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We consider a type of �M +N�-mode entangled coherent states and propose a simple deterministic scheme to
generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds
of superpositions of multimode coherent states. We also address the issue of manipulating size and type of
entangled coherent states by means of linear optics elements only.
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I. INTRODUCTION

Photons are often considered as good “flying” qubits most
suitable for quantum network communication tasks thanks to
their high speed and robustness against decoherence. Yet,
perfect single-photon sources are demanding and photon-
photon gates are hard to implement due to extremely weak
direct interaction between them. An alternative elegant way
to cope with these problems is to use multiphoton fields such
as coherent states, which are available from standard stabi-
lized laser sources. In fact, coherent-state coding has been
widely exploited and coherent-state-based protocols for
quantum information processing as well as for quantum
computing have been devised by many authors �see, e.g.,
�1–14� and references therein�.

As a rule, quantum information processing and quan-
tum computing based on coherent-state coding require
availability of efficient nonlocal resources called entangled
coherent states. In fact, in the multimode case, the
so-called GHZ-type entangled coherent states �4,7,9,10�
�GHZM

� �� �� ,� , . . . ,��12. . .M + �−� ,−� , . . . ,−��12. . .M and
W-type entangled coherent states �8,9,11,12�
�WM

� �� �−� , � , . . . , ��12. . . M + �� , −� , . . . ,��12. . . M + ¯+�� ,� ,
. . . ,−��12. . . M, with ���� being coherent states with the same
amplitude but opposite phases, have been introduced as natu-
ral extensions of the well-known photonic GHZ states �15�
and W states �16�, respectively.

In this paper we introduce yet another kind of multimode
entangled coherent states which we write compactly in the
form

�CM+N
� � =

1

2
���,�, . . . ,��12. . .M + �− �,− �, . . . ,− ��12. . .MZn

��

����,�, . . . ,��M+1M+2. . .M+N + �− �,− �, . . . ,

− ��M+1M+2. . .M+N� , �1�

with a fixed n� �M +1,M +2, . . . ,M +N� and Zn
� a formal

symbol �not a real unitary operator� to be understood by the

convention Zn
�����n→ � ����n. The state �CM+N

� � is in-
equivalent to �GHZM+N

� � and �WM+N
� � in the sense that they

cannot be transformed from one to another by local opera-
tions and classical communication. For M =N=2 we
have explicitly �C2+2

� �= 1
2 ��� ,� ,� ,��+ �� ,� ,−� ,−��+ �−� ,

−� ,� ,��− �−� ,−� ,−� ,−���1234 which by its form might be
thought of an extension of the linear four-photon cluster state
�17,18� �C4�= 1

2 ��HHHH�+ �HHVV�+ �VVHH�− �VVVV��1234,
where �H���V�� denotes the state of a photon with the hori-
zontal �vertical� polarization. Because of such a similarity in
form the state �C2+2

� � was referred to as four-mode cluster-
type entangled coherent state in Refs. �19–21�. Then, for
M =N=3 the state �C3+3

� �= 1
2 ��� ,� ,� ,� ,� ,��+ �� ,� ,

� ,−� ,−� ,−��+ �−� ,−� ,−� ,� ,� ,��− �−� ,−� ,−� ,−� ,−� ,
−���123456 could also be called six-mode cluster-type
entangled coherent state because its form reminds one
of a six-photon cluster state �22� �C6�= 1

2 ��HHHHHH�
+ �HHHVVV�+ �VVVHHH�− �VVVVVV��123456 which corre-
sponds to the qubit configuration in a certain shape �two of
the three-qubit open boundary cluster states which are linked
by a controlled-phase gate applied to qubits in the middle�.
However, the terminology “cluster-type” turns out mislead-
ing since the original cluster states introduced in Refs.
�23–25� for their primary purpose of performing one-way
measurement-based quantum computation are necessarily as-
sociated with a specific configuration of properly prepared
qubits on which a set of controlled-phase gates act. One can
show that for the case of M , N�4 the forms of the state
�CM+N

� � and a conventional cluster state �CM+N� no longer
resemble one another. To avoid any ambiguities we call our
states �CM+N

� � as a whole defined by Eq. �1� an alternative
type of multimode entangled coherent states to distinguish
them from the known ones �GHZM+N

� � and �WM+N
� �.

