� /2� 0.25 2.018283 0.608538 1.386685 0.088935 0.024615 −0.134584 −0.205904
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FIG. 2. �Color online� Pulse shapes used in the simulations. The
Gaussian shape Gx�y�= ��2��1/2x	p�−1exp�−0.5y2 /x2�, with x=0.10
and y= t /	p−0.5 is �2 wider than that used in Ref. �33�. The shapes
S1, Q1 were originally constructed in Ref. �19�. The shapes F1, W11,
and W21 are constructed in this work, see Table II for the
coefficients.
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�F�ts�� =
1

2
�1 +

Tr Q̂�ts�
3

� �61�

at the time moments ts commensurate with the sequence du-
ration ts=s	=sn	p.

The calculation results for a particular sample of the fields
B��t� and several sequences of inversion ��0=�� Gaussian
pulses are shown in Fig. 3. The line marked as “ideal” cor-
responds to the best achievable fidelity

�F�t��ideal =
1

3
�2 + e−��t� , �62�

with the chosen value ��=2��10−3 /	p at the end of the
simulation we get �F�512	p��ideal
0.680. The points marked
“no control” corresponds to average fidelity in the absence of
decoupling pulses; the coherence is lost after just a few pulse
durations. While decoupling is not particularly efficient �and
noise is evident� for the four-pulse sequence �set of points
marked 4p in Fig. 3�, the fidelity is improved and noise
markedly reduced for the sequence 8s and even more so for
the sequence 16a. In fact, the points for sequence 16a are
very close to the dashed line which represents the leading-
order contribution at B=0, see Eq. �63� below.

In the presence of the Markovian decoherence, we can
view the average infidelity as composed of three terms. First
is the unavoidable infidelity due to the Markovian decoher-
ence alone, in the absence of any control fields or low-
frequency noise. For the case of pure dephasing, it is given
by 1− �F�t��ideal, see Eq. �62�. For the value of �� used in our
simulation, �F�t��ideal is shown in Fig. 3 with the solid line.
Second is the fidelity loss due to the redistribution of the
original decoherence rate�s� over the channels. In our simu-
lations, for the sequences 4p, 8s, 16a of � pulses other than

G0.10, this part of the average infidelity is to a very good
accuracy determined by the coefficient �2 of the correspond-
ing pulses,

�F�t��0 =
1

6
�3 + e−�1efft + 2e−�2efft� , �63�

�1eff = ��

1 + �2

2
, �2eff = ��

3 − �2

4
, �64�

see Table I and Fig. 4.
Finally, the third part of the average infidelity is entirely

due to the presence of the low-frequency random fields; it is
defined as the difference between the average fidelity of the
controlled system in the absence of low-frequency fields and
that in their presence, �F�t���F�t��0− �F�t��. It is this quan-
tity that directly characterizes the ineffectiveness of the de-
coupling against the low-frequency fields.

The corresponding plots are shown in Fig. 5 �sequence
8s� and Fig. 6 �sequence 16a�, as well as in Figs. 7 and 8
with ��=0 for comparison purposes. The general trend is
consistent with the expectations based on analytical expan-
sion. For example, with the Gaussian pulses we get the larg-
est error with or without the Markovian dephasing; the de-
coupling error is smaller with the 16a sequence �as
compared with the 8s� where the corrections including the
subleading order are suppressed. Similarly, specially de-
signed pulse shapes with larger number of suppressed param-
eters lead to improved performance in the presence of Mar-
kovian dephasing: compare, e.g., the curves for pulses S1,
W11���, and W21���.