In the next section, Sec. II, we present a simple yet effi-
cient scheme to generate the entangled coherent states
�CM+N

� � with all the modes flying freely in space using only
one �-cross-Kerr medium combined with linear optics ele-
ments. Section III deals with applications of such free-flying
states. Namely, it is shown that the introduced entangled co-
herent states can serve as quantum channel to teleport certain
multimode coherent-state superpositions. The issue of how to
change the size and the type of multimode entangled coher-
ent states is addressed in Sec. IV. Finally, a conclusion is
made in Sec. V.
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II. GENERATION SCHEME

The entangled coherent states of the type defined by Eq.
�1� with M =N=2, their nonlocal properties, and schemes of
generation have been touched upon recently �19–21,26�.
Based on atom-photon �19,20� or electron-photon �21� inter-
actions within the framework of cavity QED certain four-
mode entangled coherent states can be generated depending
on the outcome of the measurement carried out at the end on
the atom or the electron in appropriate bases. These states are
confined in spatially separated cavities. However, quantum
communication tasks prefer free-flying to being-confined op-
tical fields to facilitate distribution of the fields among an
optical network. Hence, generation of free-flying entangled
coherent states is necessary. In Ref. �26� a scheme to gener-
ate such free-flying states is considered using multiple
�-cross-Kerr media, Hadamard-type gates, and homodyne
detection. Since the Hadamard-type gate is not a physical
operator due to its nonunitarity, its implementation is not
exact, so the scheme in Ref. �26� is an approximate one.
Moreover, all the above-mentioned schemes �19–21,26� are
probabilistic because postselection should be made. Here we
propose a simple scheme to generate free-flying states
�CM+N

� � of the form defined by Eq. �1�. Our scheme compared
with that of �26� is strict and more feasible because no
Hadamard-type gates are needed and the �-cross-Kerr me-
dium is used only once �not many times�. On top of these, it
is efficient in the sense that it succeeds with probability one
since no measurements are involved at all.

For clarity, let us briefly describe the elements we utilize
in our scheme. These include a �-cross-Kerr medium, phase
shifters, and beam splitters. The �-cross-Kerr medium Kab is
a nonlinear medium propagating through which for a time
duration t such that t�=� �� characterizes the medium non-
linearity� two coherent states ���a���b become entangled in
the following way �see, e.g., �27,28��:

Kab���a���b =
1

2
����a����b + �− ��b� + �− ��a����b − �− ��b�� .

�2�

The phase shifter Pa�T� is a device propagating through
which a coherent state ���a picks up a phase as

Pa�	����a = �e−i	��a. �3�

Also, the beam splitter Bab�	� is a device propagating
through which a product of two coherent states ���a���b re-
mains a product state but with their amplitudes redistributed
as

Bab�T����a���b = ��	T + i�	R�a��	T + i�	R�b, �4�

where T is the transmittance and R=1−T the reflectance.
From Eqs. �3� and �4� it follows a useful transformation

Pb��/2�Bab�T�Pb��/2����a���b = ��	T + �	R�a��	R

− �	T�b. �5�

In particular, for the vacuum state of mode b transformation
�5� simplifies to

Pb��/2�Bab�T����a�0�b = ��	T�a��	R�b. �6�

The setup of the scheme to generate the state �CN+N
� � �i.e.,

with M =N� is depicted in Fig. 1. First, two coherent states
with the same amplitude ���a0

and ���b0
are prepared; i.e., the

initial state is
�
i� = ���a0

���b0
. �7�

Then the two coherent beams a0 and b0 are sent together
through a �-cross-Kerr medium that makes �
i� to be

��� =
1

2
����a0

����b0
+ �− ��b0

� + �− ��a0
����b0

− �− ��b0
�� . �8�

After the nonlinear medium the beam a0 is successively
mixed with the vacuum on a set of N−1 beam splitters with
transmittances T1, T2 , . . ., and TN−1. Thus, in addition to the
transmitted beam a0, there appear N−1 reflected beams a1,
a2 , . . . and aN−1, each of which is let pass through a phase
shifter with 	=� /2. The same does the beam b0 simulta-
neously. As a consequence, 2N beams a0, a1, a2 , . . ., aN−1, b0,
b1, b2 , . . ., and bN−1 go out. Making use of transformation �6�
repeatedly we have

����a0�b0� → ���	T1T2 . . . TN−1�a0�b0����	R1�a1�b1����	T1R2�a2�b2� . . . ���	T1 . . . TN−3RN−2�aN−2�bN−2�

����	T1 . . . TN−2RN−1�aN−1�bN−1�. �9�

FIG. 1. Scheme for generating 2N-mode entangled coherent
states �CN+N

�i�� �. K denotes a �-cross-Kerr medium, P a � /2 phase
shifter, and Bn a beam splitter with transmittance Tn= �N−n� / �N
−n+1�.
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If we choose

� = �	N �10�

and T1= �N−1� /N, T2= �N−2� / �N−1� , . . ., TN−2=2 /3, TN−1
=1 /2 �i.e.,

Tn =
N − n

N − n + 1
�11�

with n=1,2 , . . . ,N−1�, then transition �9� is replaced by

����a0�b0� = ���	N�a0�b0� → ����a0�b0�����a1�b1�

�����a2�b2� . . . ����aN−1�bN−1�. �12�

This means that ���→ �
 f� with �
 f� the final state which is
of the form

�
 f� =
1

2
���,�, . . . ,��a0a1. . .aN−1

+ �− �,− �, . . . ,

− ��a0a1. . .aN−1
Zj

�����,�, . . . ,��b0b1. . .bN−1
+ �− �,− �, . . . ,

− ��b0b1. . .bN−1
� , �13�

with a fixed j� �b0 ,b1 , . . . ,bN−1�. By definition �1�, the gen-
erated state �13� is nothing else but the entangled coherent
states �CN+N

� � of the 2N modes a0, a1 , . . ., aN−1, b0, b1 , . . ., and
bN−1, each of which can fly freely in space. We denote this
class of states by �CN+N

�1���, i.e., �
 f�
�CN+N
�1���.

If instead of Eq. �7� we prepare the initial state as

�
i�� = ��	N�a0
�− �	N�b0

, �14�

�
i�� = �− �	N�a0
��	N�b0

, �15�

or

�
i�� = �− �	N�a0
�− �	N�b0

, �16�

then instead of Eq. �8� we have

���� =
1

2
���	N�a0

���	N�b0
+ �− �	N�b0

� − �− �	N�a0
���	N�b0

− �− �	N�b0
�� , �17�

���� =
1

2
���	N�a0

���	N�b0
− �− �	N�b0

� + �− �	N�a0
���	N�b0

+ �− �	N�b0
�� , �18�

or

���� =
1

2
�− ��	N�a0

���	N�b0
− �− �	N�b0

� + �

− �	N�a0
���	N�b0

+ �− �	N�b0
�� , �19�

respectively. These mean that ����→ �
 f��, ����→ �
 f��, and
����→ �
 f��, with �
 f��, �
 f��, and �
 f�� the corresponding
final states which are of the forms

�
 f�� =
1

2
���,�, . . . ,��a0a1. . .aN−1

− �− �,− �, . . . ,

− ��a0a1. . .aN−1
Zj

�����,�, . . . ,��b0b1. . .bN−1
+ �− �,

− �, . . . ,− ��b0b1. . .bN−1
� , �20�

�
 f�� =
1

2
���,�, . . . ,��a0a1. . .aN−1

Zj
� + �− �,− �, . . . ,

− ��a0a1. . .aN−1
����,�, . . . ,��b0b1. . .bN−1

+ �− �,− �, . . . ,

− ��b0b1. . .bN−1
� , �21�

and

�
 f�� =
1

2
�− ��,�, . . . ,��a0a1. . .aN−1

Zj
� + �− �,− �, . . . ,

− ��a0a1. . .aN−1
����,�, . . . ,��b0b1. . .bN−1

+ �− �,− �, . . . ,

− ��b0b1. . .bN−1
� . �22�

States �20�–�22� constitute other classes of 2N-mode en-
tangled coherent states that we respectively denote by
�CN+N