One marked exception is the pulse shape F1, for which
�2
+1 /3 while the other coefficients have magnitude com-
parable to those for, e.g., the shape S1 �apart from the coef-
ficient � which is zero for the shape S1�. While in the absence
of Markovian dephasing, the decoupling error for the pulse
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FIG. 4. �Color online� Single-qubit average fidelity loss due to
redistribution of the decoherence rates over directions in the ab-
sence of low-frequency fields. Symbols are numerical data for
pulses and sequences as indicated, and lines are computed analyti-
cally using Eq. �63� with corresponding v2 from Table I. This con-
tribution to infidelity would be zero for hard �� function� pulses
with �2=−1.
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F1 is qualitatively similar to that for the first-order shapes
�Figs. 7 and 8�, with ���0 the decoupling error is actually
closer to that for the second-order pulses with the sequence
8s �Fig. 5� and is the smallest of the shapes we considered
for the sequence 16a �Fig. 6�. We believe that this, at least in
part, is associated with the symmetrization of the effective
decoherence tensor achieved in the presence of the pulse F1,
which renders the resulting Markovian decoherence �effec-
tively, the amplitude damping� independent from the decou-

pling and thus reduces the contribution from high orders not
included in our analytical calculations.

In comparison with the sequences of � pulses, the basic
unit in the sequences of � /2 pulses, 12p, 24s, and 48s, is
three times longer. As a result, weaker random fields B��t�
with longer correlation times are required to achieve compa-
rable decoupling accuracy. In addition, with longer coher-
ence time, longer evolution times are required to separate the
effects of the transients near the beginning of the simulation
interval. By these reasons, we do not discuss the perfor-
mance of these sequences in detail. For the parameters as in
Figs. 5 and 6, the decoupling error with the sequences 24s
and 48s saturates at around twenty times that for the se-
quences 8s, 16a, while with 	c=32	p and the same B0
=0.1 /	p, the decoupling error is comparable to that in Figs. 5
and 6. Note that these decoupling errors are still small com-
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FIG. 5. �Color online� Single-qubit decoupling error for the
eight-pulse sequence 8s with several pulse shapes, as indicated. The
decoupling error is small for the second-order pulse W21��� and,
somewhat surprisingly, for the symmetrizing shape F1. With ��
=0, the infidelity for this pulse shape with sequence 8s grows simi-
larly to that of first-order pulses S1 and W11 �Fig. 7�.
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FIG. 6. �Color online� As in Fig. 5 but for 16-pulse sequence
16a. For this sequence and with time-independent fields B�, there
would be no contribution from the first two orders of the effective
decoherence operator �Eqs. �56� and �57��; the decoupling error is
determined by the nonadiabaticity and by the terms of higher order.
Generic pulse shapes G0.10, S1, and Q1 show the largest decoupling
error, while it is the smallest for the symmetrizing shape F1 �tech-
nically, zeroth order, ��0; �2
1 /3�. For shapes F1, W11, and W21,
the decoupling error here is actually smaller than the infidelity in
Fig. 8. We believe this is an artifact of the definition of the decou-
pling error related to the full average fidelity approaching saturation
at 1/2 �Fig. 3�.

0x100

1x10-3

2x10-3

0 50 100 150 200 250 300 350 400 450

av
er

ag
e

in
fi

de
lit

y,
1-

<
F(

t)
>

t/τp

seq 8s B0=0.1 τc=8τp γφ=0

G0.10
W11(180)

S1
F1
Q1

W21(180)

FIG. 7. �Color online� As in Fig. 5 but in the absence of Mar-
kovian dephasing, ��=0. Infidelity curves with second-order pulses
Q1 and W21 have a finite slope, unlike the plots in Ref. �21� where
a smaller rms value B0 of the slow fields was used. We checked that
the slopes for the second-order pulse shapes are greately reduced if
B0 is reduced by a factor of two �not shown�.
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FIG. 8. �Color online� As in Fig. 7 but for the sequence 16a. The
slopes for all the pulse shapes excluding G0.10 are greately reduced
if B0 is reduced by a factor of two �not shown�. For the Gaussian
pulses G0.10, the second-order cancellation is achieved only after the
complete sequence with the duration 	=16	p; the slope reduction
happens for slower fields B��t� with 	c=16	p �not shown�.
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pared to the fidelity loss due to redistribution of the decoher-
ence rates over directions, which for these sequences is iden-
tical to that of sequences 8s, 16a with the symmetrizing
pulse F1 �see Fig. 4�.