�2���, �CN+N
�3���, and �CN+N

�4���, i.e., �
 f��= �CN+N
�2���, �
 f��= �CN+N

�3���,
and �
 f��= �CN+N

�4���. The four classes �CN+N
�1���, �CN+N

�2���, �CN+N
�3���,

and �CN+N
�4��� cannot locally be transformed from one to an-

other since there are no exact unitary operators that can make
�−�� into −�−�� but at the same time keep ��� intact. They
are nonorthogonal to each other and their overlappings are

�CN+N
�1����CN+N

�2��� = �CN+N
�1����CN+N

�3��� = �CN+N
�2����CN+N

�4��� = �CN+N
�3���

��CN+N
�4��� = e−2N���2, �23�

�CN+N
�1����CN+N

�4��� = �CN+N
�2����CN+N

�3��� = e−4N���2. �24�

More generally, the entangled coherent states �CM+N
�1�� � with

any M �N can also be generated by a slight modification
in Fig. 1. Indeed, we have just to start with the product
state ��	M�a0

��	N�b0
and use M −1�N−1� beam splitters

with properly chosen transmittances in the upper �lower�
branch of Fig. 1. Similarly, the choices of ��	M�a0

�−�	N�b0
,

�−�	M�a0
��	N�b0

, and �−�	M�a0
�−�	N�b0

for the initial state
will generate the states �CM+N

�2�� �, �CM+N
�3�� �, and �CM+N

�4�� �, respec-
tively. The different states �CM+N

�i�� � overlap as

�CM+N
�1�� ��CM+N

�2�� � = �CM+N
�3�� ��CM+N

�4�� � = e−2N���2, �25�

�CM+N
�1�� ��CM+N

�3�� � = �CM+N
�2�� ��CM+N

�4�� � = e−4M���2, �26�

�CM+N
�1�� ��CM+N

�4�� � = �CM+N
�2�� ��CM+N

�3�� � = e−2�M+N����2. �27�

III. APPLICATION

Cluster states �23–25� qualitatively differ from other kinds
of entangled states such as GHZ states �15� or W states �16�.
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For example, in terms of the Schmidt measure �29�, cluster
states are much more entangled than GHZ and W states.
Although cluster states were originally aimed to serve as
the entire substrate for the one-way universal quantum
computation, they have also found various interesting appli-
cations in quantum information processing, quantum error
correction, nonlocality tests, etc. There are Bell inequalities
that are maximally violated by cluster states and only par-
tially violated by W states but not violated at all by GHZ
states �30,31�. Cluster states also provide a natural imple-
mentation for a quantum version of the game named Prison-
er’s Dilemma �32,33�. Concerning our states �CM+N

�i�� �, as
mentioned in Sec. I, although they cannot as a whole be
called cluster-type entangled coherent states in the strict
sense, their resemblance in form to the cluster states in the
case of M =N=2,3 would make them for these values of M
and N to be different from the corresponding GHZ-type
�4,7,9,10� and W-type �8,9,11,12� entangled coherent states
in quite a similar way as cluster states differ from the
GHZ and W ones. As an example, a recent investigation
based on the GHZ-Mermin argument �21� shows that
states �C2+2

�i��� possess nonlocal properties similar to those of
the cluster state �C4�. Yet, the concrete entanglement proper-
ties of �CM+N

�i�� � with M ,N�3 necessitate separate investiga-
tions. In this section, as possible applications of the free-
flying entangled coherent states �CM+N

�1�� �, �CM+N
�2�� �, �CM+N

�3�� �, and
�CM+N

�4�� �, we show that they can be used for teleportation pur-
poses.

For simplicity, let us first consider M =N=2 in which case
the concerned entangled coherent states have the explicit ex-
pressions

�C2+2
�1��� =

1

2
���,�,�,�� + ��,− �,�,− �� + �− �,�,− �,�� − �

− �,− �,− �,− ���1234, �28�

�C2+2
�2��� =

1

2
���,�,�,�� + ��,− �,�,− �� − �− �,�,− �,�� + �

− �,− �,− �,− ���1234, �29�

�C2+2
�3��� =

1

2
���,�,�,�� − ��,− �,�,− �� + �− �,�,− �,�� + �

− �,− �,− �,− ���1234, �30�

�C2+2
�4��� =

1

2
�− ��,�,�,�� + ��,− �,�,− �� + �− �,�,− �,�� + �

− �,− �,− �,− ���1234, �31�

where we have made a relabeling a0→1, a1→3, b0→2, and
b1→4 for convenience. We now show that the above states
can serve as quantum channel to teleport a class of the
following two-mode three-component entangled coherent
states

���56 = x��,��56 + y��,− ��56 + z�− �,��56, �32�

����56 = x��,��56 + y��,− ��56 + z�− �,− ��56, �33�

����56 = x��,��56 + y�− �,��56 + z�− �,− ��56, �34�

����56 = x��,− ��56 + y�− �,��56 + z�− �,− ��56, �35�

with x, y, and z arbitrary unknown complex coefficients sat-
isfying the normalization condition. Protocols to teleport
two-mode two- and four-component entangled coherent
states by a three-mode entangled coherent state and a pair of
two-mode entangled coherent states as the quantum channel
were proposed in Refs. �4,10� and Refs. �13,14�, respectively.
Here we study teleportation of two-mode three-component
entangled coherent states by a single four-mode entangled
coherent state �C2+2

�i���. In connection with states �32�–�35� we
note that two-qubit three-component states x�00�+y�01�
+z�10� and x�01�+y�10�+z�11� are found to be robust, while

FIG. 2. Scheme for teleporting one of the two-mode coherent-
state superpositions ����56, ����56, ����56, ����56�, Eqs. �32�–�35�,
using one of the four-mode ��C2+2

�1��� , �C2+2
�2��� , �C2+2

�3��� , �C2+2
�4����, Eqs.

�28�–�31�, as the quantum channel. S denotes an entanglement
source, P a � /2 phase shifter, B a beam splitter with transmittance
T=1 /2, and U12 the recovery operator. The dashed arrow indicates
the Alice-to-Bob classical communication which in this case costs 2
bits because there are four situations �i�, �ii�, �iii�, and �iv� to be
discriminated.

1 2 3 4
�Α�

0.05

0.1

0.15

0.2

0.25

pT

FIG. 3. The total success probability pT, Eq. �41�, as a function
of ���, for the teleportation process shown in Fig. 2.
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x�00�+y�10�+z�11� and x�00�+y�01�+z�11� fragile against
decoherence �34�.

If Alice is given the state ���56 she can teleport it to
a distant Bob by sharing with him the state �C2+2

�1��� of
which modes 1,2 belong to Bob and modes 3,4 to
Alice. The teleportation scheme is depicted in Fig. 2.
Alice first lets mode 5 �6� go through a � /2 phase
shifter P5�6��� /2�, then inputs mode 3 and 5 �4 and 6�
on a 50:50 beam splitter B35�46��1 /2�. For the output
modes, Alice gain lets mode 5 �6� go through an-
other � /2 phase shifter before all the modes are regis-
tered by a corresponding photodetector Di �i=3,4 ,5 ,6�.
Let ni be the photon number counted by photodetector
Di. Then the matrix element M= 3456�n3n4n5n6 �
�123456
with �
�123456= P6�� /2�B46�1 /2�P6�� /2�P5�� /2�B35�1 /2�
�P5�� /2��C2+2

�1���1234���56 is

M =
1

2
�− �n30�n40gn5

���gn6
�����− 1�n5+n6x�− �,− ��

− �− 1�n5y�− �,�� − �− 1�n6z��,− ���12

+ gn3
���gn4

����n50�n60�x��,�� + �− 1�n4y��,− ��

+ �− 1�n3z�− �,���12 + gn3
����n40�n50gn6

�����− 1�n6x��,

− �� + y��,�� − �− 1�n3+n6z�− �,− ���12

+ �n30gn4
���gn5

����n60��− 1�n5x�− �,�� − �− 1�n4+n5y�

− �,− �� + z��,���12� , �36�

where �=�	2, �mn is the Kronecker symbol, and gn���
= �n ���=exp�−���2 /2��n /	n!. A closer look at Eq. �36� re-
veals that the teleportation only succeeds in the following
four situations:

�i� n3=n4=0, while n5 and n6 are both odd, occurring with
a probability

p1 =
1

4
e−4���2 sinh2�2���2� , �37�

in which case Bob should apply on his modes the recovery
operator U12= P1��� � P2���;