V. CONCLUSIONS

We considered the dynamical decoupling in a simple de-
coherence model simulating the presence of both low- and
high-frequency environment modes �Fig. 1�, having in mind
applications of DD in combination with QECCs. We mod-
eled the effect of low-frequency degrees of freedom in terms
of classical correlated noise and that of the fast degrees of
freedom with the help of the Markovian master equation in
the Lindblad form, see Eqs. �11� and �10�. The combined
effect is the non-Hermitian evolution �Eq. �15�� of the Bloch
vector with the instantaneous decoherence operator �Eq.
�16�� �see Eq. �17� for the special case of NMR decoherence
model�. In the presence of dynamical decoupling with the
sequence period 	, the values of the average qubit fidelity at
the commensurate time moments 	s=s	 are determined by

the effective decoherence matrix �̄ �Eq. �23��, an analog of
the average Hamiltonian. The trace of the effective decoher-
ence matrix is conserved, see Eq. �27�; in agreement with
general expectations, this implies that dynamical decoupling
can only decrease the fidelity in the presence of Markovian
degrees of freedom alone.

This is always the case for DD with soft pulses, which
necessarily leads to redistribution of the decoherence rates
over the directions, leading to some fidelity reduction even in
the absence of the slow degrees of freedom. For evolution
time small compared to the decoherence time ��−1 �as re-
quired for efficient error correction�, this reduction is a rela-
tively small effect. On the flip side, this redistribution causes
symmetrization of decoherence operator which reduces the
effect of the non-Hamiltonian dynamics associated with the
fast degrees of freedom on the decoupling accuracy. For ex-
ample, if the symmetrization �Eq. �28�� is achieved at the end
of a basic decoupling cycle, decoherence is expected to have
no effect on additional cancellations achieved in a supercycle
obtained by, e.g., phase ramping the basic cycle.

To analyze relative importance of these effects, we con-
sidered several decoupling sequences of both hard and soft
�generic first- and second-order and especially shaped�
pulses which lead to various degrees of symmetrization of
the decoherence operator. For such sequences, in the static

limit where the slow degrees of freedom become time inde-
pendent, we constructed analytically the first two terms of
the �cumulant� expansion of the effective decoherence opera-

tor �̄ in powers of the sequence period 	. With the help of
pulse shaping and/or phase ramping, we could ensure that

the leading-order average decoherence operator �̄�0� is diag-
onal and independent of the components of the slow field,
while the subleading contribution disappears identically,

�̄�1�=0. Results of Refs. �19,21� suggest that such sequences
might also be effective in the presence of sufficiently weak
slowly varying fields.

Numerical simulations generally confirmed these expecta-
tions. In the studied parameter range, the best decoupling
accuracy is achieved with the 16-pulse sequence 16a. With
time-independent external fields the sequence provides com-
plete decoupling of the slow fields in the first two orders of
the cumulant expansion independent of the shape of symmet-
ric inversion pulses, see Eqs. �56� and �57�. The effects of
higher-order terms and nonadiabaticity of the fields B��t� are
captured in the simulations, see Sec. IV. The best perfor-
mance is achieved with the “symmetrizing” pulse shape F1
constructed with the only requirement that the diagonal part
of the leading-order effective decoherence matrix �Eq. �55��
for the four-pulse sequence 4p is symmetric, i.e., �2
+1 /3,
see Sec. III B 1 and Table I. In fact, in our simulations the
part of the coherence loss associated with the slow fields is
smaller than that in the absence of the high-frequency de-
grees of freedom, cf. Figs. 5–8. Overall, the suppression of
the decoherence due to slow fields associated with the dy-
namical decoupling increases the coherence time by orders
of magnitude �56�.

We thus demonstrated in principle the effectiveness of DD
in suppressing the effect of low-frequency degrees of free-
dom in the presence of high-frequency modes which cannot
be eliminated by dynamical decoupling. This opens up pos-
sible applications in combined coherence protection tech-
niques concatenating dynamical decoupling with QECC at
higher levels. We postpone the corresponding discussion to a
further publication �57�.
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