�ii� n3 and n4 are both nonzero even numbers, while n5
=n6=0, occurring with a probability

p2 = e−4���2 sinh4����2� , �38�

in which case U12= I1 � I2 with Ii the identity operator;
�iii� n4=n5=0, while n3 is odd and n6 is a nonzero even

number, occurring with a probability

p3 = e−4���2 cosh����2�sinh3����2� , �39�

in which case U12= I1 � P2���;
�iv� n3=n6=0, while n4 is odd and n5 is a nonzero even

number, occurring with a probability

p4 = p3, �40�

in which case U12= P1��� � I2.
Thus, the total success probability is

pT = p1 + p2 + 2p3 = e−2���2 sinh2����2� , �41�

which is almost 1/4 for ����2, as visualized from Fig. 3.
Likewise, �C2+2

�1���1234 can also serve as quantum channel to
teleport ����56, ����56, and ����56. Furthermore, we find out
that not only �C2+2

�1���1234, but also �C2+2
�2���1234, �C2+2

�3���1234, and
�C2+2

�4���1234 can be applied to teleport any state among the
class of states �32�–�35�, using the same execution scheme as
in Fig. 2. We summarize all the details in Tables I–IV.

Generally, �CN+N
�i�� � are useful for teleportation of certain

superpositions of N-mode coherent states, while �CM+N
�i�� � with

M �N�M �N� apply for controlled teleportation of certain
superpositions of N-mode �M-mode� coherent states under
the control of M −N�N−M� supervisors. There are many pos-

TABLE I. Success probability pi and recovery operator U12 for teleportation of ���56, ����56, ����56, and
����56 via the quantum channel served by �C2+2

�1���1234, �C2+2
�2���1234, �C2+2

�3���1234, and �C2+2
�4���1234, respectively, in

dependence of the detected photon numbers n3, n4, n5, and n6.

n3 n4 n5 n6 pi U12

0 0 Odd Odd p1 P1��� � P2���
Nonzero even Nonzero even 0 0 p2 I1 � I2

Odd 0 0 Nonzero even p3 I1 � P2���
0 Odd Nonzero even 0 p3 P1��� � I2

TABLE II. Same as in Table I but for teleportation of ����56, ���56, ����56, and ����56 via �C2+2
�1���1234,

�C2+2
�2���1234, �C2+2

�3���1234, and �C2+2
�4���1234, respectively.

n3 n4 n5 n6 pi U12

0 0 Nonzero even Odd p3 P1��� � P2���
Odd Nonzero even 0 0 p3 I1 � I2

Nonzero even 0 0 Nonzero even p2 I1 � P2���
0 Odd Odd 0 p1 P1��� � I2
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sibilities that we are unable to deal with all at a time. As
another illustration, we proceed a step further by considering
M =N=3 in which case �C3+3

�i��� can be used at least to tele-
porta family of three-mode two-component coherent states.
For concreteness let us take �C3+3

�1��� whose explicit expression
is

�C3+3
�1��� =

1

2
���,�,�,�,�,�� + ��,�,− �,�,− �,− �� + �− �,

− �,�,− �,�,�� − �− �,− �,− �,− �,− �,− ���123456,

�42�

where a relabeling a0→1, a1→2, b0→3, a2→4, b1→5, and
b2→6 has been made for convenience. We have realized
that, among others, a superposition of three-mode entangled
coherent state of the form

���789 = x��,�,− ��789 + y�− �,− �,��789, �43�

with arbitrary unknown complex normalization coefficients x
and y, can be teleported via the state �C3+3

�1��� of which Bob
holds modes 1, 2, and 3 while modes 4, 5, and 6 are with
Alice. For that purpose, Alice manipulates modes 4 and 7 �5
and 8, 6 and 9� in the same way as she did in Fig. 2 with
modes 3 and 5 �or 4 and 6�. In the M =N=3 case there are six
photodetectors and the detailed results are collected in Table
V.

The total success probability is

PT = 2�P1 + P4� + 6�P2 + P3� =
1

2
�1 − e−2���2�3, �44�

where

P1 = 2e−6���2 sinh6����2� , �45�

P2 = 2e−6���2 cosh2����2�sinh4����2� , �46�

P3 = 2e−6���2 cosh����2�sinh5����2� , �47�

and

P4 =
1

4
e−6���2 sinh3�2���2� . �48�

For ����2 the total success probability PT is approaching
1/2.

IV. MANIPULATION OF ENTANGLEMENT SIZE AND
TYPE

Depending on an assigned task an entangled state of ap-
propriate size and type will be engineered. For instance, as
has been illustrated in Ref. �35�, to split quantum information
of an arbitrary two-qubit state one needs quintpartite cluster
states while quadpartite ones are suitable only for a particular
two-qubit state. In Sec. II we have generated free-flying en-
tangled coherent states �CM+N

�i�� � and applied them to telepor-
tation purposes in Sec. III. At this point questions may be
asked regarding manipulation of the size and the type of
entangled coherent states employing only linear optics ele-
ments.

One question is the following: “Given a state �CM+N
�i�� �, can

we enlarge or reduce its size?” For a possible enlargement
we send each mode of the state through a 50:50 beam splitter
and let the reflected mode pass through a � /2 phase shifter.
In this way we shall obtain the state �C2M+2N

�i��/	2 �, which has
doubled number of modes but the amplitude of each mode is
reduced by 	2. The amplitude reduction would not cause a
serious problem since correlation rather than amplitude value
is a figure of merit. More generally, if each mode of the state
�CM+N

�i�� � is sent through a collection of Q−1 proper beam
splitters like in a branch of Fig. 1, then the resulting state
will be �CQM+QN

�i��/	Q �; i.e., the size is greatly enlarged. Transpar-
ently, if we reverse the process then �CQM+QN

�i��/	Q � will become

TABLE III. Same as in Table I but for teleportation of ����56, ����56, ���56, and ����56 via �C2+2
�1���1234,

�C2+2
�2���1234, �C2+2

�3���1234, and �C2+2
�4���1234, respectively.

n3 n4 n5 n6 pi U12

0 0 Odd Nonzero even p3 P1��� � P2���
Nonzero even Odd 0 0 p3 I1 � I2

Odd 0 0 Odd p1 I1 � P2���
0 Nonzero even Nonzero even 0 p2 P1��� � I2

TABLE IV. Same as in Table I but for teleportation of ����56, ����56, ����56, and ���56 via �C2+2
�1���1234,

�C2+2
�2���1234, �C2+2

�3���1234, and �C2+2
�4���1234, respectively.

n3 n4 n5 n6 pi U12

0 0 Nonzero even Nonzero even p2 P1��� � P2���
Odd Odd 0 0 p1 I1 � I2

Nonzero even 0 0 Odd p3 I1 � P2���
0 Nonzero even Odd 0 p3 P1��� � I2
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�CM+N
�i�� �; i.e., the size is reduced with an increased modal

amplitude.
Another question is the following: “Can we go back and

forth between states �CM+N
�i�� � and GHZ-type states?” Only one

way is possible and it is not deterministic. For example,
if we want to obtain GHZ-type states �GHZN

���
� �� ,� , . . . ,��M+1M+2. . .M+N� �−� ,−� , . . . ,−��M+1M+2. . .M+N

�normalization coefficients are omitted� from the state
�CM+N

�1�� �, we have to measure the M modes 1 ,2 , . . . ,M of it.
The measurement of a mode m is performed by superimpos-
ing this mode with an auxiliary mode �−i��m� on a 50:50
beam splitter followed by detecting both the modes by pho-
todetectors Dm and Dm�. If Dm clicks and Dm� does not, ���m
is measured. If Dm does not click and Dm� does, �−��m is
measured. If both Dm and Dm� do not click, we cannot dis-
criminate between ���m and �−��m. The modes 1 ,2 , . . . ,M
should be measured in the following manner. First we mea-
sure mode 1. If D1 clicks and D1� does not, we obtain
�GHZN

+�� together with �� ,� , . . . ,��23. . .M as a by-product. If
D1 does not click and D1� does, we obtain �GHZN

−�� together
with �−� ,−� , . . . ,−��23. . .M as a by-product. If both D1 and
D1� do not click, we proceed to measure mode 2. If D2 clicks
and D2� does not, we obtain �GHZN

+�� together with
�� ,� , . . . ,��34. . .M as a by-product. If D2 does not click and
D2� does, we obtain �GHZN

−�� together with �−� ,−� , . . . ,
−��34. . .M as a by-product. If both D2 and D2� do not click,
we proceed to measure mode 3. This process is continued
until we finish the measurement of mode M. We only fail in
the worst situation when all the photodetectors are silent that
occurs with a negligible probability. Similarly, if we want to
obtain �GHZM

��� from �CM+N
�1�� �, we have to measure the N

modes M +1, M +2, . . ., M +N in the same manner. However,
for going the other way around, i.e., transforming GHZ-type
entangled coherent states to our states �CM+N

�i�� �, it is not pos-
sible with linear optics elements.

V. CONCLUSION

We have introduced an alternative type of �M +N�-mode
entangled coherent states �CM+N

�i�� � defined by Eqs. �1� and
�20�–�22�. A scheme has been proposed to generate such
states with all the modes free-flying. Compared to previous
schemes, the advantages of ours is that it is both much sim-
pler and deterministic since no measurements are necessary.
The only challenging point is the use of a �-cross-Kerr me-
dium. However, with respect to electromagnetically-induced-
transparency �EIT� based modern techniques �see, e.g., dis-
cussions in Sec. 4 of Ref. �36�� our scheme can be regarded
as a feasible one. By the way, nonlinear optics elements can-
not be avoided in problems employing coherent-state coding.
In this sense, our scheme can be treated as optimum because
the use of nonlinear optics is kept minimum �Kerr medium is
used only once, not many times as in �26��. Possible appli-
cations of free-flying states �CN+N

�i�� � have been found. Namely,
we have proposed schemes using �C2+2

�i��� as quantum channel
to teleport a family of two-mode three-component coherent
states and �C3+3

�i��� to teleport a family of three-mode two-
component coherent states. We have also addressed the issue
of manipulating entangled coherent states by showing that,
with only linear optics elements, size of the entangled coher-
ent states �CM+N

�i�� � can be enlarged or reduced and from them
we can probabilistically obtain certain GHZ-type entangled
coherent states. Undoubtedly, the entangled coherent states
�CM+N

�i�� � will find wider applications in quantum-information
processing and quantum computing. Further studies are in
progress.
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TABLE V. Success probability Pi and recovery operator U123 for teleportation of ���789, Eq. �43�, via the quantum channel served by
�C3+3

�1���123456, Eq. �42�, in dependence of the detected photon numbers n4, n5 , . . . and n9 registered by the six photodetectors.

n4 n5 n6 n7 n8 n9 Pi U123

0 Nonzero even 0 Nonzero even 0 Nonzero even P1 P1��� � P2��� � P3���
0 Odd 0 Nonzero even 0 Odd P2 P1��� � P2��� � P3���
0 Nonzero even 0 Odd 0 Odd P2 P1��� � P2��� � P3���
0 Odd 0 Odd 0 Nonzero even P2 P1��� � P2��� � P3���
0 0 Nonzero even Nonzero even Odd 0 P3 P1��� � P2��� � I3

0 0 Nonzero even Odd Nonzero even 0 P3 P1��� � P2��� � I3

0 0 Odd Nonzero even Nonzero even 0 P3 P1��� � P2��� � I3

0 0 Odd Odd Odd 0 P4 P1��� � P2��� � I3

Nonzero even 0 Nonzero even 0 Nonzero even 0 P1 I1 � I2 � I3

Nonzero even 0 Odd 0 Odd 0 P2 I1 � I2 � I3

Odd 0 Nonzero even 0 Odd 0 P2 I1 � I2 � I3

Odd 0 Odd 0 Nonzero even 0 P2 I1 � I2 � I3

Nonzero even Nonzero even 0 0 0 Odd P3 I1 � I2 � P3���
Nonzero even Odd 0 0 0 Nonzero even P3 I1 � I2 � P3���
Odd Nonzero even 0 0 0 Nonzero even P3 I1 � I2 � P3���
Odd Odd 0 0 0 Odd P4 I1 � I2 � P3���
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